Skip to main content

Modeling dispersion in optical fibers: applications to dispersion tailoring and dispersion compensation

  • Chapter
Fiber Based Dispersion Compensation

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 5))

The phenomenon of temporal pulse dispersion, which is a key characteristic of an optical fiber communication system is described from the first principles. Beginning with the basics of dispersion in a bulk medium, these concepts are then applied to propagation of a pulse in an optical fiber. Details of modeling dispersion are then described in the context of dispersion tailoring and dispersion compensation with a view to form the foundation for subsequent chapters on dispersion compensation that follow in this report. Basic physics behind the design target for dispersion compensating fibers is discussed, which should be useful to fiber designers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jopson B and Gnauck A, (June 1995), “Dispersion compensation for optical fiber systems”, IEEE Communications Mag, pp. 96-102.

    Google Scholar 

  2. Ghatak A and Pal BP, (2002), “Progress in Fiber Optics for Telecommunication”, in the book International Trends in Applied Optics, Ed. A. Guenther, SPIE, Washington, pp. 359-388.

    Google Scholar 

  3. Chraplyvy AR, Tkach RW, and KL Walker, (1994), “Optical Fiber for Wavelength Division Multiplexing”, U.S. Patent 5,327,516 (issued July 5, 1994).

    Google Scholar 

  4. Peckham DW, Judy AF, and Kummer RB, (1998), “Reduced dispersion slope, non-zero dispersion fiber”, in Proceedings of 24th European Conference on Optical Communication ECOC’98 (Madrid, 1998), pp. 139-140.

    Google Scholar 

  5. Liu Y, Mattingly WB, Smith DK, Lacy CE, Cline JA, and De Liso EM, (1998), “Design and fabrication of locally dispersion-flattened large effective area fibers”, in Proceedings of 24th European Conference on Optical Communication ECOC’98 (Madrid, 1998), pp. 37-38.

    Google Scholar 

  6. Ryan J, Special report “ITU G.655 adopts higher dispersion for DWDM”, (2001), Light-wave, Vol. 18, no. 10.

    Google Scholar 

  7. FrignacY and Bigo S, (2000), “Numerical optimization of residual dispersion in dispersion managed systems at 40 Gb/s”, in Proceedings of Optical Fiber Communications Conference OFC2000 (Baltimore, 2000), pp. 48-50.

    Google Scholar 

  8. Danziger Y and Askegard D, (2001), “High-order-mode fiber—an innovative approach to chromatic dispersion management that enables optical networking in long-haul high-speed transmission systems”, Opt. Networks Mag., Vol. 2, pp. 40-50.

    Google Scholar 

  9. Sakamoto T, (2001), “S-band fiber optic amplifiers”, in: Proceedings of Optical Fiber Com-munications Conference OFC’01 (Anaheim, Calif., 2001), paper TuQ1.

    Google Scholar 

  10. Thyagarajan K and Charu Kakkar, (2004) S-band single stage EDFA with 25 dB gain using distributed ASE suppression, IEEE Photon. Tech. Lett. 16, 2448-2450.

    Article  ADS  Google Scholar 

  11. Rottwitt K and Stenz AJ, (2002), “Raman amplification in lightwave communications sys-tems”, in Optical fiber Telecommunications, Vol. IVA, I.P. Kaminow and T. Li, eds. (Aca-demic, San Diego, 2002), pp. 213-257.

    Chapter  Google Scholar 

  12. Ouellette F, (1987), “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides”, Opt. Lett. 12, 847-849.

    Article  ADS  Google Scholar 

  13. Takiguchi K, Okamoto K, and Moriwaki K, (1994), “Dispersion compensation using a planar ligthwave circuit optical equalizer”, IEEE Photon. Tech. Lett. 6, 561-564.

    Article  ADS  Google Scholar 

  14. Antos AJ and Smith DK, (1994), “Design and characterization of dispersion compensating fiber based on LP01 mode”, IEEE J. Lightwave Technol. LT-12, 1739-1745.

