Advertisement

Survey of systems experiments demonstrating dispersion compensation technologies

  • Lara Denise Garrett
Chapter
  • 958 Downloads
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

Chromatic dispersion compensation is an integral part of WDM transmission system design. Compensator properties such as insertion loss, dispersion slope and effective mode area have a large impact on WDM system performance due to nonlinear optical propagation effects. Dispersion compensator imperfections, such as multi-path interference, group delay ripple, insertion loss ripple and limited per-channel compensation bandwidth, place additional limitations on the achievable transmission distance and capacity. In this paper, a survey of key WDM transmission system experiments is undertaken to 1) review the development of chromatic dispersion compensation technologies, 2) discuss the device characteristics that most impact system design for each technology, and 3) hopefully enable the reader to better evaluate compensator technologies for specific applications.

Keywords

Wavelength Division Multiplex Insertion Loss Forward Error Correction Dispersion Compensation Dispersion Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.S. Bergano and C.R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Tech-nol. 13 (5) 879-888 (May 1995).CrossRefADSGoogle Scholar
  2. 2.
    Y. Sun, B.S. Marks, I.T. Lima, K. Allen, G.M. Carter, C.R. Menyuk, “Polarization state evolution in recirculating loops,” Proc. of OFC, Paper ThI4 (2002).Google Scholar
  3. 3.
    N.S. Bergano, F.W. Kerfoot and C.R. Davidson, “Margin Measurements in optical amplifier systems,” Photon. Technol. Lett. 5 (3) 304-306 (1993).CrossRefADSGoogle Scholar
  4. 4.
    N.A. Ollson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7 (7) 1071-1082 (July 1989).CrossRefADSGoogle Scholar
  5. 5.
    J.L. Zyskind, D.J. DiGiovanni, J.W. Sulhoff, P.C. Becker and C.H. Brito Cruz, “High perfor-mance erbium-doped fiber amplifier pumped at 1.48 μm and 0.97 μm,” Opt. Ampl. Appl., Monterrey, CA), Paper PD-P6, 1990.Google Scholar
  6. 6.
    M. Nakazawa,Y. Kimura and K. Suzuki, “An ultra efficient erbium-doped fiber amplifier of 10.2 dB/mW at 0.98 μm pumping and 5.1 dB/mW at 1.48 μm pumping, Opt. Ampl. Appl., Monterrey, CA, Paper PD-P1, 1990.Google Scholar
  7. 7.
    C.D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, “Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985 (1992).CrossRefADSGoogle Scholar
  8. 8.
    A.J. Antos and D.K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12 (10), 1739-1745 (1994).CrossRefADSGoogle Scholar
  9. 9.
    D. Marcuse, “Single-channel operating in very long nonlinear fibers with optical amplifiers at zero dispersion,” J. Lightwave Technol 9, 3 (1991).Google Scholar
  10. 10.
    L. Gruner-Nielsen, S.N. Knudsen, T. Veng, B. Edvold and C.C. Larsen, “Design and manu-facture of dispersion compensating fibre for simultaneous compensation of dispersion and dispersion slope,” in Proc. of OFC, Paper WM132-1 (1999).Google Scholar
  11. 11.
    M. Wandel, P. Kristensen, T. Beng, Y. Qian, Q. Le and L. Gruner-Nielsen, “Dispersion compensating fibers for non-zero dispersion fibers,” Proc. of OFC, Paper WU1 (2002).Google Scholar
  12. 12.
    T.Yokokawa, T. Kato, T. Fuji,Y.Yamamoto, N. Honma, A. Kataoka, M. Onishi, E. Sasaoka, K. Okamoto, “Dispersion compensating fiber with large negative dispersion around −300 ps/nm/km and its application to compact module for dispersion adjustment,” Proc. of OFC, Paper FK5 (2003).Google Scholar
  13. 13.
    L. Gruner-Nielsen, Y. Qian, B. Palsdottir, P. Borg Gaarde, S. Drybol and T. Veng, “Module for simultaneous C+L band dispersion compensation and Raman amplification,” Proc. of OFC, Paper TuJ6 (2002).Google Scholar
  14. 14.
    M. Hirano,A. Tada, T. Kato, M. Onishi,Y. Madio, M. Nishimura, “Dispersion compensating fiber over 140 nm bandwidth,” Proc. of ECOC, Paper Th.M.1.4 (2001).Google Scholar
  15. 15.
    B. Edvold and L. Gruner-Nielsen, “New techniques for reducing the splice loss to dispersion compensating fiber,” in Proc. of ECOC, Paper TuP.07, 10996.Google Scholar
  16. 16.
    A.M. Vengsarkar and W.A. Reed, “Dispersion-compensating single-mode fibers: Efficient designs for first-and second-order compensation,” Opt. Lett. 18, 924-926 (1993).CrossRefADSGoogle Scholar
  17. 17.
    C.D. Chen, J.-M. P. Delavaux, B.W. Hakki, O. Mizuhara, T.V. Nguyen, R.J. Nuyts, K. Ogawa, Y. K. Park, R.E. Tench, L.D. Tzeng and P.D. Yeates, “Field experiment of 10Gbit/s, 360 km transmission through embedded standard (non-DSF) fibre cables,” Electronics Lett. 30 (14), 1159-1160 (1994).CrossRefGoogle Scholar
  18. 18.
