Advertisement

Fiber designs for high figure of merit and high slope dispersion compensating fibers

  • Marie Wandel
  • Poul Kristensen
Chapter
  • 959 Downloads
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

When the first dispersion compensating fiber modules were introduced to the market in the mid ‘90s, the only requirement to the fiber was that it should have a negative dispersion. As the bit rate and the complexity of the optical communication systems have increased, several other requirements have been added such as low loss, low non-linearities and the ability of broadband dispersion compensation.

Keywords

Dispersion Curve Effective Index Optical Fiber Communication Usable Bandwidth Dispersion Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Nelson, Optical Fibers for High-Capacity WDM, Long haul systems, IEICE Trans. Electron., E86-C (5), 693-698 (2003).Google Scholar
  2. 2.
    L. Gr üner-Nielsen, S.N. Knudsen, T. Veng, B. Edvold, C.C. Larsen, Design and manufacture of dispersion compensating fibre for simultaneous compensation of dispersion and disper-sion slope, OFC/IOOC’99 Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communications (1999), vol. 2, pp. 232-234.CrossRefGoogle Scholar
  3. 3.
    L. Gr üner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen, H. Damsgaard, Dispersion compensating fibers, Opt. Fiber Technol., 6, 164-180 (2000).CrossRefADSGoogle Scholar
  4. 4.
    L. Gr üner-Nielsen, B. Edvold, Status and future promises for dispersion compensating fibres, Proceedings of 2002 European Conference on Optical Communications, Paper 6.1.1.Google Scholar
  5. 5.
    J. Rathje, L. Gr üner-Nielsen, Relationship between relative dispersion slope of a transmis-sion fiber and the usable bandwidth after dispersion compensating, Proceedings of 2002 European Conference on Optical Communications, Paper P1.23.Google Scholar
  6. 6.
    J.U. Jeon, H.K. Seo, Y.T. Lee, Wide-band High Negative Dispersion-Flattened Fiber, Pro-ceedings of 2002 European Conference on Optical Communications, Paper P1.35.Google Scholar
  7. 7.
    T. Wang, Y. Cao, J. Luo, Dispersion compensation fiber working in U band, Proceedings of 2003 Optical Fiber Communications, Paper MF2.Google Scholar
  8. 8.
    J. Rathje, M. Andersen, L. Gr üner-Nielsen, Dispersion Compensating fiber for identical compensation in the S, C and L band, Proceedings of 2003 Optical Fiber Communications, Paper FK6.Google Scholar
  9. 9.
    V.M. Schneider, J.A. West, Analysis of wideband dispersion slope compensating optical fibres by supermode theory; Electron. Lett., 38 (7), 306-307 (2002).Google Scholar
  10. 10.
    P. Kristensen, Design of dispersion compensating fiber, Proceedings of 2004 European Conference on Optical Communications, Paper We3.31.Google Scholar
  11. 11.
    J.L. Auguste, J.M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, B.P. Pal, Conception, realization and characterization of a very high negative chromatic dispersion fiber, Optical Fiber Technology, 8, 89-105 (2002).CrossRefADSGoogle Scholar
  12. 12.
    J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, K. Thygarajan, -1800 ps/(nm km) chromatic dispersion at 1.55 micron in dual concentric core fibre, Electron. Lett., 36 (20), 1689 (2000).CrossRefGoogle Scholar
  13. 13.
    D.W. Hawtof, G.E. Berkey, A.J. Antos, High figure of merit dispersion compensating fiber, Proceedings of 1996 Optical Fiber Communications, Paper PD6.Google Scholar
  14. 14.
    M. Wandel, T. Veng, Q. Le, L. Gr üner-Nielsen, Dispersion compensating fibre with a high figure of merit; Proceedings of 2001 European Conference on Optical Communications, Paper PD.A.1.4.Google Scholar
  15. 15.
    M.E. Lines, Scattering Losses in optic fiber materials II. Numerical estimates, J.Appl. Phys., 55(11),4058-4063 (1996).Google Scholar
  16. 16.
    M.E. Lines, Optical losses from compositional fluctuations in three-component glasses, J. Non-crystalline Solids, 195, 249-260 (1996).CrossRefADSGoogle Scholar
  17. 17.
