Advertisement

Dispersion compensating fibers for Raman applications

  • L. Grüuner-Nielsen
  • Y. Qian
  • P. B. Gaarde
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

Dispersion compensating fibers (DCF) are the most widely used technology for dispersion compensation. A DCF without Raman amplification introduces extra loss in the system, thus increasing the need for gain in the discrete amplifiers and degrading the noise performance. The idea to additionally use the DCF as a Raman gain medium was originally proposed by Hansen et al. in 1998. [1] This was quickly followed by Emori et al., who demonstrated a broadband, loss less DCF using multiplewavelength Raman pumping. [2]DCFis a good Raman gain medium, due to a relatively high germanium doping level and a small effective area. To get sufficient gain with a reasonable pump power, a discrete Raman amplifier has to contain several kilometers of fiber, adding extra dispersion to the system that must be handled in the overall dispersion management. Dispersion compensating Raman amplifiers integrates two key functions: dispersion compensation and discrete Raman amplification into a single component.

Keywords

Pump Power Pump Wavelength Raman Gain Relative Intensity Noise Dispersion Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.B. Hansen, G. Jacobovitz-Veselka, L. Gr üner-Nielsen, A.J. Stentz, Raman amplification for loss compensation in dispersion compensating fibre modules, Electron. Lett., 34 (11), 1136-1137 (1998).CrossRefGoogle Scholar
  2. 2.
    Y. Emori, Y. Akasaka, S. Namiki, Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes, Electron. Lett., 34 (22), 2145-2146 (1998).CrossRefGoogle Scholar
  3. 3.
    T. Tanaka, K. Torii, M. Yuki, H. Nakamoto, T. Naito, I. Yokota, 200-nm bandwidth WDM transmission around 1.55 μm using distributed Raman amplifier, Proceedings of ECOC’02, paper PD4.6, 2002.Google Scholar
  4. 4.
    T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi, M. Shigematsu; Raman amplification over 100 nm bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber, Proceedings of OFC’02, paper TuJ7, 2002.Google Scholar
  5. 5.
    L. Gruner -Nielsen, Y. Qian, B. P álsd óttir , Y. Qian, P.B. Gaarde, S. Dyrbøl, T. Veng, R. Boncek, R. Lingle, Module for simultaneous C+L-band dispersion compensation and Raman amplification, OFC’02, paper TuJ6, 2002.Google Scholar
  6. 6.
    D.A. Chestnut, C.J.S. de Matos, P.C. Reeves-Hall, J. R. Taylor, Co- and counter-propagating second-order-pumped lumped fiber Raman amplifiers, Proceedings of OFC’02, paper ThB2, 2002.Google Scholar
  7. 7.
    J. Bromage, H.J. Thiele, L.E. Nelson, Raman amplification in the S-band, Proceedings of OFC’02, paper ThB3, 2002.Google Scholar
  8. 8.
    Y. Qian, Carsten G. Jørgensen, P. B. Gaarde, B. P álsd óttir, B. Edvold, C-band discrete Raman amplification with simultaneous dispersion and dispersion-slope compensation for NZDF, Proceedings of OAA’02, paper OWB2, 2002.Google Scholar
  9. 9.
    A.H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold et al., 2.5 Tb/s (64x42.7 Gb/s) Transmission Over 40 × 100 km NZDSF Using RZ-DPSK Format and all-Raman-Amplified Spans, OFC’02, paper FC2, 2002.Google Scholar
  10. 10.
    B. Zhu, C. Doerr, P. Gaarde, L. E. Nelson, S. Stulz, L. Stulz, L. Gruner-Nielsen, Broad bandwidth seamless transmission of 3.56 Tbit/s over 40 ×x 100 km of NZDF fibre using CSRZ-DPSK format, Opt. Lett., 39 (21), 1528-1530 (2003).Google Scholar
  11. 11.
    B. Zhu, L. Leng, A.H. Gnauck, M.O. Pedersen, D. Peckham, L.E. Nelson, S. Stulz, S. Kado, L. Gr üner-Nielsen, R.L. Lingle, Jr., S. Knudsen, JU. Leuholdt, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, S. Namiki, Transmission of 3.2 Tb/s (80 × 42.7 Gbit/s) over 5200 km of UltraWave fiber with 100 km dispersion-managed spans using RZ DPSK format, Proceedings of ECOC 2001, paper PD4.2, 2002.Google Scholar
  12. 12.