    Y. Akasaka, R. Sugizaki, A. Umeda, T. Kamiya, “High-dispersion-compensation ability and low nonlinearity of W-shaped DCF,” Proc. of OFC, paper Tha3 (1996).Google Scholar
  19. 19.
    Y.K. Park, P.D. Yeates, J.-M. P. Delavaux, O. Mizuhara, T.V. Nguyen, L.D. Tzeng, R.E. Tench, B.W. Hakki, C.D. Chen, R.J. Nuyts and K. Ogawa, “A field demonstration of 20-Gbps capacity transmission over 360 km of installed standard (non-DSF) fiber,” IEEE Photon. Technol. Lett. 7 (7), 816-818 (1995).CrossRefADSGoogle Scholar
  20. 20.
    N. Kikuchi, S. Sasaki and K. Sekine, “10 Gbit/s dispersion-compensated transmission over 2245 km conventional fibres in a recirculating loop,” Electronics Lett. 31 (5), 375-377 (1995).CrossRefGoogle Scholar
  21. 21.
    L. Leng, B. Zhu, S. Stulz and L.E. Nelson, “1.6 Tb/s (40 × 40 Gbps) transmission over 500 km of nonzero dispersion fiber with 100-km amplified spans compensated by extra-high-slope dispersion-compensating fiber,” Proc. of OFC, Paper ThX2 (2002).Google Scholar
  22. 22.
    P.B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen and A.J. Stentz, “Raman amplifi-cation for loss compensation in dispersion compensating fibre modules,” Electron. Lett. 34 (11),1136-1137 (1998).CrossRefGoogle Scholar
  23. 23.
    Y. Emori, Y. Akasaka and S. Namiki, “Broadband lossless DCF using Raman amplification pumped by multi-channel WDM laser diodes,” Electron. Lett. 34, 22 (1998).CrossRefGoogle Scholar
  24. 24.
    H. Bissessur, G. Charlet, C. Simonneau, S. Borne, L. Pierre, C. De Barros, P. Tran, W. Idler and R. Dischler, “3.2 Tb/s (80×40 Gbps) C-band transmission over 3×10 km with 0.8bit/s/Hz efficiency,” Proc. of ECOC, Paper PD.M.1.11 (2001).Google Scholar
  25. 25.
    T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi and M. Shigematsu, “Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope com-pensation for conventional single mode fiber,” Proc. of OFC, Paper TuJ7, p. 66-67 (2002).Google Scholar
  26. 26.
    L. Leng, S. Stulz, B. Zhu, L.E. Nelson, B. Edvold, L. Gruner-Nielsen, S. Radic, J. Centanni and A. Gnauck, “1.6-Tb/s (160 × 10.7 Gbps) transmission over 4000 km of Nonzero dis-persion fiber at 25-GHz channel spacing,” IEEE Photon. Technol. Lett. 15 ( 8), 1153-1155 (2003).CrossRefADSGoogle Scholar
  27. 27.
    R.E. Neuhauser, P.M. Krummrich, H. Bock and C. Glingener, “Impact of nonlinear pump interactions on broadband distributed Raman amplification,” Proc. of OFC, Paper MA4 (2001).Google Scholar
  28. 28.
    J. Bromage, P.J. Winzer, L.E. Nelson and C.J. McKinstrie, “Raman-enhanced pump-signal four-wave mixing in bidirectionally pumped Raman amplifiers,” Proc. of OAA, Paper OWA-5(2002).Google Scholar
  29. 29.
    B. Zhu, L.E. Nelson, S. Stulz, A.H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M.O Pedersen, J. Kim and R. Lingle, “High spectral density long-haul 40-Gbps transmission using CSRZ-DPSK format,” J. Lightwave Technol. 22 (1), 208-214 (2004).CrossRefADSGoogle Scholar
  30. 30.
    H.S. Chung, H. Kim, S.E. Jin, E.S. Son, D.W. Kim, K.M. Lee, H.Y Park and Y.C. Chung, “320-Gbps WDM transmission with 50-GHz channel spacing over 564km of short-period dispersion managed fiber (Perfect Cable),” IEEE Photon. Technol. Lett. 12 (10), 1397-1399 (2000).CrossRefADSGoogle Scholar
  31. 31.
    S.N. Knudsen, M.O. Pedersen and L. Gruner-Nielsen, “Optimisation of dispersion com- pensating fibres for cabled long-haul application,” Electronics Lett. 36, 25 (7 December 2000).CrossRefGoogle Scholar
  32. 32.
    S.N. Knudsen, “Design and manufacture of dispersion compensating fibers and their per-formance in systems,” Proc. of OFC, paper WU3, p. 330-331 (2002).Google Scholar
  33. 33.
    L.E. Nelson, L.D. Garrett, A.R. Chraplyvy, and R.W. Tkach, “NZDSF dispersion maps in 2000-km 8×10-Gbps WDM transmission,” Proc. of ECOC, pp.315-316 (1998).Google Scholar
  34. 34.
    A. Boskovic and D.L. Butler, “Transmission of 32 channels at 10Gbit/s over 450 km of dispersion managed cable using LEAFTM and sub-LSTM fibres,” Electronics Lett. 35 (5) (4 March 1999).Google Scholar
  35. 35.
