Modeling dispersion in optical fibers: applications to dispersion tailoring and dispersion compensation

  • K. Thyagarajan
  • B. P. Pal
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

The phenomenon of temporal pulse dispersion, which is a key characteristic of an optical fiber communication system is described from the first principles. Beginning with the basics of dispersion in a bulk medium, these concepts are then applied to propagation of a pulse in an optical fiber. Details of modeling dispersion are then described in the context of dispersion tailoring and dispersion compensation with a view to form the foundation for subsequent chapters on dispersion compensation that follow in this report. Basic physics behind the design target for dispersion compensating fibers is discussed, which should be useful to fiber designers.


Modeling Dispersion Effective Index Chromatic Dispersion Dispersion Compensation Dense Wavelength Division Multiplex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jopson B and Gnauck A, (June 1995), “Dispersion compensation for optical fiber systems”, IEEE Communications Mag, pp. 96-102.Google Scholar
  2. 2.
    Ghatak A and Pal BP, (2002), “Progress in Fiber Optics for Telecommunication”, in the book International Trends in Applied Optics, Ed. A. Guenther, SPIE, Washington, pp. 359-388.Google Scholar
  3. 3.
    Chraplyvy AR, Tkach RW, and KL Walker, (1994), “Optical Fiber for Wavelength Division Multiplexing”, U.S. Patent 5,327,516 (issued July 5, 1994).Google Scholar
  4. 4.
    Peckham DW, Judy AF, and Kummer RB, (1998), “Reduced dispersion slope, non-zero dispersion fiber”, in Proceedings of 24th European Conference on Optical Communication ECOC’98 (Madrid, 1998), pp. 139-140.Google Scholar
  5. 5.
    Liu Y, Mattingly WB, Smith DK, Lacy CE, Cline JA, and De Liso EM, (1998), “Design and fabrication of locally dispersion-flattened large effective area fibers”, in Proceedings of 24th European Conference on Optical Communication ECOC’98 (Madrid, 1998), pp. 37-38.Google Scholar
  6. 6.
    Ryan J, Special report “ITU G.655 adopts higher dispersion for DWDM”, (2001), Light-wave, Vol. 18, no. 10.Google Scholar
  7. 7.
    FrignacY and Bigo S, (2000), “Numerical optimization of residual dispersion in dispersion managed systems at 40 Gb/s”, in Proceedings of Optical Fiber Communications Conference OFC2000 (Baltimore, 2000), pp. 48-50.Google Scholar
  8. 8.
    Danziger Y and Askegard D, (2001), “High-order-mode fiber—an innovative approach to chromatic dispersion management that enables optical networking in long-haul high-speed transmission systems”, Opt. Networks Mag., Vol. 2, pp. 40-50.Google Scholar
  9. 9.
    Sakamoto T, (2001), “S-band fiber optic amplifiers”, in: Proceedings of Optical Fiber Com-munications Conference OFC’01 (Anaheim, Calif., 2001), paper TuQ1.Google Scholar
  10. 10.
    Thyagarajan K and Charu Kakkar, (2004) S-band single stage EDFA with 25 dB gain using distributed ASE suppression, IEEE Photon. Tech. Lett. 16, 2448-2450.CrossRefADSGoogle Scholar
  11. 11.
    Rottwitt K and Stenz AJ, (2002), “Raman amplification in lightwave communications sys-tems”, in Optical fiber Telecommunications, Vol. IVA, I.P. Kaminow and T. Li, eds. (Aca-demic, San Diego, 2002), pp. 213-257.CrossRefGoogle Scholar
  12. 12.
    Ouellette F, (1987), “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides”, Opt. Lett. 12, 847-849.CrossRefADSGoogle Scholar
  13. 13.
    Takiguchi K, Okamoto K, and Moriwaki K, (1994), “Dispersion compensation using a planar ligthwave circuit optical equalizer”, IEEE Photon. Tech. Lett. 6, 561-564.CrossRefADSGoogle Scholar
  14. 14.
