Skip to main content

Fiber-based tunable dispersion compensation

  • Chapter
Fiber Based Dispersion Compensation

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 5))

Tunable dispersion has been implemented in various technology platforms, including fiber gratings, planar waveguides, thin film etalons, and bulk optic technologies. This paper will focus on fiber grating based tunable dispersion compensation, because fiber gratings are at present one of the best developed TDC technologies available. The paper is divided into three parts. In the first part we describe grating based TDC technologies and discuss their advantages and disadvantages.We focus on thermally tuned linearly chirped fiber gratings, as these have to date been the most successful grating technology for 40 Gbit/s. We also compare grating TDCs to two other prominent tunable dispersion technologies: thin film etalons and planar waveguide ring resonators. In the second section we describe the techniques used to fabricate high performance dispersion compensation gratings as well as the theory of the primary defect of fiber grating dispersion compensation: group delay ripple (GDR). In the third section we describe the telecom system related issues for tunable gratings, including characterization of grating performance, tunability requirements and results from actual system trials using tunable FBGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ramachandran, S. Ghalmi, S. Chandrasekhar, Fellow, IEEE, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, and P. Wisk, “Tunable Dispersion Compensators Utilizing Higher Order Mode Fibers”, IEEE Photon. Technol. Lett. 15 (5), 727-729 (2003).

    Article  ADS  Google Scholar 

  2. B.J.  Eggleton, A. Ahuja, P.S. Westbrook, J.A.  Rogers, P. Kuo, T.N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems”, J. Lightwave Technol. 18, 1418-1432 (2000).

    Article  ADS  Google Scholar 

  3. K.O. Hill, Y. Fujii, D.C. Johnson, and B.S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys.s Lett. 32, 647-649 (1978).

    Article  ADS  Google Scholar 

  4. R. Kashyap, Fiber Bragg Gratings (San Diego: Academic Press, 1999).

    Google Scholar 

  5. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom-munications and Sensing (Boston: Artech House, 1999).

    Google Scholar 

  6. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847-849 (1987).

    Article  ADS  Google Scholar 

  7. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” Photosensitivity and quadratic nonlinearity in glass waveguides: fundamentals and applications, vol. 22, PD1-1 PD1-3 (1995).

    Google Scholar 

  8. M.J. Cole, W.H. Loh, R.I. Laming, M.N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31, 1488-1490 (1995).

    Article  Google Scholar 

  9. M. Brienza, “Extended length embedded Bragg grating manufacturing method and arrange-ment,” USA Patent 5066133: United Technologies, Hartford, Conn., 1991.

    Google Scholar 

  10. J.F. Brennan, D. LaBrake, G.A. Beauchesne, and R.P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” USA Patent, 5912999: Minnesota Mining and Manufacturing Company, 1999.

    Google Scholar 

  11. J.F. Brennan, M.R. Matthews, W.V. Dower, D.J. Treadwell, W. Wang, J. Porque, and X.D. Fan, “Dispersion correction with a robust fiber grating over the full C-band at 10-Gbit/s rates with < 0.3-dB power penalties,” IEEE Photon. Technol. Lett. 15, 1722-1724 (2003).

    Article  ADS  Google Scholar 

  12. J.F. Brennan, P.M. Bungarden, C.E. Fisher, and R.M. Jennings, “Packaging to reduce thermal gradients along the length of long fiber gratings,” IEEE Photon. Technol. Lett. 16, 156-158 (2004).

    Article  ADS  Google Scholar 

  13. F. Ouellette, P.A. Krug, T. Stephens, G. Dhosi, and B.J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899-901 (1995).

    Article  Google Scholar 

  14. Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, and G. Hancin, “Multi-Channel High-Performance Tunable Dispersion Compensator for 40 Gbit/s Transmission Systems,” Optical Fiber Communication Conference and Exhibition, Atlanta, GA, paper ThL4, pp. 517-519 (2003).

    Google Scholar 

  15. P.I. Reyes, M. Sumetsky, N.M. Litchinitser, and P.S. Westbrook, “Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction,” Opt. Express 12,2676 (2004).