    K. Tanaka, T. Tsuritani, N. Edagawa and M. Suzuki, “320 Gbit/s (32 × 10.7Gbit/s) error-free transmission over 7280 km using dispersion flattened fibre link with standard SMF and slope compensating DCF,” Electronics Lett. 35, 21 (14 October 1999).Google Scholar
  36. 36.
    H.S. Chung, S.E. Jin, D.W. Lee, D.W. Kim andY.C. Chung, “640 Gbps (32 × 20 Gbps)WDM transmission with 0.4 bit/s/Hz spectral efficiency using short-period dispersion managed fiber (Perfect CableTM),” Proc. of OFC, Paper ThF6 (2001).Google Scholar
  37. 37.
    Y. Inada, K. Fukuchi, T. Ono, T. Ogata and H. Okamura, “2400-km transmission of 100-GHz-spaced 40-Gbps WDM signals using a “double-hybrid” fiber configuration,” Proc. of ECOC, Paper WeF.1.6 (2001).Google Scholar
  38. 38.
    H. Sugahara, K. Fukuchi, A. Tanaka, Y. Inada and T. Ono, “6,050 km transmission of 32 × 42.7Gbps DWDM signals using Raman-amplified quadruple-hybrid span configuration,” Proc. of OFC, Paper FC6 (2002).Google Scholar
  39. 39.
    L. du Mouza et al, “1.28 Tbit/s (32 × 40 Gbit/s) WDM transmission over 2400 km of Tera-Lighttm/Reverse TeraLight© fibres using distributed all-Raman amplification,” Electronics Lett. 37, 21 (11 October 2001).CrossRefGoogle Scholar
  40. 40.
    C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Key, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin and P. Reeves-Hall, “DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans,” J. Lightwave Technol. 22 (1),203-207 (January 2004).CrossRefADSGoogle Scholar
  41. 41.
    N.S. Bergano, C.R. Davidson, B.M. Nyman, S.G. Evangelides, J.M. Darcie, J.D. Evankow, P.C. Corbett, M.A. Mills, G.A. Ferguson, J.A. Nagel, J.L. Zysking, J.W. Sulhoff, A.J. Lucero and A.A. Klein, “40 Gbps WDM transmission of eight 5 Gbps data channels over transoceanic distances using the conventional NRZ modulation format,” Proc. of OFC, Paper PD-19 (1995).Google Scholar
  42. 42.
    N.S. Bergano and C.R. Davidson, “Wavelength division multiplexing in long-haul trans-mission system,” J. Lightwave Technol. 14 (6), 1299-1308 (June 1996).CrossRefADSGoogle Scholar
  43. 43.
    J.-X. Cai, D.G. Foursa, C.R. Davidson,Y. Cai, G. Domagala, H. Li, L. Liu, W.W. Patterson, A.N. Pilipetskii, M. Nissov and N.S. Bergano, “ A DWDM demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK channels at 10 Gbps,” Proc. Of OFC, Paper PD-22 (2003).Google Scholar
  44. 44.
    T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, N. Edagawa and S. Akiba, “ 70-GHz-spaced 40×32.7 Gbps transpacific transmission over 9400 km using prefiltered CSRZ-DPSK signals, all-Raman repeaters, and symmetrically dispersion-managed fiber spans,” J. Lightwave Technol. 22 (1) 215-223 (January 2004).CrossRefADSGoogle Scholar
  45. 45.
    G. Charlet, E. Corbel, J. Lazaro, A. Klekamp, R. Dischler, P. Tran, W. Idler, H. Mardoyan, A. Konczykowska, F. Jorge and S. Bigo, “ WDM transmission at 6-Tb/s capacity over transatlantic distance, using 42.7 Gb/s differential phase-shift keying without pulse carver,” J. Lightwave Technol. 23 (1), 14-107 (January 2005).Google Scholar
  46. 46.
    S.N. Knudsen, B. Zhu, L.E. Nelson, M.O. Pedersen, D.W. Peckham and S. Stulz, “420 Gbit/s (42 × 10 Gbit/s) WDM transmission over 4000 km of UltraWave fibre with 100 km dispersion-managed spans and distributed Raman amplification,” Electron. Lett. 37 (15) (19 July 2001).Google Scholar
  47. 47.
    B. Zhu, S.N. Knudsen, L.E. Nelson, D.W. Peckham, M.O. Pedersen and S. Stulz, “800 Gbit/s (80 × 10.664 Gbit/s) WDM transmission over 5200 km of fibre employing 100 km dispersion-managed spans,” Electron. Lett. 37 (24) (22 November 2001).Google Scholar
  48. 48.
    B. Zhu, L. Leng, L.E. Nelson, S. Knudsen, J. Bromage, D. Peckham, S. Stulz, K. Brar, C. Horn, K. Feder, H. Thiele and T. Veng, “1.6Tb/s (40 × 42.7Gbps) transmission over 2000 km of fiber with 100-km dispersion-managed spans,” Proc. of ECOC, Paper PD.M.1.8 (2001).Google Scholar
  49. 49.