    C. Rasmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kimmitt, K. Springer, D. Gapontsev, V. Ivshin, Transmission of 40 × 42.7 Gbit/s over 5200 km Ultra-Wave fiber with terrestrial 100 km spans using turn-key ETDM transmitter and receiver, Proceedings of ECOC 2002, paper PD4.4, 2002.Google Scholar
  13. 13.
    D.F. Grosz, A. Agarwal, S. Banerjee, A.P. Kung, D.N. Maywar, A. Gurecich, T.H. Wood, C.R. Lima, B. Faer, J. Black, C. Hwu, 5.12 Tb/s (128 × 42.7 Gb/s) Transmission with 0.8 bit/s/Hz spectral efficinecy over 1280 km of standard single-mode fiber using all-Raman amplification and strong signal filtering, ECOC’02, paper PD4.3, 2002.Google Scholar
  14. 14.
    L.F. Mollenauer, Dispersion managed solitons for ultra long distance, Terabit WDM, Pro- ceedings of OFC’00, Tutorial 5, 2000.Google Scholar
  15. 15.
    P.J. Winzer, K. Sherman, M. Zirngibl, Experimental demonstration of time-division multi-plexed Raman pumping, Proceedings of OFC’02, paper WB5, 2002.Google Scholar
  16. 16.
    G. Charlet, W. Idler, R. Dischler, J.-C. Antona, P. Tran, S. Bigo, 3.2 Tbit/s (80’42.7 Gb/s) C-band transmission over 9’100 km of TeraLightTM fiber with 50 GHz channel spacing; Proceedings of OAA’02, PD1, 2002,Google Scholar
  17. 17.
    A.J. Antos, D.K. Smith, Design and Characterization of Dispersion Compensating Fiber Based on the LP01 Mode, J. Lightwave Technol., 12 (10), 1739-1745 (1994).CrossRefADSGoogle Scholar
  18. 18.
    L. Gr üner -Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen, H. Damsgaard, Dispersion compensating fibers, Opt. Fiber Technol., 6, 164-180 (2000).CrossRefADSGoogle Scholar
  19. 19.
    T. Kato, Design optimisation of dispersion compensating fiber for NZ-DSF considering nonlinearity and packaging performance, Proceedings of OFC2001, paper TuS6, 2001.Google Scholar
  20. 20.
    M.J. Li, Recent Progress In Fiber Dispersion Compensators; Proceedings of ECOC 2001, paper Th.M.1.1, 2001.Google Scholar
  21. 21.
    M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, L. Gr üner-Nielsen, Dispersion com- pensating fibers for non-zero dispersion fibers, Technical Digest of OFC’2002 paper WU1, 2002.Google Scholar
  22. 22.
    L. Gr üner-Nielsen, B. Edvold, Status and future promises for dispersion-compensating fibers,; Proceedings of ECOC’02, paper 6.1.1, 2002.Google Scholar
  23. 23.
    M. Wandel, T. Veng, Q. Le N.T., L. Gr üner-Nielsen, Dispersion compensating fibre with a high figure of merit; Proceedings of ECOC’01, paper PD.A.1.4, 2001.Google Scholar
  24. 24.
    C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, A.M. Vengsarkar, Optical Fiber-Based Dis-persion Compensation Using Higher Order Modes Near Cut-off, J. Lightwave Technol., 12 (10),1746-1758 (1994).CrossRefADSGoogle Scholar
  25. 25.
    A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy, M. Tur, Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre, Electron. Lett., 36, 1946 (2000).CrossRefGoogle Scholar
  26. 26.
    S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, L. Gruner-Nielsen, All-Fiber, Grating-based, Higherorder-mode Dispersion Compensator for Broadband Compensation and 1000-km Transmission at 40-Gb/s, Photon. Technol. Lett., 13 (6), 632-634 (2001).CrossRefADSGoogle Scholar
  27. 27.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, CA, 2001).Google Scholar
  28. 28.