    Article  ADS  Google Scholar 

  16. M. Ibsen, M.K. Durkin, M.J. Cole, and R.I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).

    Article  ADS  Google Scholar 

  17. A.V. Buryak, K.Y. Kolossovski, and D.Y. Stepanov, “Optimization of refractive index sam-pling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 91-98 (2003).

    Article  ADS  Google Scholar 

  18. J. Rothenberg, F. Babian, Z. Brodzeli, P. Chou, H. Li,Y. Li, J. Popelek, and R.Wilcox, “Phase-Only Sampling for Fabrication and Design of High Channel-Count Fiber Bragg Gratings,” Technical Digest, Optical Fiber Communications Conference, Atlanta, GA, 2003, paper ThL3, pp. 516-517.

    Google Scholar 

  19. J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19 (23), 2027-2029 (1994).

    ADS  Google Scholar 

  20. B.J. Eggleton, J.A. Rogers, P.S. Westbrook, and T.A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).

    Article  ADS  Google Scholar 

  21. S. Kannan, J.Z.Y. Guo, P.J. Lemaire, “Thermal stability analysis of UV-induced fiber gragg gratings”, J. Lightwave Technol. 8, 1478-1483 (1997).

    Article  ADS  Google Scholar 

  22. B.J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J.A. Rogers, P.S. Westbrook, T.N. Nielsen, S. Stulz, and K. Dreyer, “Tunable Dispersion Compensation in a 160-Gbit/s TDM System by a Voltage Controlled Chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 12, 1022-1024 (2000).

    Article  ADS  Google Scholar 

  23. S. Wielandy, P.S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre," Electron. Lett. 40, 690-691 (2004).

    Article  Google Scholar 

  24. P.C. Hill and B.J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” Electron. Lett. 30,1172-1173 (1994).

    Article  Google Scholar 

  25. M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, “Tunable fiber grating dispersion using a piezoelectric stack,” Technical Digest, Optical Fiber Communi-cation Conference 1997, paper WJ3, pp. 155-156.

    Google Scholar 

  26. M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000-2001 (1997).

    Article  Google Scholar 

  27. Junhee Kim, Junkye Bae, Young-Geun Han, Sang Hyuck Kim, Je-Myung Jeong, and Sang Bae Lee, “Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift”, Photon. Technol. Lett. IEEE 16 (3), 849-851 (March 2004).

    Article  ADS  Google Scholar 

  28. M. Pacheco, A. Mendez, L.A. Zenteno, and F. Mendoza-Santoyo, “Chirping optical fibre Bragg gratings using tapered-thickness piezoelectric ceramic,” Electron. Lett. 34, 2348-2349 (1998).

    Article  Google Scholar 

  29. T. Imai, T. Komukai, and M. Nakazawa, “Dispersion Tuning of a Linearly Chirped Fiber Bragg Grating Without a Center Wavelength Shift by Applying a Strain Gradient,” IEEE Photon. Technol. Lett. 10, 845-847 (1998).

    Article  ADS  Google Scholar 

  30. X. Dong, P. Shum, N.Q. Ngo, C.C. Chan, J.H. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11, 2970-2974 (2003).

    Article  ADS  Google Scholar 

  31. R. Caponi, E. Ciaramella, E. Riccardi, M. Schiano, T. Tambosso, G. Zaffiro, “Origin and system effects of polarization mode dispersion in chirped Bragg gratings”, Fiber Int. Opt. 19,295-309 (2000).

    Article  Google Scholar 

  32. A.E. Willner, K.-M. Feng, J. Cai, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Select. Topics Quantum Electron. 5, 1298-1311 (1999).

    Article  Google Scholar 

  33. J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, V. Baker, H.F.M. Priddle, W.S. Lee, A.J. Collar, C.B. Rogers, D.P. Goodchild, R. Feced, B.J. Pugh, S.J. Clements, and A. Hadjifotiou, “Twin fiber grating tunable dispersion compensator,” IEEE Photon. Technol. Lett. 13, 984-986 (2001).

    Article  ADS  Google Scholar 

  34. X.W. Shu, K. Sugden, and K. Byron, “Bragg-grating-based all-fiber distributed Gires-Tournois etalons”, Opt. Lett. 28 (11), 881-883 (June 1 2003).