    F. Liu J. Bennike, S. Dey, C. Rassmussen, B. Mikkelsen, P. Mamyshev, D. Gapontsev and V. Ivshin, “1.6 Tb/s (42×42.7Gbps) transmission over 3600 km UltraWaveTM fiber with all-Raman amplified 100-km terrestrial spans using ETDM transmitter and receiver,” Proc. of OFC, Paper FC7 (2002).Google Scholar
  50. 50.
    C. Rassmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kimmitt, K. Springer, D. Gapontsev and V. Ivshin, “Transmission of 40 × 42.7 Gbps over 5200 km Ul-traWave fiber with terrestrial 100-km spans using turn-key ETDM transmitter and receiver,” Proc. of ECOC (2002).Google Scholar
  51. 51.
    B. Zhu, L. Nelson, L. Leng, S. Stulz, M. Pedersen, D. Peckham, “Transmission of 1.6 Tb/s (40 × 42.7 Gbps) over transoceanic distance with terrestrial 100-km amplifier spans,” Proc. of OFC, Paper FN2 (2003).Google Scholar
  52. 52.
    G.C. Gupta, L.L. Wang, O. Mizuhara, R.E. Tench, N.N. Dang, P. Tabaddor and A. Judy, “3.2-Tb/s (40 ch × 80 Gbps) transmission with spectral efficiency of 0.8 b/s/Hz over 21×100 km of dispersion-managed high local dispersion fiber using all-Raman amplified spans,” IEEE Photon. Technol. Lett. 15 (7) 996-998 (July 2003).CrossRefADSGoogle Scholar
  53. 53.
    C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni and A.M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12 (10),1766-1758 (1994).ADSGoogle Scholar
  54. 54.
    A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fiber,” Electronics Lett. 36 (23) (9 November 2000).Google Scholar
  55. 55.
    S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, R.G. Huff and L. Gruner-Nielsen, “All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40-Gbps,” IEEE Photon. Technol. Lett. 13 (6), 632-634 (2001).CrossRefADSGoogle Scholar
  56. 56.
    E.L. Goldstein and S. Eskildsen, “Scaling limitations in transparent optical networks due to low-level crosstalk,” IEEE Photon. Technol. Lett. 7, 93-94 (1995).CrossRefADSGoogle Scholar
  57. 57.
    C. Rasmussen, F. Liu, R.J.S. Pedersen and B.F. Jorgensen, “Theoretical and experimental studies of the influence of the number of crosstalk signals on the penalty caused by incoherent optical crosstalk,” Proc. of OFC, Paper TuR5 (1999).Google Scholar
  58. 58.
    S. Ramachandran, J. Nicholson, S. Ghalmi, M. Yan, P. Kristensen, “Measurement of multi-path interference in the coherent cross-talk regime,” Proc. of OFC, Paper TuK6, pp. 231-232 (2003).Google Scholar
  59. 59.
    S. Ramachandran, G. Raybon, B. Mikkelsen, M.Yan, L. Cowsar and R.-J. Essiambre, “1700 km transmission at 40 Gbit/s with 100 km amplifier spacing enabled by higher-order-mode dispersion compensation,” Electron. Lett. 37 (22) (25 October 2001).Google Scholar
  60. 60.
    C. Meyer, S. Lobo, D. Le Guen, F. Merlaud, L. Billes, T. Georges, “High spectral efficiency wideband terrestrial ULH RZ transmission over LEAF with realistic industrial margins,” Proc. of ECOC, Paper 1.1.2 (2002).Google Scholar
  61. 61.
    S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, and P. Wisk, “Tunable dispersion compensators utilizing higher order mode fibers,” IEEE Photon. Technol. Lett. 15 (5), 727-729 (2003).CrossRefADSGoogle Scholar
  62. 62.
    L.D. Garrett, M. Eiselt, J. Wiesenfeld, R. Tkach, D. Menashe, U. Levy, Danziger and M. Tur, “ULH DWDM transmission with HOM-based dispersion compensation,” Proc. of ECOC, Paper We4.P.98, pp. 752-753 (2003).Google Scholar
  63. 63.
    K.O. Hill, S. Theriault, B. Malo, F. Bilodeau, T. Kitagawa, D.C. Johnson, J. Albert, K. Takiguchi, T. Kataoka and K. Hagimoto, “Chirped in-fibre Bragg grating dispersion com-pensators: linearisation of dispersion characteristic and demonstration of dispersion com-pensation in 100 km, 10Gbit/s optical fibre link,” Electron. Lett. 30 (21), 1755-1756 (1994).CrossRefGoogle Scholar
  64. 64.
    R. Kashyap, P.F. Mckee, R.J. Campbell and D.L. Williams, “Novel method of producing all fibre photoinduced chirped gratings,” Electron. Lett. 30, pp. 996-997 (1994).CrossRefGoogle Scholar
  65. 65.
    B.J. Eggleton, P.A. Grug, L. Poladian, K.A. Ahmed and H.-F. Liu, “Experimental demon-stration of compression of dispersion optical pulses by reflection from self-chirped optical fibre Bragg gratings,” Opt. Lett. 19, 877-879 (1994).CrossRefADSGoogle Scholar
  66. 66.
    J.A.R. Williams, L.A. Everall, I. Bennion and N.J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8 (9), 1187-1189 (1996).CrossRefADSGoogle Scholar
  67. 67.