    P. Nouchi, P. Sillard, L.A. de Montmorillon, New transmission fibers for future networks, in Proceedings of ECOC’2004, paper Th3.3.1.Google Scholar
  29. 29.
    L. Nelson, B. Zhu, Raman Amplifiers for Telecommunications. (Springer-Verlag, NewYork, 2004), chapter 19.Google Scholar
  30. 30.
    R.H. Stolen, E.P. Ippen, A.R. Tynes, Raman gain in glass optical waveguide, Appl. Phys. Lett., 22, 62-64 (1972).CrossRefADSGoogle Scholar
  31. 31.
    H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, E. Rabarijaona, Pump Interactions in a 100-nm Bandwidth Raman amplifier, IEEE Photon. Technol. Lett., 11, 5 (1999).CrossRefGoogle Scholar
  32. 32.
    C.R.S. Fludger, Raman Amplifiers for Telecommunications (Springer-Verlag, New York, 2004), chapter 4.Google Scholar
  33. 33.
    S.T. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell, B. Wakefield, Optical gain spec-trum of GeO2 -SiO2 Raman fibre amplifiers, IEE Proceedings, 136, Pt. J, 6 (1989).Google Scholar
  34. 34.
    K. Rottwitt, J. Bromage, A.J. Stentz, L. Leng, M. Lines, H. Schmith, Scaling of the Raman gain coefficient: Applications to germanosilicate fibers, J. Lightwave Technol., 21 (7), 1652 (2003).CrossRefADSGoogle Scholar
  35. 35.
    R.H. Stolen, Raman Amplifiers for Telecommunications (Springer-Verlag, NewYork, 2004), chapter 2.Google Scholar
  36. 36.
    Y. Qian, J.H. Povlsen, S.N. Knudsen, L. Gr üner-Nielsen, Fiber Raman amplifications with single-mode fibers, Trends in Optics and Photonics Series TOPS,Vol. 44, pp. 128-134, 2000.Google Scholar
  37. 37.
    P.B. Hansen, L. Eskildsen, A. J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, D. J. DiGiovanni, Rayleigh scattering limitations in distributed Raman pre-amplifiers, IEEE Photon. Tech. Lett., 10 (1), 159-161 (1998).CrossRefADSGoogle Scholar
  38. 38.
    M. Nissov, K. Rottwitt, H.D. Kidorf, M.X. Ma, Rayleigh crosstalk in long cascadedes of distributed unsaturated Raman amplifiers, Electron. Lett., 35 (12), 997-998 (1999).CrossRefGoogle Scholar
  39. 39.
    V.E. Perlin, H.G. Winful, On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification, Proceedings of OFC’02, paper WB1, 2002.Google Scholar
  40. 40.
    A. Artamonov, V. Smokovdin, M. Kleshov, S.A.E. Lewis, S. V. Chernikov, Enhancement of double Rayleigh scattering by pump intensity noise in fiber Raman amplifier, Proceedings of OFC’02, paper WB6, 2002.Google Scholar
  41. 41.
    C.H. Kim, J. Bromage, R.M. Jopson, Reflection-induced penalty in Raman amplified sys- tems, IEEE Photon. Techn. Lett., 14, 4 (2002).Google Scholar
  42. 42.
    Y. Qian, J.H. Povlsen, S.N. Knudsen, L. Gr üner-Nielsen, Fiber Raman amplifications with dispersion compensating fibers, Trends in Optics and Photonics Series TOPS, Vol. 44, pp. 36-43, 2000.Google Scholar
  43. 43.
    P.B. Gaarde, Y. Qian, S. N. Knudsen, B. P álsd óttir, Predicting MPI in Raman optical am- plifiers by measuring the Rayleigh backscattering coefficient, Proceedings of SOFM’02, 2002.Google Scholar
  44. 44.
    A. Hartog and M. Gold, On the Theory of Backscattering in Single-Mode Optical Fibers, J. Lightwave Technol., LT-2 (2), 76-82 (1984).Google Scholar
  45. 45.
    A.F. Judy, An OTDR based combined end-reflection and backscatter measurement, SOFM, pp. 19-22, 1992.Google Scholar
  46. 46.