    Article  ADS  Google Scholar 

  35. S. Vorbeck and R. Leppla, “Dispersion and Dispersion Slope Tolerance of 160-Gbit/s Sys-tems, Considering the Temperature Dependence of Chromatic Dispersion,” IEEE Photon. Technol. Lett. 15 (10), 1470-1472 (Oct. 2003).

    Article  ADS  Google Scholar 

  36. C.S. Goh, S.Y. Set, K. Taira, S.K. Khijwania, K. Kikuchi, “Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope,” IEEE Photon. Technol. Lett. 14 (5), 663-665 (May 2002).

    Article  ADS  Google Scholar 

  37. C.S. Goh, S.Y. Set, and K. Kikuchi, “Design and Fabrication of a Tunable Dispersion-slope Compensating Module Based on Strain-Chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 16 (2), 524-526 (Feb. 2004).

    Article  ADS  Google Scholar 

  38. P.I. Reyes, N. Litchinitser, M. Sumetsky, and P.S. Westbrook, “160-Gbit/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater”, IEEE Photon. Technol. Lett. 17 (4), 831-833 (2005).

    Article  ADS  Google Scholar 

  39. S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tun-able Dispersion Slope Compensator With a Chirped Fiber Grating and a Divided Thin-Film Heater for 160-Gbit/s RZ Transmissions,” IEEE Photon. Technol. Lett. 16 (4), 1095-1097 (April 2004).

    Article  ADS  Google Scholar 

  40. P.S.J. Russell, “BlochWaveAnalysis of Dispersion and Pulse Propagation in Pure Distributed Feedback Structures,” J. Mod. Opt. 38, 1599-1619 (1991).

    Article  ADS  Google Scholar 

  41. B.J. Eggleton, T. Stephens, P.A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, Electron. Lett. 32,1610-1611 (1996).

    Article  Google Scholar 

  42. N.M. Litchinitser and D.B. Patterson, “Analysis of fiber Bragg gratings for dispersion com- pensation in reflective and transmissive geometries,” IEEE J. Lightwave Technol. 15, 1323-1328 (1997).

    ADS  Google Scholar 

  43. N.M. Litchinitser, B.J. Eggleton, and D.B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303-1313 (1997).

    Article  ADS  Google Scholar 

  44. D.B. Patterson and B.C. Moore, US Patent US 6,356,684 B1 (2002).

    Google Scholar 

  45. J. Skaar, “Synthesis of fiber Bragg gratings for use in transmission,” J. Opt. Soc. Am. A 18, 557-564 (2001).

    Article  ADS  Google Scholar 

  46. C.K. Madsen and J.H. Zhao, Optical Filter Design and Analysis (New York: Wiley, 1999).

    Book  Google Scholar 

  47. C.K. Madsen, G. Lenz, A.J. Bruce, M.A. Cappuzzo, L.T. Gomez, and R.E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).

    Article  ADS  Google Scholar 

  48. C.K. Madsen, S. Chandrasekhar, E.J. Laskowski, M.A. Cappuzzo, J. Bailey, E. Chen, L.T. Gomez, A. Griffin, R. Long, M. Rasras, A. Wong-Foy, L.W. Stulz, J. Weld, and Y. Low, “An integrated tunable chromatic dispersion compensator for 40 Gbit/s NRZ and CSRZ," Optical Fiber Communications Conference and Exhibition, Anaheim, CA, postdeadline paper FD-9, 2002.

    Google Scholar 

  49. M. Jablonski, Y. Takushima, K. Kikuchi, Y. Tanaka, and N. Nigashi, “Adjustable coupled two-cavity allpass filter for dispersion slope compensation of optical fibres,” Electron. Lett. 36,511-512 (2000).

    Article  Google Scholar 

  50. D.J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, S. Kiran, and C.A. Hulse, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” Technical Digest of the Optical Fiber Communications Conference and Exhibit, Anaheim, CA, paper TuT2, 2002, pp. 132-133.

    Google Scholar 

  51. L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C.A. Hulse, “Tunable Dispersion Compensation at 40-Gbit/s Using a Multicavity Etalon All-Pass Filter With NRZ, RZ, and CS-RZ Modulation,” J. Lightwave Technol. 20, 2136-2144 (2002).