    Antos AJ and Smith DK, (1994), “Design and characterization of dispersion compensating fiber based on LP01 mode”, IEEE J. Lightwave Technol. LT-12, 1739-1745.Google Scholar
  15. 15.
    Gnauck AH, Jopson RM, Iannone PP, and Derosier RM, (1994), “Transmission of two wavelength multiplexed 10 Gb/s channels over 560 km of dispersive fiber”, Electron. Lett., 30,727-728.CrossRefADSGoogle Scholar
  16. 16.
    Tsuda H, Okamoto K, Ishi T, Nagnuma K, Inoue Y, Takenouchi H, and Kusukowa T, (1999), “Second and third order dispersion compensator using a high resolution arrayed waveguide grating”, IEEE Photon. Tech. Lett. 11, 569.CrossRefADSGoogle Scholar
  17. 17.
    Ghatak A and Thyagarajan K, (1998), Introduction to Fiber Optics (Cambridge University Press, UK).Google Scholar
  18. 18.
    Marcuse D, (1979), “Interdependence of waveguide and material dispersion”, App. Opt. 18, 2930-2932.CrossRefADSGoogle Scholar
  19. 19.
    Tomkos I, Chowdhury D, Conradi J, Culverhouse D, Ennser K, Giroux C, Hallock B, Kennedy T, Kruse A, Kumar S, Lascar N, Roudas I, Sharma M, Voldhanel RS, Wang CC, (2001), “Demonstration of negative dispersion fibers for DWDM metropolitan area networks”, IEEE J. Selected Top. Quant. Electron. 7, 439-460.CrossRefGoogle Scholar
  20. 20.
    Li MJ, (2001), “Recent progress in fiber dispersion compensators”, Proc ECOC 2001, Am- sterdam, Paper ThM1.1, Vol. 4, pp 486-489.Google Scholar
  21. 21.
    Ramaswami R and Sivarajan KN, (1998), Optical networks: a practical perspective (Morgan Kaufmann, San Francisco).Google Scholar
  22. 22.
    Agrawal GP, (2001), Nonlinear Fiber Optics, 3rd Edition (Academic Press, San Diego).Google Scholar
  23. 23.
    Thyagarajan K, Supriya Diggavi, Anju Taneja and Ghatak AK, (1991), “A simple numerical technique for the analysis of cylindrically symmetric refractive index profile optical fibers”, Appl. Opt. 30, 3877.CrossRefADSGoogle Scholar
  24. 24.
    Pal BP, Kumar A and Ghatak AK, (1981), “Predicting dispersion minimum in step index monomode fiber: comparison of the theoretical approaches”, J. Opt. Commun. 2, 505-507.Google Scholar
  25. 25.
    Akasaka Y, Suguzaki R, and Kamiya T, (1995), “Dispersion Compensating Technique of 1300 nm Zero-dispersion SM Fiber to get Flat Dispersion at 1550 nm Range”, in Digest of European Conference on Optical Communication (1995), paper We.B.2.4.Google Scholar
  26. 26.
    Hawtoff DW, Berkey GE, and Antos AJ, (1996), “High Figure of Merit Dispersion Com-pensating Fiber”, in Technical Digest Optical Fiber Communication Conference (San Jose, 1996), Post-deadline paper PD6 (1996).Google Scholar
  27. 27.
    Vengsarkar AM, Miller AE, and Reed WA, (1993), “Highly efficient single-mode fiber for broadband dispersion compensation”, in Proceedings of Optical Fiber Communications Conference OFC’93 (San Jose, 1993), pp. 56-59.Google Scholar
  28. 28.
    Gr üner-Nielsen L, Knudsen SN, Veng T, Edvold B, and Larsen CC, (1999),“Design and Manufacture of Dispersion Compensating Fiber for Simultaneous Compensation of Disper-sion and Dispersion Slope”, Tech. Dig. OFC’99, Paper WM13, pp. 232-234.Google Scholar
  29. 29.