    M. Ohashi, K. Shiraki, K. Tajima, Optical Loss Property of Silca-Based Single-Mode Fibers, J. Lightwave Technol., 10 (5), 539-543 (1992).CrossRefADSGoogle Scholar
  47. 47.
    S.A.E. Lewis, S.V. Chernikov, J.R. Taylor, Characterization of double Rayleigh scatter noise in Raman amplifiers, IEEE Photon. Technol. Lett., 12, 528-530 (2000).CrossRefADSGoogle Scholar
  48. 48.
    C.R.S. Fludger, R.J. Mears, Electrical measurements of multipath interference in distributed Raman amplifiers, J. Lightwave Technol., 19 (4), 536 (2001).CrossRefADSGoogle Scholar
  49. 49.
    M.O. van Deventer, Polarization properties of Rayleigh backscattering in single-mode fibers, J. Lightwave Technol., 11, 1895-1899 (1993).CrossRefADSGoogle Scholar
  50. 50.
    V. Smokovdin, S.A.E. Lewis, S.V. Chernikov, Direct comparison of electrical and optical measurements of double Rayleigh scatter noise, ECOC’02, paper S3.5, 2002.Google Scholar
  51. 51.
    S. Burtsev, W. Pelouch, P. Gavrilovic, Multi-path interference noise in multi-span transmis-sion links using lumped Raman amplifiers, Proceedings of OFC’02, paper TuR4, 2002.Google Scholar
  52. 52.
    J. Bromage, L.E. Nelson, C.H. Kim, P.J. Winzner, F-J. Essiambre, R.M. Jopson, Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance, Proceedings of OFC’02, paper TuR3, 2002.Google Scholar
  53. 53.
    A. Artamonov, V. Smokovdin, M. Kleshov, S.A.E. Lewis, S.V. Chernikov, Enhancement of double Rayleigh scattering by pump intensity noise in fiber Raman amplifier, Proceedings of OFC’02, paper WB6, 2002.Google Scholar
  54. 54.
    P. Parolari, L. Marazzi, L. Bernardini, M. Martinelli, Double Rayleigh backscatter noise measurements in discrete and distributed Raman amplifiers; Proceedings of OAA’02, paper OWA3, 2002.Google Scholar
  55. 55.
    R. Essiambre, P. Winzer, J. Bromage, C. H. Kim, Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering, IEEE Phonton. Techon. Lett., 14 (7), 914-916 (2002).CrossRefADSGoogle Scholar
  56. 56.
    H.J. Thiele, J. Bromage, L. Nielsen, Impact of discrete Raman amplifier architecture on nonlinear impairments, Proceedings of ECOC’02, paper 7.0.2, 2002.Google Scholar
  57. 57.
    A.J. Stenz, S.G. Grubb, C.E. Headley, J.R. Simponson, T. Strasser, N. Park, Raman amplifier with improved system performance, Proc. of OFC’96, paper TuD3, 1996.Google Scholar
  58. 58.
    D. Hamoir, J. Boniort, L. Gasca, D. Bayart, Optimized, two-stage architecture for Raman amplifiers, Proc. of OAA’00, paper OMD8, 2000.Google Scholar
  59. 59.
    T. Tsuzaki, T. Miyamoto, T. Okuno, M. Kakui, M. Hirano, M. Onishi, M. Shigematsu, Impact of double Rayleigh backscattering in discrete fiber Raman amplifiers employing highly nonlinear fiber, Proceedings of OAA’02, paper OWA2, 2002.Google Scholar
  60. 60.
    C.R.S. Fludger, V. Handerek, D. R. J. Mears, Pump to signal RIN transfer in Raman fibre amplifiers, J. Lightwave Technol., 19 (8), 11400-1148 (2001).Google Scholar
  61. 61.
    M.D. Mermelstein, C. Headley, J.-C. Bouteiller, RIN transfer analysis in pump depletion regime for Raman fibre amplifiers, Electron. Lett., 38 (9), 403-405 (2002).CrossRefGoogle Scholar
  62. 62.