    Google Scholar 

  15. Gnauck AH, Jopson RM, Iannone PP, and Derosier RM, (1994), “Transmission of two wavelength multiplexed 10 Gb/s channels over 560 km of dispersive fiber”, Electron. Lett., 30,727-728.

    Article  ADS  Google Scholar 

  16. Tsuda H, Okamoto K, Ishi T, Nagnuma K, Inoue Y, Takenouchi H, and Kusukowa T, (1999), “Second and third order dispersion compensator using a high resolution arrayed waveguide grating”, IEEE Photon. Tech. Lett. 11, 569.

    Article  ADS  Google Scholar 

  17. Ghatak A and Thyagarajan K, (1998), Introduction to Fiber Optics (Cambridge University Press, UK).

    Google Scholar 

  18. Marcuse D, (1979), “Interdependence of waveguide and material dispersion”, App. Opt. 18, 2930-2932.

    Article  ADS  Google Scholar 

  19. Tomkos I, Chowdhury D, Conradi J, Culverhouse D, Ennser K, Giroux C, Hallock B, Kennedy T, Kruse A, Kumar S, Lascar N, Roudas I, Sharma M, Voldhanel RS, Wang CC, (2001), “Demonstration of negative dispersion fibers for DWDM metropolitan area networks”, IEEE J. Selected Top. Quant. Electron. 7, 439-460.

    Article  Google Scholar 

  20. Li MJ, (2001), “Recent progress in fiber dispersion compensators”, Proc ECOC 2001, Am- sterdam, Paper ThM1.1, Vol. 4, pp 486-489.

    Google Scholar 

  21. Ramaswami R and Sivarajan KN, (1998), Optical networks: a practical perspective (Morgan Kaufmann, San Francisco).

    Google Scholar 

  22. Agrawal GP, (2001), Nonlinear Fiber Optics, 3rd Edition (Academic Press, San Diego).

    Google Scholar 

  23. Thyagarajan K, Supriya Diggavi, Anju Taneja and Ghatak AK, (1991), “A simple numerical technique for the analysis of cylindrically symmetric refractive index profile optical fibers”, Appl. Opt. 30, 3877.

    Article  ADS  Google Scholar 

  24. Pal BP, Kumar A and Ghatak AK, (1981), “Predicting dispersion minimum in step index monomode fiber: comparison of the theoretical approaches”, J. Opt. Commun. 2, 505-507.

    Google Scholar 

  25. Akasaka Y, Suguzaki R, and Kamiya T, (1995), “Dispersion Compensating Technique of 1300 nm Zero-dispersion SM Fiber to get Flat Dispersion at 1550 nm Range”, in Digest of European Conference on Optical Communication (1995), paper We.B.2.4.

    Google Scholar 

  26. Hawtoff DW, Berkey GE, and Antos AJ, (1996), “High Figure of Merit Dispersion Com-pensating Fiber”, in Technical Digest Optical Fiber Communication Conference (San Jose, 1996), Post-deadline paper PD6 (1996).

    Google Scholar 

  27. Vengsarkar AM, Miller AE, and Reed WA, (1993), “Highly efficient single-mode fiber for broadband dispersion compensation”, in Proceedings of Optical Fiber Communications Conference OFC’93 (San Jose, 1993), pp. 56-59.

    Google Scholar 

  28. Gr üner-Nielsen L, Knudsen SN, Veng T, Edvold B, and Larsen CC, (1999),“Design and Manufacture of Dispersion Compensating Fiber for Simultaneous Compensation of Disper-sion and Dispersion Slope”, Tech. Dig. OFC’99, Paper WM13, pp. 232-234.

    Google Scholar 

  29. Gr üner-Nielsen L, Knudsen SN, Kristensen P, Veng T, Edvold B, and Magnussen T, (2000), “Dispersion Compensating Fibers and Perspectives for Future Developments”, Proc. Europ. Conf. Opt. Comm. ECOC’2000, Vol. 1, pp. 91-94.