    Gr üner-Nielsen L, Knudsen SN, Kristensen P, Veng T, Edvold B, and Magnussen T, (2000), “Dispersion Compensating Fibers and Perspectives for Future Developments”, Proc. Europ. Conf. Opt. Comm. ECOC’2000, Vol. 1, pp. 91-94.Google Scholar
  30. 30.
    Gr üner-Nielsen L, Knudsen SN, Edvold B, Veng T, Edvold B, Magnussen T, Larsen CC, and Daamsgard H, (2000), “Dispersion Compensating Fibers”, Opt. Fib. Tech. 6, 164-180.CrossRefGoogle Scholar
  31. 31.
    Knudsen SN, Pedersen MØ, and Gr üner-Nielsen L, (2000), “Optimization of Dispersion Compensating Fibers for Cabled Long-haul Applications”, Electron Lett. 36, 2067-2068.CrossRefGoogle Scholar
  32. 32.
    Srikant V, (2001) “Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems”, in Technical Digest Optical Fiber Communication Conference (Anaheim, 2001), paper TuH1.Google Scholar
  33. 33.
    Mukasa K, Akasaka Y, Suzuki Y, and Kamiya T, (1997), “Novel network fiber to manage dispersion at 1.55 μm with combination of 1.33 μm zero dispersion single-mode fiber”, Proc. Europ. Conf. Opt. Comm. ECOC’97, pp. 127-130.Google Scholar
  34. 34.
    Winful HG, (1985), “Pulse compression in optical fibers”, Appl. Phys. Lett. 46, 527-529.CrossRefADSGoogle Scholar
  35. 35.
    Eggleton BJ, Stephens T, Krug PA, Dhosi G, Brodzeli Z, and Ouellette F, “Dispersion compensation over 100 km at 10 Gb/s using a fiber grating in transmission”, in Technical Digest Optical Fiber Communication Conference (San Jose, 1996), Post-deadline paper PD5 (1996).Google Scholar
  36. 36.
    Pal BP, (2000), “All-fiber guided wave components”, in Electromagnetic fields in uncon-ventional structures and materials, Eds. O.N. Singh and A. Lakhtakia (John Wiley, New York), pp. 359-432.Google Scholar
  37. 37.
    Poole CD, Weisenfeld JM, and Giovanni DJ, (1993), “Elliptical-core dual-mode fiber dis-persion compensator”, IEEE Photon. Tech. Lett. 5, 194-197.CrossRefADSGoogle Scholar
  38. 38.
    Poole CD, Weisenfeld JM, DiGiovanni DJ, and Vengsarkar AM, (1994), “Optical fiber-based dispersion compensation using higher order modes near cutoff ”, IEEE J. Lightwave Technol. 12, 1746-1758.CrossRefADSGoogle Scholar
  39. 39.
    Tur M, Herman E, and DanzigerY, (2001), “Nonlinear properties of dispersion management modules employing high-order mode fibers”, in Technical Digest Optical Fiber Communi-cation Conference (Anaheim, 2001), paper TuS5.Google Scholar
  40. 40.
    Ramachandran S, Mikkelsen B, Cowsar LC, Yan MF, Raybon G, Boivin L, Fishteyn M, Reed WA, Wisk P, Brownlow D, Huff RG and Gruner-Nielsen L, (2000), “All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40 Gb/s”, Proc. European Conf. Optical Comm., PD-2.5.Google Scholar
  41. 41.
    Ramachandran S, Mikkelsen B, Cowsar LC, Yan MF, Raybon G, Boivin L, Fishteyn M, Reed WA, Wisk P, Brownlow D, Huff RG and Gruner-Nielsen L, (2001), “All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40 Gb/s”, IEEE Photon. Tech. Lett. 13, 632-634.CrossRefADSGoogle Scholar
  42. 42.
    Ramachandran S, Ghalmi S, Chandrasekhar S, Ryazansky I, Yan M, Dimarcello F, Reed W, and Wisk P, (2003), “Wavelength-continuous broadband adjustable dispersion compensator using higher order mode fibers and switchable fiber-gratings”, IEEE Photon. Tech. Lett. 15, 727-729.CrossRefADSGoogle Scholar
  43. 43.