    Y. Qian, S. Dyrbøl, J.S. Andersen, P.B. Gaarde, C.G.Jørgensen, B. P álsd óttir, L. Gr üner-Nielsen, Bi-directionally pumped discrete Raman amplifier with optimized dispersion com-pensation for non-shifted transmission fibre, Proceedings of ECOC’02, paper 6.4.1, 2002.Google Scholar
  63. 63.
    S. Kado,Y. Emori, S. Namiki, Gain and noise tilt control in multi-wavelength bi-directionally pumped Raman amplifier, Proceedings of OFC’02, paper TuJ4, 2002.Google Scholar
  64. 64.
    A.F. Evans, J. Grochocinski, A. Rahman, Corey Reynolds, Michael Vasilyev, Distributed Amplification: How Raman gain impacts other fiber nonlinearities, Proceedings of OFC’01, paper MA7, 2001.Google Scholar
  65. 65.
    J. Bromage, P.J. Winzner, L.E. Nelson, C.J. McKinstrie, Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers; Proceedings of OAA’02, paper OWA5, 2002.Google Scholar
  66. 66.
    Q. Le N.T., C.G.Jørgensen, L. G Gr üner-Nielsen, B. P álsd óttir, Enhancement of Nonlinear response of a highly nonlinear fibre due to Raman amplification, Proceedings of ECOC’02, 2002.Google Scholar
  67. 67.
    T. Okuno, T. Tsuzaki, H. Hirano, T. Miyamoto, M. Kakui, M. Onishi,Y, Nakai, M. Nishimura, Nonlinear-fiber-based discrete Raman amplifier with sufficiently suppressed degradation of WDM signal quality, Proceedings of OAA’1, paper OTuB5, 2001.Google Scholar
  68. 68.
    T. Wang, Y. Cao, J. Luo, Dispersion compensation fiber working in U band, in Proceedings of OFC’2003, Paper MF2.Google Scholar
  69. 69.
    J.U. Jeon, H.K. Seo, Y.T. Lee, Wide-band High Negative Dispersion-Flattened Fiber, in Proceedings of ECOC’2002, Paper P1.35.Google Scholar
  70. 70.
    J. Rathje, M. Andersen, L. Gr üner-Nielsen, Dispersion Compensating fiber for identical compensation in the S,C and L band, in Proceedings of OFC’2003, Paper FK6.Google Scholar
  71. 71.
    P. Kristensen, Design of dispersion compensating fiber, in Proceedings of ECOC’2004, Paper 3.3.1.Google Scholar
  72. 72.
    V.M. Schneider, J. A. West, Analysis of wideband dispesion slope compensating optical fibres by supermode theory, Electron. Lett., 38 (7), 306-307 (2002).CrossRefGoogle Scholar
  73. 73.
    J.L. Auguste, J.M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, B.P. Pal, Conception, realization, and characterization of a very high negative chromatic dispersion fiber, Opt. Fiber Technol., 8, 89-105 (2002).CrossRefADSGoogle Scholar
  74. 74.
    S. Ramachandran, J. Nicholson, P. Kristensen, S. Ghalmi and M. Yan, Measurement of multi-path interference in the coherent cross-talk regime, in Procedings of OFC’2003, paper TuK6.Google Scholar
  75. 75.
    M.E. Lines, W.A. Reed, D.J. DiGiovanni, J.R.Hamblin, Explanation of anomalous loss in high delta singlemode fibres, Electron. Lett., 35 (12), 1009-1010 (1999).CrossRefGoogle Scholar
  76. 76.
    J. Rathje, L. Gr üner-Nielsen, Relationship between Relative Dispersion Slope of a trans-mission fiber and the usable bandwidth after dispersion compensating, in Proceedings of ECOC’2002, paper P1.23.Google Scholar
  77. 77.
    A. Gorlier, P. Sillard, F. Beaumont, L.-A. de Montmorillon, L. Fleury, Ph. Gu énot,A. Bertaina, P. Nouchi, Optimized NZDF-based link for wide-band seamless terrestrial transmissions, in Proceedings of OFC’2002, paper ThGG7.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • L. Grüuner-Nielsen
    • 1
  • Y. Qian
    • 1
  • P. B. Gaarde
    • 1
  1. 1.OFS Fitel Denmark ApSDenmark

Personalised recommendations