    K. Saito, A.J. Ikushima, Reduction of light-scattering loss in silica glass by the structural relaxation of “frozen-in” density fluctuations, Appl. Phys. Lett., 70 (26), 3504-3506 (1997).CrossRefADSGoogle Scholar
  18. 18.
    S. Sakaguchi, S. Todoriki, Rayleigh Scattering of silica core optical fiber after heat treatment, Appl. Opt., 37 (33), 7708-7711 (1998).CrossRefADSGoogle Scholar
  19. 19.
    C. Brehm, P. Dupont, G. Lavanant, P. Ledoux, C. Le Sergent, C. Reinaudo, J.M. Saugrain, M. Carratt, R. Jocteur, Improved drawing conditions for very low loss 1.55 my dispersion shifted fiber, Fiber Integrated Opt., 7, 333-341 (1988).CrossRefGoogle Scholar
  20. 20.
    P. Guenot, P. Nouchi, P. Poumellec, Influence of drawing temperature on light scattering properties of single mode fibers, Proceedings of the 1999 Optical Fiber Communications, paper ThG2.Google Scholar
  21. 21.
    M. Ohashi, K. Shiraki, K. Tajima, Optical loss property of silica-based single mode fibers, J. Lightwave Technol., 10 (5), 539-543 (1992).CrossRefADSGoogle Scholar
  22. 22.
    M.E. Lines, W.A. Reed, D.J. DiGiovanni, J.R. Hamblin, Explanation of anomalous loss in high delta singlemode fibres, Electron. Lett., 35, 12 (1999).CrossRefGoogle Scholar
  23. 23.
    M.M. Bubnov, S.L. Semjonov, M.E. Likhachev, E.M. Dianov,V.F. Khopin, M.Y. Salganskii, A.N. Guryanov, J.C. Fajardo, D.V. Kuksenkov, J. Koh, P. Mazumder, Optical loss reduc-tion in highly GeO2-doped single-mode MCVD fibers by refining refractive index profile, Proceedings of 2003 European Conference on Optical Communications, Paper Tu1.7.3.Google Scholar
  24. 24.
    M.M. Bubnov, S.L. Semjonov, M.E. Likhachev, E.M. Dianov, V.F. Khopin, M.Y. Salganskii, A.N. Guryanov, J.C. Fajardo, D.V. Kuksenkov, J. Koh, P. Mazumder, On the origin of excess loss in highly GeO2 doped single-mode MCVD fibers, IEEE Photon. Technol. Lett., 16 (8), 1870-1872 (2004).CrossRefADSGoogle Scholar
  25. 25.
    S.B. Andreasen, New bending loss formula explaining bends on the loss curve, Electron. Lett., 23 (21), 1138-1139 (1987).CrossRefGoogle Scholar
  26. 26.
    M. Kato, T. Sugie, K. Okamoto, Generation of Negative third-order Dispersion in Coiled Single-Mode Fibers, IEEE Photon. Technol. Lett., 13 (5), 463-465 (2001).CrossRefADSGoogle Scholar
  27. 27.
    F. Koch, S.V. Chernikov, J.R. Taylor, L. Gr üner-Nielsen, Effect of macro-bending on dis-persion of dispersion compensating fibres, Electron. Lett., 35, 8 (1999).CrossRefGoogle Scholar
  28. 28.
    I.J. Blewett, Effect of bending on chromatic dispersion of singlemode optical fibres; Elec- tronic Letters, 30 (7), 592-593 (1994).CrossRefADSGoogle Scholar
  29. 29.
    S. F évrier, J.-L. Auguste, J.-M. Blondy, A. Peyrilloux, P. Roy, D. Pagnoux, Accurate tuning of the highly negative chromatic dispersion wavelength into a dual concentric core fibre by macro-bending, Proceedings of 2002 European Conference on Optical Communications, Paper P1.8.Google Scholar
  30. 30.
    D. Marcuse, Microdeformation losses of single-mode fibers, Appl. Opt. 23 (7), 1082-1091 (1984).CrossRefADSGoogle Scholar
  31. 31.
    D. Gloge, Optical fiber packaging and its influence on fiber straightness and loss, Bell Syst. Techn. J., 54 (2), 245-262 (1975).Google Scholar
  32. 32.
    Y. Ohtera, O. Hanaizumi, S. Kawakami, Numerical Analysis of Eigenmodes and Splice Losses of Thermally Diffused Expanded Core Fibers, J. Lightwave Technol., 17 (12), 2675-2681 (1999).CrossRefADSGoogle Scholar
  33. 33.
    D.B. Mortimore, J.V. Wright, Low-loss joints between dissimilar fibres by tapering fusion splices, Electron. Lett., 22 (6), 318-319 (1986).CrossRefGoogle Scholar
  34. 34.
    E.M. O’Brien, C.D. Hussey, Low-loss fattened fusion splices between different fibers, Elec- tron. Lett., 35 (2), 168-169 (1999).Google Scholar
  35. 35.
    . B. Edvold, L. Gr üner-Nielsen, New technique for reducing the splice loss to dispersion compensating fiber, Proceedings of 22nd European Conference on Optical Communication (1996), Paper TuP.07.Google Scholar
  36. 36.
    J. Refi, Optical Fibers for Optical Networking, Bell Labs Techn. J., January-March 1999, pp. 246-261.Google Scholar