    Gnauck AH, Garrett LD, Danziger Y, Levy U, and Tur M, (2000), “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher order mode fibre”, Electron. Lett. 36, 1946-1947.CrossRefGoogle Scholar
  44. 44.
    Izadpanah H, Lin C, Gimlett H, Johnson H, Way W, and Kaiser P, (1992), “Dispersion com-pensation for upgrading interoffice networks built with 1310 nm optimized SMFs using an equalizer fiber, EDFAs, and 1310/1550 nm WDM”, Tech Digest Optical Fiber Communi-cation Conference, Post-deadline paper PD15, pp. 371-373.Google Scholar
  45. 45.
    Onishi M, Koyana Y, Shigematsu M, Kanamori H, and Nishimura M, (1994), “Dipsersion compensating fiber with a high figure of merit of 250 ps/nm.dB”, Electron. Lett. 30, 161-163.CrossRefGoogle Scholar
  46. 46.
    Uchida N, (2002), “Development and future prospect of optical fiber technologies”, IEICE Trans. Electron. E85 C, 868-880.Google Scholar
  47. 47.
    Tewari R, Basu M, and Acharya HN, (1998), “Modified figure of merit for dispersion compensated optical fibers”, Opt. Commun. 155, 260-262.CrossRefADSGoogle Scholar
  48. 48.
    Thyagarajan K, Varshney RK, Palai P, Ghatak AK, and Goyal IC, (1996), “A novel design of a dispersion compensating fiber”, IEEE Photon. Tech. Lett. 8, 1510-1512.CrossRefADSGoogle Scholar
  49. 49.
    Auguste JL, Jindal R, Blondy JM, Clapeau M, Marcou J, Dussardier B, Monnom G, Os-trowsky DB, Pal BP and Thyagarajan K, (2000), “−1800 ps/km-nm chromatic dispersion at 1.55 μm in a dual concentric core fiber”, Electron. Lett. 36, 1689-1691.CrossRefGoogle Scholar
  50. 50.
    Mukasa K, Akasaka Y, SuzukiY, and Kimaya T, (1997), “Novel network fiber to manage dispersion at 1.55 μm with combination of 1.3 μm zero-dispersion single-mode fiber”, in Proc. 23rd European Conference on Opt. Commn. (ECOC’1997), Edinburgh, Session MO3C, pp. 127-130.Google Scholar
  51. 51.
    Nakazima K and Ohashi M, (2002), “Design considerations for inverse dispersion fiber”, IEICE Trans. Electron. E85-C(4), 896-902.Google Scholar
  52. 52.
    Bakshi B, Manna M, Mohs G, Kovsh DI, Lynch RL, Va M, Golovchenko EA, Patterson WW, Anderson WT, Corbett P, Jiang S, Sanders MM, Li H, Harvey GT, Lucero A, and Abbott, SM, (2004), “First dispersion flattened transpacific undersea system: From design to trabits/s field trial”, IEEE J. Lightwave Technol., 233.Google Scholar
  53. 53.
    Auguste J-L, Blondy JM, Maury J, Marcou J, Dussardier B, Monnom G, Jindal R, Thyagarajan K, and Pal BP, (2002), “Conception, realization, and characterization of a very high negative chromatic dispersion fiber”, Opt. Fib. Technol. 8, 89-105.CrossRefADSGoogle Scholar
  54. 54.
    Thyagarajan K and Kaur Jagneet, (2000), “A Novel Design of an Intrinsically gain Flattened Erbium doped fiber”, Opt. Commun. 183, 407.CrossRefADSGoogle Scholar
  55. 55.
    Thyagarajan K and Anand J Kaur, (2003), “Intrinsically gain-flattened staircase profile erbium doped fiber amplifier”, Opt. Commun. 222, 227-233.CrossRefADSGoogle Scholar
  56. 56.