    C. Scheerer, C. Glingener, G. Fischer, M. Bohn and W. Rosenkranz, “Influence of filter group delay ripples on system performance,” Proc. of ECOC, Paper I-410 (1999).Google Scholar
  68. 68.
    B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 10 (2000).Google Scholar
  69. 69.
    S. Jamal and J.C. Cartledge, “Variation in the performance of multispan 10-Gbps systems due to the group delay ripple of dispersion compensating fiber Bragg gratings,” J. Lightwave Technol. 20 (1), 28-35 (2002).CrossRefADSGoogle Scholar
  70. 70.
    H. Yoshimi,Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” Proc. of ECOC, Paper 10.4.4 (2002).Google Scholar
  71. 71.
    K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas and R.I. Laming, “Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10 (10), 1476-1478 (1998).CrossRefADSGoogle Scholar
  72. 72.
    L.-S. Yan, T. Luo, Q. Yu, Y. Xie and A.E. Willner, “System impact of group-delay ripple in single and cascaded chirped FBGs,” Proc. of OFC, pp. 700-701 (2002).Google Scholar
  73. 73.
    M.H. Eiselt, C.B. Clausen and R.W. Tkach, “Performance characterization of components with group delay fluctuations,” IEEE Photon. Technol. Lett. 15 (8), 1076-1078 (2003).CrossRefADSGoogle Scholar
  74. 74.
    X. Fan, D. Labrake, and J. Brennan, “Chirped fiber grating characterization with phase ripples,” Proc. of OFC, pp.638-640 (2003).Google Scholar
  75. 75.
    J.C. Cartledge and H. Chen, “Influence of modulator chirp in assessing the performance im-plications of the group delay ripple of dispersion compensating fiber gratings,” J. Lightwave Technol. 21 (7), pp. 1621-1628 (2003).CrossRefADSGoogle Scholar
  76. 76.
    N.S. Bergano, F.W. Kerfoot, and C.R. Davidson, “Margin measurements in optical amplifier systems,” IEEE Photon. Technol. Lett 5 (3), 304-306 (1993).CrossRefADSGoogle Scholar
  77. 77.
    R. Kashyap, A. Ellis, D. Malyon, H.G. Froehlich, A. Swanton and D.J. Armes, “Eight wavelength × 10 Gbps simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth, 1.3 metre long, super-step-chirped fibre bragg grating with a continuous delay of 13.5 nanoseconds,” Proc. of ECOC, PaperThB.3.2 (1996).Google Scholar
  78. 78.
    R. Kashyap, H.-G. Froelhich, A. Swanton and D.J. Armes, “1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nm and bandwidth 10 nm for broadband dispersion compensation,” Electron. Lett. 32, 19 (1996).CrossRefGoogle Scholar
  79. 79.
    A.H. Gnauck, L.D. Garrett, F. Forghieri, V. Gusmeroli and D. Scarano, “8 × 20 Gbps 315-km, 8 × 10 Gbps 480-km WDM transmission over conventional fiber using multiple broad-band fiber gratings,” IEEE Photon. Technol. Lett. 10 (10), 1495-1497 (1998).CrossRefADSGoogle Scholar
  80. 80.
    L.D. Garrett, A.H. Gnauck, F. Forghieri, V. Gusmeroli and D. Scarano, “16 × 10 Gbps WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,” IEEE Photon. Technol. Lett. 11 (4), 484-486 (1999).CrossRefADSGoogle Scholar
  81. 81.
    A.H. Gnauck, J.M. Wiesenfeld, L.D. Garrett, R.M. Derosier, F. Forghieri, V. Gusmeroli and D. Scarano, “4 × 40 Gbps 75-km WDM transmission over conventional fiber using a broad-band fiber grating,” IEEE Photon. Technol. Lett. 11 (11), 1503-1505 (1999).CrossRefADSGoogle Scholar
  82. 82.
    L.D. Garrett, A.H. Gnauck, R.W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gus-meroli, C. Tosetti, G. DiMaio and F. Forghieri, “Ultra-wideband WDM transmission using cascaded chirped fiber gratings,” Proc. of OFC, Paper PD15 (1999).Google Scholar
  83. 83.
    A.H. Gnauck, J.M. Wiesenfeld, L.D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogli- ata,V. Gusmeroli and D. Scarano, “16 × 20-Gbps, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,” IEEE Photon. Technol. Lett. 12 (4), 437-439 (2000).CrossRefADSGoogle Scholar
  84. 84.
    L.D. Garrett, A.H. Gnauck, R.W. Tkach, B. Agogliati, L. Argangeli, D. Scarano, V. Gus-meroli, C. Tosetti, G. Di Maio and F. Forghieri, “Cascaded chirped fiber gratings for 18-nm bandwidth dispersion compensation,” IEEE Photon. Technol. Lett. 12 (3), 356-358 (2000).CrossRefADSGoogle Scholar
  85. 85.
    J.F. Brennan et al, “Realization of greater than 10-m long chirped fiber Bragg gratings,” OSA Trends in Optics and Photonics (TOPS) v.33, Bragg gratings, photosensitivity, and poling in glass waveguides, (OSA, Washington DC, 1999), pp. 35-37 (1999).Google Scholar
  86. 86.