  37. 37.
    Q. Le, T. Veng, L. Gr üner-Nielsen, New dispersion compensating module for compensation of dispersion and dispersion slope of non-zero dispersion fibres in the C-band, Proceedings of 2001 Optical Fiber Communications, Paper TuH5.Google Scholar
  38. 38.
    V. Srikant, Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul systems, Proceedings of 2001 Optical Fiber Communications, Paper TuH1.Google Scholar
  39. 39.
    M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, L .Gr üner-Nielsen, Dispersion compen-sating fibers for non-zero dispersion fibers, Proceedings of 2002 Optical Fiber Communi-cations, Paper WU1.Google Scholar
  40. 40.
    H. Hatayama, M. Hirano, T. Yokokawa, T. Kato, M. Onishi, E. Sasaoka, Dispersion com-pensating fiber for large-Aeff NZ-DSF with low residual dispersion by the technique of suppressing the micro-bending loss, Proceedings of 2003 European Conference on Optical Communications, Paper We 4.P.32.Google Scholar
  41. 41.
    W. Zheng, H.P. Sardesai, M.G. Taylor, D.L. Craig, J. Fowlkes, J.R. Simpson, Measurement and system impact of multipath interference from dispersion compensating fiber modules, IEEE Trans. Instrumentation Measurement, 53 (1), 15-23 (2004).CrossRefGoogle Scholar
  42. 42.
    M. Ohashi, N. Shibata, K. Sato, Evaluation of length dependence of cutoff wavelength in a cabled fiber, Opt. Lett., 13 (12), 1123-1125 (1988).CrossRefADSGoogle Scholar
  43. 43.
    K. Kitayama, M. Ohashi, Y. Ishida, Length dependence of effective cutoff wavelength in single mode fibers, J. Lightwave Technol., 2 (5), 629-633 (1984).CrossRefADSGoogle Scholar
  44. 44.
    L.V. Jørgensen, J.S. Andersen, S. Primdahl, M.N. Andersen, B. Edvold, Next generation dispersion compensating modules for 40 Gbit/s systems, Proceedings of 2002 NFOEC, pp. 1171-1182.Google Scholar
  45. 45.
    T.Yokokawa, T. Kato, T. Fujii,Y.Yamamoto, N. Honma,A. Kataoka, M. Onishi, E. Sasaoka, K. Okamoto, Dispersion compensating fiber with large negative dispersion around -300 ps/nm/km and its application to compact module for dispersion adjustment; Proceedings of 2003 Optical Fiber Communications, Paper FK5.Google Scholar
  46. 46.
    T. Kato, M. Hirano, K. Fukuda, A. Tada, M. Onishi, M. Nishimura, Design optimization of dispersion compensating fiber for NZ-DSF considering nonlinearity and packaging perfor-mance, Proceedings of 2001 Optical Fiber Communications, Paper TuS6.Google Scholar
  47. 47.
    F. Cocchini, The lateral rigidity of double-coated optical fibers, J. Lightwave Technol., 13 (8),1706-1710 (1995).CrossRefADSGoogle Scholar
  48. 48.
    K. Petermann, Theory of microbending loss in monomode fibers with arbitrary index profile, Archiv. Elektron. Ubertragungstechn., 30 (9), 227-342 (1976).Google Scholar
  49. 49.
    P. Kristensen, M.N. Andersen, B. Edvold, T. Veng, L. Gr üner-Nielsen, Dispersion and slope compensating module for G.652 fiber with ×4 reduced physical dimensions, Proceedings of 2003 European Conference on Optical Communications, Paper We4.P.15.Google Scholar
  50. 50.
    A.R. Chraplyvy, Limitations on Lightwave Communications imposed by optical-fiber non-linearities, J. Lightwave Technol., 8 (10), 1548-1557 (1990).CrossRefADSGoogle Scholar
  51. 51.
    L. Gr üner-Nielsen, Dispersion compensation, techniques and system requirements, Pro-ceedings of 2003 European Conference on Optical Communications, Paper Mo4.7.1.Google Scholar
  52. 52.
    A. Boskovic, S.V. Chernikov, J.R. Taylor, L. Grüner-Nielsen, O.A. Levring, Direct continous-wave measurement of n2 in various types of telecommunication fiber at 1.55 mum, Opt. Lett., 21 (24), 1966-1968 (1996).CrossRefADSGoogle Scholar
  53. 53.
    P. Sillard, B. Dany, A. Bertaina, L. Curinckx, C. Bastide, O. Courtois, J.-C. Antona, S. Bigo, Simple Criterion of Quality to evaluate DCM impact on WDM system performance, Proceedings of 2004 Optical Fiber Communications.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Marie Wandel
    • 1
  • Poul Kristensen
    • 1
  1. 1.OFS Fitel DenmarkDenmark

Personalised recommendations