Design optimization of dispersion compensating fibers and their packaging techniques

  • T. Kato
  • M. Hirano
  • T. Fujii
  • T. Yokokawa
  • Y. Yamamoto
  • M. Onishi
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

Design optimization of dispersion compensating fibers (DCFs) based on the fundamental mode is described considering the packaging technique. Optical performances of the DCF modules are mainly limited by the macro-, micro-bending loss and the polarization mode dispersion that strongly depend on the module structure.Two types of DCF modules are demonstrated as examples. Bobbin-less module structure that mitigates the bending limit is also described.


Wavelength Division Multiplex Insertion Loss Polarization Mode Dispersion Dispersion Slope Nonlinear Phase Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Lin, H. Kogelnik, and L.G. Cohen, “Optical pulse equalization of low-dispersion trans-mission in single-mode fibers in the 1.3-1.7 μm spectral region,” Opt. Lett. 5 (11), 476-478 (1980).CrossRefADSGoogle Scholar
  2. 2.
    H. Izadpanah, C. Lin, J.L. Gimlett,A.J.Antos, D.W. Hall, and D.K. Smith, “Dispersion com-pensation in 1310 nm optimized SMF’s using optical equalizer fibre, EDFAs and 1310/1550 WDM,” Electron. Lett. 28 (15), 1469-1470 (1992).CrossRefGoogle Scholar
  3. 3.
    A.M. Vengsarkar and W.A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18 (11), 924-926 (1993).CrossRefADSGoogle Scholar
  4. 4.
    A.J. Antos and D.K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12 (10), 1739-1745 (1994).CrossRefADSGoogle Scholar
  5. 5.
    A. Bjarklev, T. Rasmussen, O. Lumhol, K. Rottwitt, and M. Helmer, “Optimal design of single-cladded dispersion-compensating optical fibers,” Opt. Lett. 19 (7), 457-459 (1994).CrossRefADSGoogle Scholar
  6. 6.
    M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and M. Nishimura, “Dispersion com-pensating fibre with a high figure of merit of 250 ps/nm/dB,” Electron. Lett. 30 (2), 161-163 (1994).CrossRefGoogle Scholar
  7. 7.
    C.D. Chen, J.-M.P. Delavaux, B.W. Hakki, O. Mizuhara, T.V. Nguyen, R.J. Nuyts, K. Ogawa, Y.K. Park, R.E. Tench, L.D. Tzeng, and P.D. Yeates, “Field experiment of 10 Gbit/s, 360 km transmission through embedded standard (non-DSF) fibre cables,” Electron. Lett. 30 (14), 1159-1160 (1994).CrossRefGoogle Scholar
  8. 8.
    A.D. Ellis and D.M. Spirit, “Unrepeatered transmission over 80 km standard fibre at 40 Gb/s,” Electron. Lett. 30 (1), 72-73 (1994).CrossRefGoogle Scholar
  9. 9.
    M. Kakui, T. Kato, T. Kashiwada, K. Nakazato, C. Fukuda, M. Onishi, and M. Nishimura, “2.4 Gbit/s repeaterless transmission over 306 km non-dispersion-shifted fibre using di-rectly modulated DFB-LD and dispersion compensating fibre,” Electron. Lett. 31 (1), 51-52 (1995).CrossRefGoogle Scholar
  10. 10.
    R.W. Tkach, R.M. Derosier, A.H. Gnauck, A.M. Vengsarkar, D.W. Peckham, J.L. Zyskind, J.W. Sulfoff, and A.R. Chraplyvy, “Transmission of eight 20 Gb/s channels over 232 km of conventional single-mode fiber,” Photon. Technol. Lett. 7 (11), 1369-1371 (1995).CrossRefADSGoogle Scholar
  11. 11.
    M. Onishi, T. Kashiwada, Y. Koyano,Y. Ishiguro, M. Nishimura, and H. Kanamori, “Third-order dispersion compensating fibres for non-zero dispersion shifted fibre links,” Electron. Lett. 32, 25 (1996).CrossRefGoogle Scholar
  12. 12.
    L.G. Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Maganussen, C.C. Larsen, and H. Damsgaard, “Dispersion compensating fibers,” Opt. Fiber Technol. 6 (2), 164-180 (2000).CrossRefADSGoogle Scholar