    R. Kashyap, A. Swanton and R.P. Smith, “Infinite length fibre gratings,” Electronics Lett. 35(21,14th October 1999.Google Scholar
  87. 87.
    J.F. Brennan III, E. Hernandez, J.A. Valenti, P.G. Sinha, M.R. Matthews, D.E. Elder, G.A. Beauchesne and C.H. Byrd, “Dispersion and dispersion-slope correction with a fiber Bragg grating over the full C-band,” Proc. of OFC, Paper PD-12 (2001).Google Scholar
  88. 88.
    J.F. Brennan III, M.R. Matthews, W.V. Dower, D.J. Treadwell, W. Wang, J. Porque and X. Fan, “Dispersion correction with a robust fiber grating over the full C-band at 10-Gbps rates with <0.3 dB power penalties,” IEEE Photon. Technol. Lett. 15 (12), 1722-1724 (2003).CrossRefADSGoogle Scholar
  89. 89.
    B. Koch and J.F. Brennan III, “Dispersion compensation in an optical communications sys-tem with an electro-absorption modulated laser and a fiber grating,” IEEE Photon. Technol. Lett. 15 (11), 1633-1635 (2003).CrossRefADSGoogle Scholar
  90. 90.
    Y. Painchaud, H. Chotard, A. Mailloux and Y. Vasseur, “Superposition of chirped fibre Bragg grating for third-order dispersion compensation over 32 WDM channels,” Electronics Lett. 38,24 (2002).CrossRefGoogle Scholar
  91. 91.
    R. Lachance, S. Lelievre, Y. Painchaud, “50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,” Proc. of OFC, Paper TuD3 (2003).Google Scholar
  92. 92.
    S. Lelievre, H. Chotard, S. LaRochelle, K.-M. Feng, S. Lee, R. Khosvarani, S.A. Havstad and J.E. Rothenberg, “Multi-channel dispersion compensation using cascaded FBGs for 10 Gbps transmission,” Proc. of NFOEC, 2003.Google Scholar
  93. 93.
    F. Ouellette, P.A. Krug, T. Stephens, G. Dhosi and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electronics Lett. 31 (11), 899-900 (25 May 1995).CrossRefGoogle Scholar
  94. 94.
    M. Ibsen, A. Fu, H. Geiger and R.I. Laming, “All-fibre 4 × 10 Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,” Electron. Lett. 35, 12 (10 June 1999).CrossRefGoogle Scholar
  95. 95.
    W.H. Loh, F.Q. Zhou and J.J. Pan, “Sampled fiber grating based dispersion slope compen-sator,” IEEE Photon. Technol. Lett. 11 (100), 1280-1282 (1999).CrossRefADSGoogle Scholar
  96. 96.
    X.-F. Chen, C.-C. Fan, Y. Luo, S.-Z. Xie and S. Hu, “Novel flat Multichannel filter based on strongly chirped sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 12 (11), 1501-1503 (2000).ADSGoogle Scholar
  97. 97.
    H. Li, Y. Sheng, Y. Li, J.E. Rothenberg, “Phased-only sampled fiber bragg gratings for high- channel-count chromatic dispersion compensation,” J. Lightwave Technol. 21 (9), 2074-2083 (2003).ADSGoogle Scholar
  98. 98.
    M. Morin, M. Poulin, A. Mailloux, F. Trepanier and Y. Painchaud, “Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating,” Proc. of OFC, Paper WK1 (2004).Google Scholar
  99. 99.
    R.I. Laming, N. Robinson, P.L. Scrivener, M.N. Zervas, S. Barcelos, L. Reekie, and J.A. Tucknott, ” A dispersion tunable grating in a 10-Gbps 100-200-km-step index fiber link,” IEEE Photon. Technol. Lett. 8 (3), 428-430 (1996).CrossRefADSGoogle Scholar
  100. 100.
    A.E. Willner, K.-M. Feng, J. Cai, S. Lee, J. Peng and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Quantum Electronics 5 (5), 1298-1311 (1999).Google Scholar
  101. 101.
    T.N. Nielsen, B.J. Eggleton, J.A. Rogers, P.S. Westbrook, P.B. Hansen and T.A. Strasser, “Dynamic post dispersion optimization at 40 Gbps using a tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 12 (2), 173-175 (2000).CrossRefADSGoogle Scholar
  102. 102.
    B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18 (10), 1418-1432 (2000).ADSGoogle Scholar
  103. 103.
    R.J. Nuyts, Y.K. Park, P. Gallion, “Dispersion equalization of a 10 Gbps Repeatered trans-mission system using dispersion compensating fibers,” J. Lightwave Technol. 15 (1), 31-42 (1997).CrossRefADSGoogle Scholar
  104. 104.
    J.-X. Cai, K.-M. Feng, A.E. Willner, V. Grubsky, D.S. Sarodubov and J. Feinberg, “Sampled nonlinearly-chirped fiber-Bragg grating for the tunable dispersion compensation of many WDM channels simultaneously,” Proc. of OFC, Paper FA7-1, pp. 20-22 (1999).Google Scholar
  105. 105.