    Google Scholar 

  30. Gr üner-Nielsen L, Knudsen SN, Edvold B, Veng T, Edvold B, Magnussen T, Larsen CC, and Daamsgard H, (2000), “Dispersion Compensating Fibers”, Opt. Fib. Tech. 6, 164-180.

    Article  Google Scholar 

  31. Knudsen SN, Pedersen MØ, and Gr üner-Nielsen L, (2000), “Optimization of Dispersion Compensating Fibers for Cabled Long-haul Applications”, Electron Lett. 36, 2067-2068.

    Article  Google Scholar 

  32. Srikant V, (2001) “Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems”, in Technical Digest Optical Fiber Communication Conference (Anaheim, 2001), paper TuH1.

    Google Scholar 

  33. Mukasa K, Akasaka Y, Suzuki Y, and Kamiya T, (1997), “Novel network fiber to manage dispersion at 1.55 μm with combination of 1.33 μm zero dispersion single-mode fiber”, Proc. Europ. Conf. Opt. Comm. ECOC’97, pp. 127-130.

    Google Scholar 

  34. Winful HG, (1985), “Pulse compression in optical fibers”, Appl. Phys. Lett. 46, 527-529.

    Article  ADS  Google Scholar 

  35. Eggleton BJ, Stephens T, Krug PA, Dhosi G, Brodzeli Z, and Ouellette F, “Dispersion compensation over 100 km at 10 Gb/s using a fiber grating in transmission”, in Technical Digest Optical Fiber Communication Conference (San Jose, 1996), Post-deadline paper PD5 (1996).

    Google Scholar 

  36. Pal BP, (2000), “All-fiber guided wave components”, in Electromagnetic fields in uncon-ventional structures and materials, Eds. O.N. Singh and A. Lakhtakia (John Wiley, New York), pp. 359-432.

    Google Scholar 

  37. Poole CD, Weisenfeld JM, and Giovanni DJ, (1993), “Elliptical-core dual-mode fiber dis-persion compensator”, IEEE Photon. Tech. Lett. 5, 194-197.

    Article  ADS  Google Scholar 

  38. Poole CD, Weisenfeld JM, DiGiovanni DJ, and Vengsarkar AM, (1994), “Optical fiber-based dispersion compensation using higher order modes near cutoff ”, IEEE J. Lightwave Technol. 12, 1746-1758.

    Article  ADS  Google Scholar 

  39. Tur M, Herman E, and DanzigerY, (2001), “Nonlinear properties of dispersion management modules employing high-order mode fibers”, in Technical Digest Optical Fiber Communi-cation Conference (Anaheim, 2001), paper TuS5.

    Google Scholar 

  40. Ramachandran S, Mikkelsen B, Cowsar LC, Yan MF, Raybon G, Boivin L, Fishteyn M, Reed WA, Wisk P, Brownlow D, Huff RG and Gruner-Nielsen L, (2000), “All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40 Gb/s”, Proc. European Conf. Optical Comm., PD-2.5.

    Google Scholar 

  41. Ramachandran S, Mikkelsen B, Cowsar LC, Yan MF, Raybon G, Boivin L, Fishteyn M, Reed WA, Wisk P, Brownlow D, Huff RG and Gruner-Nielsen L, (2001), “All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40 Gb/s”, IEEE Photon. Tech. Lett. 13, 632-634.

    Article  ADS  Google Scholar 

  42. Ramachandran S, Ghalmi S, Chandrasekhar S, Ryazansky I, Yan M, Dimarcello F, Reed W, and Wisk P, (2003), “Wavelength-continuous broadband adjustable dispersion compensator using higher order mode fibers and switchable fiber-gratings”, IEEE Photon. Tech. Lett. 15, 727-729.