    Thyagarajan K and Kakkar Charu, (2003), “Fiber design for broadband, gain flattened Raman fiber amplifier”, IEEE Photon. Tech. Lett. 15, 1701-1703CrossRefADSGoogle Scholar
  57. 57.
    Thyagarajan K and Kakkar Charu, (2004), “Novel fiber design for flat gain Raman ampli-fication using single pump and dispersion compensation in S-band”, IEEE J. Lightwave Technol. 22, 2279-2286.CrossRefADSGoogle Scholar
  58. 58.
    Palai P, Varshney RK, and Thyagarajan K, (2001), “A dispersion flattening dispersion com-pensating fiber design for broadband dispersion compensation”, Fib. Int. Opt. 20, 21-27.CrossRefGoogle Scholar
  59. 59.
    Pal BP and Pande K, (2002), “Optimization of a dual-core dispersion slope compensating fiber for DWDM transmission in the 1480-1610 nm band through G.652 single-mode fibers”, Opt. Comm. 201, 335-344.CrossRefADSGoogle Scholar
  60. 60.
    Huttunen, A and Torma P, (2005), “Optimization of dual core and microstructure fiber geometries for dispersion compensation and large mode area”, Opt. Express 13, 627-635.CrossRefADSGoogle Scholar
  61. 61.
    Jiang Y, Howley B, Shi Z, Zhou Q, Chen RT, Chen M, Brost G and Lee C, (2005), “Dispersion-enhanced photonic crystal fiber array for a true time delay structured X-band phased array antenna”, IEEE Photonics Technol. Lett. 17, 187-189.CrossRefADSGoogle Scholar
  62. 62.
    Ni Y, Zhang L, An L, Peng J and Fan C, (2004), “Dual core photonic crystal fiber for dispersion compensation”, IEEE Photonics Technol. Lett. 16, 1516-1518.CrossRefADSGoogle Scholar
  63. 63.
    Pande K and Pal BP, (2003), “Design optimization of a dual-core dispersion compensating fiber with high figure of merit and a large effective area for dense wavelength division multiplexed transmission through standard G.655 fibers”, Appl. Opt. 42, 3785-3791.CrossRefADSGoogle Scholar
  64. 64.
    Tjugiarto T, Peng GD, and Chu PL, (1993), “Bandpass filtering effect in tapered asymmet-rical twin-core optical fibers”, Electron. Lett. 29, 1077-1078.CrossRefGoogle Scholar
  65. 65.
    Ortega B and Dong L, (1999), “Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber”, IEEE J. Lightwave Technol. 17, 123-128.CrossRefADSGoogle Scholar
  66. 66.
    Kakkar Charu and Thyagarajan K, (2005), “Broadband, lossless DCF utilizing flat-gain Raman amplification in asymmetrical twin-core fiber”, Appl. Opt. 44, 2396-2401.CrossRefADSGoogle Scholar
  67. 67.
    Thyagarajan K, (2003), “Linear and nonlinear propagation effects in optical fibers”, in Optical Solitons: Theoretical and Experimental challenges, K Porsezian and V Kuriakose (Eds.), Lecture Notes in Physics, Vol. 613 (Springer-Verlag, Heidelberg).Google Scholar
  68. 68.
    Thyagarajan K and Ghatak A, (2004), “Nonlinear optics” in Encyclopaedia of Modern Optics, B. Guenther, L. Bayvel, and D. Steel (Eds.), (Elsevier, UK).Google Scholar
  69. 69.
    Palai P and Thyagarajan K, (1997), “Effect of self phase modulation on a dispersion com-pensated link employing a dispersion compensating fiber”, Opt. Commun. 143, 203-208.CrossRefADSGoogle Scholar
  70. 70.
    Naito T, Terahara T, Shimojoh N, Yorita T, Chikama T, and Suyama M, (2000), “Pre and post dispersion compensation in WDM transmission system, IEICE Trans. Commun. E83-B, 1409-1416.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • K. Thyagarajan
    • 1
  • B. P. Pal
    • 1
  1. 1.Physics DepartmentIndian Institute of Technology DelhiIndia

Personalised recommendations