    Y. Xie, S. Lee, Z. Pan, J.-X. Cai, A.E. Willner, V. Grubsky, D.S. Starodubov, E. Salik and J. Feinberg, “Tunable compensation of the dispersion slope mismatch in dispersion-managed systems using a sampled nonlinearly chirped FBG,” IEEE Photon. Technol. Lett. 12 (10), 1417-1419 (2000).ADSGoogle Scholar
  106. 106.
    J.-X. Cai, K.-M. Feng, A.E. Willner, V. Grubsky, D.S. Starodubov and J. Feinberg, “Si-multaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 11 (11), 1455-1457 (1999).CrossRefADSGoogle Scholar
  107. 107.
    D. Gauden, E. Goyat, A. Mugnier, P. Lesueur, P. Yvernault and D. Pureur, “A tunable four-channel fiber Bragg grating dispersion compensator,” IEEE Photon. Technol. Lett. 15 (10), 1387-1389 (2003).CrossRefADSGoogle Scholar
  108. 108.
    Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancin, “Multi-chanel high-performance tunable dispersion compensator for 40 Gbps transmission systems,” Proc. of OFC, Paper ThL4 (2003).Google Scholar
  109. 109.
    J.C. Knight, T.A. Birks, P.S.J. Russell and D.M. Atkins, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).CrossRefADSGoogle Scholar
  110. 110.
    G. Renversez, B. Kuhlmey and R. McPhedran, “Dispersion management with microstruc-tured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28 (12), 989-991 (2003).CrossRefADSGoogle Scholar
  111. 111.
    T.D. Engeness, M. Ibanescu, S.G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11 (10), 1175-1196 (2003).ADSCrossRefGoogle Scholar
  112. 112.
    L.P. Shen, W.-P. Huang, G.X. Chen and S.S. Jian, “Design and optimization of photonic crystal fibers for broad-band dispersion compensation,” IEEE Photon. Technol. Lett. 15 (4), 540-542 (2003).CrossRefADSGoogle Scholar
  113. 113.
    F. Poli, A. Cucinotta, S. Selleri and A.H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16 (4), 1065-1067 (2004).CrossRefADSGoogle Scholar
  114. 114.
    S. Johnson, “The design and modeling of microstructured fiber,” Proc. of OFC, Tutorial WA4 (2004).Google Scholar
  115. 115.
    S. Choi, W. Shin and K. Oh, “Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber,” Proc. of OFC, Paper WA6, pp. 217-218 (2002).Google Scholar
  116. 116.
    C.K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applica-tions for dispersion compensation,” Photon. Technol. Lett. 10 (7), 994-996 (July 1998).CrossRefADSGoogle Scholar
  117. 117.
    G. Lenz and C.K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17 (7), 1248-1254 (July 1999).CrossRefADSGoogle Scholar
  118. 118.
    C.K. Madsen and J.H. Zhao, Optical Filter Design and Analysis (New York: Wiley, 1999). 119. M. Eiselt, “Does spectrally periodic dispersion compensation reduce non-linear effects,” Proc. of ECOC, Paper TuC1.2 (1999).Google Scholar
  119. 120.
    L.F. Mollenauer, A. Grant, L. Xiang, W. Xing, X. Chongjin and K. Inuk, “Experimental test of dense WDM using novel, periodic-group-delay-complemented dispersion compensation and dispersion managed solitons: transmission to beyond 20,000 km,” Proc. of CLEO, pp. 2121-2122 (2003).Google Scholar
  120. 121.
    L. Mollenauer, X. Wei, X. Liu, A. Grant, and C. Xie, “Reduction of timing jitter in dense WDM by the use of periodic group delay dispersion compensators,” Center for Nonlin-ear Studies Workshop: “Advances in Raman-Based, High-Speed Photonics” Los Alamos National Laboratory, February 3, 2003).Google Scholar
  121. 122.
    A.H. Gnauck, C.R. Giles, L.J. Cimini Jr., J. Stone, L.W. Stulz, S.K. Korotky and J.J. Veselka, “8-Gbps-130 km transmission experiment using Er-doped fiber preamplifier and optical dispersion equalization,” Photon. Technol. Lett. 3 (12), 1147-1149 (December 1991).CrossRefADSGoogle Scholar
  122. 123.
    D. Garthe, J. Ip, P. Colbourne, R.E. Epworth, W.S. Lee and A. Hadjifotiou, “Low-loss dispersion equalizer operable over the entire erbium window,” Electron. Lett. 32 (4), 371-373 (1996).Google Scholar
  123. 124.
    C.K. Madsen, G. Lenz, A.J. Bruce, M.A. Cappuzzo, L.T. Gomez, T.N. Nielsen, L.E. Adams and I. Brenner, “An all-pass filter dispersion compensator using planar waveguide ring resonators,” Proc. of OFC 1999, Paper FE6, pp. 99-101 (1999).Google Scholar
  124. 125.
    C.K. Madsen, J.A. Walker, J.E. Ford, K.W. Goossen and G. Lenz, “A tunable dispersion compensating MARS all-pass filter,” Proc. of ECOC, paper WeB1.3, pp. II-20 and II-21 (1999).Google Scholar
  125. 126.