    Article  ADS  Google Scholar 

  43. Gnauck AH, Garrett LD, Danziger Y, Levy U, and Tur M, (2000), “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher order mode fibre”, Electron. Lett. 36, 1946-1947.

    Article  Google Scholar 

  44. Izadpanah H, Lin C, Gimlett H, Johnson H, Way W, and Kaiser P, (1992), “Dispersion com-pensation for upgrading interoffice networks built with 1310 nm optimized SMFs using an equalizer fiber, EDFAs, and 1310/1550 nm WDM”, Tech Digest Optical Fiber Communi-cation Conference, Post-deadline paper PD15, pp. 371-373.

    Google Scholar 

  45. Onishi M, Koyana Y, Shigematsu M, Kanamori H, and Nishimura M, (1994), “Dipsersion compensating fiber with a high figure of merit of 250 ps/nm.dB”, Electron. Lett. 30, 161-163.

    Article  Google Scholar 

  46. Uchida N, (2002), “Development and future prospect of optical fiber technologies”, IEICE Trans. Electron. E85 C, 868-880.

    Google Scholar 

  47. Tewari R, Basu M, and Acharya HN, (1998), “Modified figure of merit for dispersion compensated optical fibers”, Opt. Commun. 155, 260-262.

    Article  ADS  Google Scholar 

  48. Thyagarajan K, Varshney RK, Palai P, Ghatak AK, and Goyal IC, (1996), “A novel design of a dispersion compensating fiber”, IEEE Photon. Tech. Lett. 8, 1510-1512.

    Article  ADS  Google Scholar 

  49. Auguste JL, Jindal R, Blondy JM, Clapeau M, Marcou J, Dussardier B, Monnom G, Os-trowsky DB, Pal BP and Thyagarajan K, (2000), “−1800 ps/km-nm chromatic dispersion at 1.55 μm in a dual concentric core fiber”, Electron. Lett. 36, 1689-1691.

    Article  Google Scholar 

  50. Mukasa K, Akasaka Y, SuzukiY, and Kimaya T, (1997), “Novel network fiber to manage dispersion at 1.55 μm with combination of 1.3 μm zero-dispersion single-mode fiber”, in Proc. 23rd European Conference on Opt. Commn. (ECOC’1997), Edinburgh, Session MO3C, pp. 127-130.

    Google Scholar 

  51. Nakazima K and Ohashi M, (2002), “Design considerations for inverse dispersion fiber”, IEICE Trans. Electron. E85-C(4), 896-902.

    Google Scholar 

  52. Bakshi B, Manna M, Mohs G, Kovsh DI, Lynch RL, Va M, Golovchenko EA, Patterson WW, Anderson WT, Corbett P, Jiang S, Sanders MM, Li H, Harvey GT, Lucero A, and Abbott, SM, (2004), “First dispersion flattened transpacific undersea system: From design to trabits/s field trial”, IEEE J. Lightwave Technol., 233.

    Google Scholar 

  53. Auguste J-L, Blondy JM, Maury J, Marcou J, Dussardier B, Monnom G, Jindal R, Thyagarajan K, and Pal BP, (2002), “Conception, realization, and characterization of a very high negative chromatic dispersion fiber”, Opt. Fib. Technol. 8, 89-105.

    Article  ADS  Google Scholar 

  54. Thyagarajan K and Kaur Jagneet, (2000), “A Novel Design of an Intrinsically gain Flattened Erbium doped fiber”, Opt. Commun. 183, 407.

    Article  ADS  Google Scholar 

  55. Thyagarajan K and Anand J Kaur, (2003), “Intrinsically gain-flattened staircase profile erbium doped fiber amplifier”, Opt. Commun. 222, 227-233.

    Article  ADS  Google Scholar 

  56. Thyagarajan K and Kakkar Charu, (2003), “Fiber design for broadband, gain flattened Raman fiber amplifier”, IEEE Photon. Tech. Lett. 15, 1701-1703

    Article  ADS  Google Scholar 

  57. Thyagarajan K and Kakkar Charu, (2004), “Novel fiber design for flat gain Raman ampli-fication using single pump and dispersion compensation in S-band”, IEEE J. Lightwave Technol. 22, 2279-2286.