  13. 13.
    . M. Wandel et al., “Dispersion compensating fibers for non-zero dispersion fibers,” in Tech-nical digest of OFC2002, WU1 (2002).Google Scholar
  14. 14.
    . L. Gr üner-Nielsen et al., “Status and future promises for dispersion compensating fibres,” in Proceedings of ECOC2002, Paper 6.1.1, 2002.Google Scholar
  15. 15.
    L.V. Jorgensen et al., “Next generation dispersion compensating modules for 40 Gbit/s systems,” in Technical Proceedings of NFOEC2002, pp.1171-1182, 2002.Google Scholar
  16. 16.
    T. Kato, M. Hirano, A. Tada, K. Fukuda, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8 (2),231-239 (2002).CrossRefADSGoogle Scholar
  17. 17.
    C.D. Poole, J.M. Wiesenfeld, and A.R. McCormick, “Broadband dispersion compensation by using the higher-order spatial mode in a two mode fiber,” Opt. Lett. 17 (14), 985-987 (1992).CrossRefADSGoogle Scholar
  18. 18.
    A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36 (23), 1946-1947 (2000).CrossRefGoogle Scholar
  19. 19.
    S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarcello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38 (24), 1507-1508 (2002).CrossRefGoogle Scholar
  20. 20.
    P. Palai, K. Thyanarajan, and B.P. Pal, “Erbium-doped dispersion compensating fiber for simultaneous compensation of loss and dispersion,” Opt. Fiber Technol. 3 (3), 149-153 (1997).CrossRefADSGoogle Scholar
  21. 21.
    J.L. Auguste, J.M. Blondy, J. Mauny, J. Marcou, B. Dussardier, G. Monnom, R. Jinclal, K. Thyagarajan, and B.P. Pal, “Conception, realization and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8 (1), 89-105 (2002).CrossRefADSGoogle Scholar
  22. 22.
    R.J. Nuyts, Y.K. Park, and P. Gallion, “Dispersion equalization of a 10 Gb/s repeatered transmission system using dispersion compensating fibers,” J. Lightwave Technol. 15 (1), 31-42 (1997).CrossRefADSGoogle Scholar
  23. 23.
    J.T. Krause, W.A. Reed and K.L. Walker, “Splice loss of single mode fibre as related to fusion time, temperature and index profile alteration,” J. Lighwave Technol. 4 (7), 837-840 (1986).CrossRefADSGoogle Scholar
  24. 24.
    D.B. Mortimore and J.V. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22 (6), 318-319 (1986).CrossRefGoogle Scholar
  25. 25.
    K. Shiraish, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8 (8), 1151-1161 (1990).CrossRefADSGoogle Scholar
  26. 26.
    H.Y. Tam, “Simple fusion splicing technique for reducing splicing loss between standard single mode fibres and erbium-doped fibre,” Electron. Lett. 27 (17), 1597-1599 (1991).CrossRefGoogle Scholar
  27. 27.
    M.J. Holmes, F.P. Payne, and D.M. Spirit, “Matching fibres for low loss coupling into fiber applications,” Electron. Lett. 26 (25), 2102-2104 (1990).CrossRefGoogle Scholar
  28. 28.
    R. Ulrich, S.C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5 (6), 273-275 (1980).CrossRefADSGoogle Scholar
  29. 29.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, Boston, 1989).Google Scholar
  30. 30.
    S. Tsuda and V.L. daSilva, “Transmission of 80 ×10 Gbit/s WDM channels with 50 GHz spacing over 500 km of LEAFR fiber,” in Technical digest of OFC’2000, TuJ6-1, pp. 149-151 (2000).Google Scholar
  31. 31.
    D.W. Peckham, A.F. Judy, and R.B. Kummer, “Reduced dispersion slope, non-zero disper-sion fiber,” in Proceeding of ECOC’98, vol. 1, pp.139-140, 1998.Google Scholar
  32. 32.