    J.E. Ford, J.A. Walker, D.S. Greywall and K.W. Goossen, ‘Micromechanical fiber-optic attenuator with 3um response,” J. Lightwave Technol. 16 (9), 1663-1670 (1998).CrossRefADSGoogle Scholar
  126. 127.
    C.K. Madsen and G. Lenz, “A multi-channel dispersion slope compensating optical allpass filter,” Proc. of OFC, Paper WF5 (2000).Google Scholar
  127. 128.
    F. Horst, C. Berendsen, R. Beyeler, G.-L. Bona, R. Germann, H.W.M. Salemink and D. Wiesmann, “Tunable ring resonator dispersion compensators realized in high-refractive-index contrast SiON technology,” Proc. of ECOC 2000, Paper PD2.2 (2000).Google Scholar
  128. 129.
    J.J. Fells, S.E. Kanellopoulos, P.J. Bennett, V. Baker, H.F.M. Priddle, W.S. Lee, A.J. Collar, C.B. Rogers, D.P. Goodchild, R. Feced, B.J. Pugh, S.J. Clements and A. Hadjifotiou, “Twin fiber grating tunable dispersion compensator,” IEEE Photon. Technol. Lett. 13 (9), 984-986 (2001).CrossRefADSGoogle Scholar
  129. 130.
    D.J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C.A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gbps using all-pass multi-cavity etalons,” IEEE Photon. Technol. Lett. 15 (5), 730-732 (May 2003).CrossRefADSGoogle Scholar
  130. 131.
    L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C.A. Hulse, “Tunable dispersion compensation at 40-Gbps using a multicavity etalon all-pass filter with NRZ, RZ and CS-RZ modulation,” J. Lightwave Technol. 20 (12), 2136-2143 (2002).CrossRefADSGoogle Scholar
  131. 132.
    X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15 (8), 1111-1113 (2003).ADSGoogle Scholar
  132. 133.
    X. Shu, K. Chisholm and K. Sugden, “Design and realization of dispersion slope com-pensators using distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16 (4), 1092-1094 (2004).CrossRefADSGoogle Scholar
  133. 134.
    D. Yang, C. Lin,W. Chen and G. Barbarossa, “Fiber dispersion and dispersion slope compen-sation in a 40-channel 10-Gbps 3200-km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16 (1), 299-301 (2004).CrossRefADSGoogle Scholar
  134. 135.
    M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9, 12 (1997).CrossRefGoogle Scholar
  135. 136.
    M. Shirasaki, Y. Kawahata, S. Cao, H. Ooi, N. Mitasura, H. Isono, G. Ishikawa, G. Barbarossa, C. Yang and C. Lin, “Variable dispersion compensator using the virtually imaged phased array (VIPA) for 40-Gbit/s WDM transmission systems,” Proc. of ECOC, Paper PD-23 (2000).Google Scholar
  136. 137.
    L.D. Garrett,A.H. Gnauck, M.H. Eiselt, R.W. Tkach, C.Yang, C. Mao, and S. Cao, “Demon-stration of virtually-imaged phased-array device for tunable dispersion compensation in 16 × 10 Gbps WDM transmission over 480 km standard fiber,” Proc. of OFC, Paper PD7 (2000).Google Scholar
  137. 138.
    H. Ooi, K. Nakamura,Y. Akiyama, T. Takahara, J. Kumasako, J.C. Rasmussen, T. Terahara, Y. Kawahata, H. Isono, G. Ishikawa and N. Yamaguchi, “3.5-Tbit/s (43-Gbit/s × 88 ch) transmission over 600-km NZDSF with VIPA variable dispersion compensators,” Proc. of OFC, Paper ThX3 (2002).Google Scholar
  138. 139.
    G. Kanter, A.K. Samal, and A. Gandhi, “Electronic dispersion compensation for extended reach,” Proc. of OFC, Invited Paper TuG1 (2004).Google Scholar
  139. 140.
    D. Castagnozzi, “Digital signal processing and electronic equalization of ISI,” Proc. of OFC, Invited Paper WM6 (2004).Google Scholar
  140. 141.
    M. Nakamura, H. Nosaka, M. Ida, K. Kurishima, M. Tokumitsu, “Electrical PMD equalizer ICs for a 40-Gbps transmission,” Proc. of OFC, Paper TuG4 (2004).Google Scholar
  141. 142.
    C. Fludger, J. Whiteaway, P. Anslow, “Electronic equalization for low cost 10 Gbit/s directly modulated systems,” Proc. of OFC, Paper WM7 (2004).Google Scholar
  142. 143.
    J.H. Winters and R.D. Gitlin, “Electrical signal processing techniques in long-haul, fiber-optic systems, “IEEE Trans. Commun. 38, 1439-1453 (1990).CrossRefGoogle Scholar
  143. 144.
    J.H. Winters and S. Kasturia, “Adaptive nonlinear cancellation for high-speed fiber-optic systems,” J. Lightwave Technol. 10, 971-977 (1992).CrossRefADSGoogle Scholar
  144. 145.
    J. Poirrier,A.G. Gnauck and J.H. Winters, “Experimental nonlinear cancellation of polariza-tion-mode dispersion,” Proc. of OFC, Paper ThH4 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Lara Denise Garrett
    • 1
  1. 1.Celion NetworksTinton FallsUSA

Personalised recommendations