    Article  ADS  Google Scholar 

  58. Palai P, Varshney RK, and Thyagarajan K, (2001), “A dispersion flattening dispersion com-pensating fiber design for broadband dispersion compensation”, Fib. Int. Opt. 20, 21-27.

    Article  Google Scholar 

  59. Pal BP and Pande K, (2002), “Optimization of a dual-core dispersion slope compensating fiber for DWDM transmission in the 1480-1610 nm band through G.652 single-mode fibers”, Opt. Comm. 201, 335-344.

    Article  ADS  Google Scholar 

  60. Huttunen, A and Torma P, (2005), “Optimization of dual core and microstructure fiber geometries for dispersion compensation and large mode area”, Opt. Express 13, 627-635.

    Article  ADS  Google Scholar 

  61. Jiang Y, Howley B, Shi Z, Zhou Q, Chen RT, Chen M, Brost G and Lee C, (2005), “Dispersion-enhanced photonic crystal fiber array for a true time delay structured X-band phased array antenna”, IEEE Photonics Technol. Lett. 17, 187-189.

    Article  ADS  Google Scholar 

  62. Ni Y, Zhang L, An L, Peng J and Fan C, (2004), “Dual core photonic crystal fiber for dispersion compensation”, IEEE Photonics Technol. Lett. 16, 1516-1518.

    Article  ADS  Google Scholar 

  63. Pande K and Pal BP, (2003), “Design optimization of a dual-core dispersion compensating fiber with high figure of merit and a large effective area for dense wavelength division multiplexed transmission through standard G.655 fibers”, Appl. Opt. 42, 3785-3791.

    Article  ADS  Google Scholar 

  64. Tjugiarto T, Peng GD, and Chu PL, (1993), “Bandpass filtering effect in tapered asymmet-rical twin-core optical fibers”, Electron. Lett. 29, 1077-1078.

    Article  Google Scholar 

  65. Ortega B and Dong L, (1999), “Selective fused couplers consisting of a mismatched twin-core fiber and a standard optical fiber”, IEEE J. Lightwave Technol. 17, 123-128.

    Article  ADS  Google Scholar 

  66. Kakkar Charu and Thyagarajan K, (2005), “Broadband, lossless DCF utilizing flat-gain Raman amplification in asymmetrical twin-core fiber”, Appl. Opt. 44, 2396-2401.

    Article  ADS  Google Scholar 

  67. Thyagarajan K, (2003), “Linear and nonlinear propagation effects in optical fibers”, in Optical Solitons: Theoretical and Experimental challenges, K Porsezian and V Kuriakose (Eds.), Lecture Notes in Physics, Vol. 613 (Springer-Verlag, Heidelberg).

    Google Scholar 

  68. Thyagarajan K and Ghatak A, (2004), “Nonlinear optics” in Encyclopaedia of Modern Optics, B. Guenther, L. Bayvel, and D. Steel (Eds.), (Elsevier, UK).

    Google Scholar 

  69. Palai P and Thyagarajan K, (1997), “Effect of self phase modulation on a dispersion com-pensated link employing a dispersion compensating fiber”, Opt. Commun. 143, 203-208.

    Article  ADS  Google Scholar 

  70. Naito T, Terahara T, Shimojoh N, Yorita T, Chikama T, and Suyama M, (2000), “Pre and post dispersion compensation in WDM transmission system, IEICE Trans. Commun. E83-B, 1409-1416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thyagarajan, K., Pal, B.P. (2007). Modeling dispersion in optical fibers: applications to dispersion tailoring and dispersion compensation. In: Fiber Based Dispersion Compensation. Optical and Fiber Communications Reports, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48948-3_6

Download citation

Publish with us

Policies and ethics