    S. Bigo, E. Lach, Y. Frignac, D. Hamoir, P. Sillard, W. Idler, S. Gauchard, A. Bertaina, S. Borne, L. Lorcy, N. Torabi, B. Franz, P. Nouchi, P. Guenot, L. Fleury, G. Wien, G. Le Ber, R. Fritschi, B. Junginger, M. Kaiser, D. Bayart, G. Veith, J.-P. Hamaide, and J.-L. Beylat, “Transmission of 32 ETDM channels at 40 Gbit/s (1.28 Tbit/s capacity) over 3 × 100 km of TeraLightTM fibre,” Electron. Lett. 37 (7), 448-449 (2001).CrossRefGoogle Scholar
  33. 33.
    S. Gurib, A. Bertaina, S. Gauchard, S. Bigo, J.-P. Hamaide, J.-L. Beylat, L.-A. de Montmo-rillon, R. Sauvageon, P. Nouchi, J.-C. Rousseau, and J.-F. Chariot, “Experimental evaluation of TeralightTM resistance to cross-nonlinear effects for channel spacings down to 50 GHz,” Electron. Lett. 36 (11), 959-961 (2000).CrossRefGoogle Scholar
  34. 34.
    B. Zhu, L. Leng, L.E. Nelson, Y. Qian, L. Cowsar, S. Stulz, C. Doerr, L. Stulz, S. Chan-drasekhar, S. Radic, D. Vengsarkar, Z. Chen, J. Park, K.S. Feder, H. Thiele, J. Bromage, L. Gruner-Nielsen, and S. Knudsen, “3.08 Tbit/s (77 × 42.7 Gbit/s) WDM transmission over 1200 km fibre with 100 km repeater spacing using dual C- and L-band hybrid Raman/erbium-doped inline amplifiers,” Electron. Lett. 37 (13), 844-845 (2001).CrossRefGoogle Scholar
  35. 35.
    S.N. Knudsen, M.Ø. Pedersen, and L. Gr üner-Nielsen, “Optimization of dispersion compen-sating fibres for cabled long-haul applications,” Electron. Lett. 36 (25), 2067-2068 (2000).CrossRefGoogle Scholar
  36. 36.
    K. Okamoto, “Comparison of calculated and measured impulse responses of optical fibers,” Appl. Opt. 18 (13), 2199 (1979).CrossRefADSGoogle Scholar
  37. 37.
    T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers, ” Opt. Lett. 20 (22), 2279 (1995).CrossRefADSGoogle Scholar
  38. 38.
    K. Petermann, “Microbending loss in monomode fibers,” Electron. Lett. 12 (4), 107-109 (1976).CrossRefGoogle Scholar
  39. 39.
    K. Petermann, “Theory of microbending loss in monomode fibers with arbitrary refractive index profile,” Arch. Elektron. U¨ bertr. 30, 337 (1976).Google Scholar
  40. 40.
    J. Sakai and T. Kimura, “Bending loss of propagation mode in arbitrary index profile optical fibers,” Appl. Opt. 17 (10), 1499-1506 (1978).CrossRefADSGoogle Scholar
  41. 41.
    N. Gisin, J.-P.V. der Weid, and J.-P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9 (7), 821-827 (1991).CrossRefADSGoogle Scholar
  42. 42.
    D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Sys. Tech. J. 56 (5), 703-718 (1977).Google Scholar
  43. 43.
    K. Petermann, “Constraints for fundamental-mode spot size for broadband dispersion -compensated single-mode fibres,” Electron. Lett. 19 (18), 712-714 (1983).CrossRefGoogle Scholar
  44. 44.
    C. Pask, “Physical interpretation of Petermann’s strange spot size for single-mode fibres,” Electron. Lett. 20 (3), 144-145 (1984).CrossRefGoogle Scholar
  45. 45.
    . B. Edvold and L. -G. Nielsen, “New technique for reducing the splice loss to dispersion compensating fiber,” in Proceeding of ECOC’96, pp. 2.245-2.248, 1996.Google Scholar
  46. 46.
    Y. Mitsunaga, Y. Katsuyama, H. Kobayashi and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53 (7), 4847-4853 (1982).CrossRefADSGoogle Scholar
  47. 47.
    . GR-63 BELLCORE, “Network Equipment-Building Systems (NEBS) Requirement,” 1995.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • T. Kato
  • M. Hirano
  • T. Fujii
  • T. Yokokawa
  • Y. Yamamoto
  • M. Onishi

There are no affiliations available

Personalised recommendations