    Article  ADS  Google Scholar 

  52. M. Bohn, W. Rosenkranz, and P.M. Krummrich, “Adaptive Distortion Compensation With Integrated Optical Finite Impulse Response Filters in High Bitrate Optical Communication Systems,” IEEE J. Select. Topics Quantum Electron., 10, 273-280 (2004).

    Article  Google Scholar 

  53. C.R. Doerr, S. Chandrasekhar, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, S. Patel, and L. Buhl, “Two Mach-Zehnder, tunable dispersion compensators integrated in series to increase bandwidth and/or range while maintaining single knob control”, IEEE Photon. Technol. Lett. 17, 828-830 (2005).

    Article  ADS  Google Scholar 

  54. M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9, 1598-1600 (1997).

    Article  ADS  Google Scholar 

  55. F. Ouellette, “All-fiber filter for efficient dispersion compensation,” Opt. Lett., 16, 303-305 (1991).

    Article  ADS  Google Scholar 

  56. C.R. Doerr, L.W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator With 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15, 1258-1260 (2003).

    Article  ADS  Google Scholar 

  57. C.R. Doerr, D.M. Marom, M.A. Cappuzzo, E.Y. Chen, A. Wong-Foy, L.T. Gomez, and S. Chandrasekhar, “40 Gbit/s colorless tunable compensator with 1000 ps/nm tuning range employing a planar lightwave circuit and a deformable mirror”, Proceeings of the Optical Fiber Communications Conference, Anaheim, CA, postdeadline paper PDP5, 2005.

    Google Scholar 

  58. R.D. Gittlin, J.F. Hayes, and S.B. Weinstein, Data Communications Principles (New York: Plenum, 1992).

    Google Scholar 

  59. S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory (Englewood Cliffs, NJ: Prentice-Hall, 1987).

    MATH  Google Scholar 

  60. J.G. Proakis, Digital Communications, 3rd ed. (New York: McGraw-Hill, 1995).

    Google Scholar 

  61. T. Nielsen and S. Chandrasekhar, “OFC 2004 workshop on optical and electronic mitigation of impairments”, J. Lightwave Technol. 23, 131-142 (2005).

    Article  ADS  Google Scholar 

  62. H.F. Haunstein, W. Sauer-Greff, A. Dittrich, K. Sticht, and R. Urbansky, “Principles for Electronic Equalization of Polarization-Mode Dispersion," IEEE J. Lightwave Technol. 22, 1169-1182 (2004).

    Article  ADS  Google Scholar 

  63. S.L. Woodward, S.-Y. Huang, M.D. Feuer, and M. Boroditsky, “Demonstration of an Elec-tronic Dispersion Compensator in a 100-km 10-Gbit/s Ring Network,” IEEE Photon. Tech-nol. Lett. 15, 867-869 (2003).

    Article  ADS  Google Scholar 

  64. M.D. Feuer, S.-Y. Huang, S.L. Woodward, O. Coskun, and M. Boroditsky, “Electronic Dis-persion Compensation for a 10-Gbit/s Link Using a Directly Modulated Laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).

    Article  ADS  Google Scholar 

  65. D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gbit/s with no optical dispersion compensation”, Proc. of the Optical Fiber Communications Conference, Anaheim, CA, postdeadline paper PDP27, 2005.

    Google Scholar 

  66. H. Jiang, R. Saunders, S. Colaco, “SiGe IC for PMD mitigation and signal optimization of 40 Gbit/s transmission”, Proc. Opt. Fiber Commun. 2005, Anaheim, CA, paper OWO2.

    Google Scholar 

  67. M. Nakamura, H. Nosaka, M. Ida, K. Kurishima, and M. Tokumitsu, “Electrical PMD equal-izer Ics for a 40 Gbit/s transmission”, Opt. Fiber Commun. Conf., Los Angeles, CA, paper TuG4, 2004.

    Google Scholar 

  68. M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, “Dispersion compensating fibre Bragg gratings”, in Active and Passive Optical Components for WDM Communication, Proc. SPIE 4532, 540-551 (2001).

    Article  Google Scholar 

  69. K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas, and R.I. Laming, IEEE Photon. Technol. Lett. 10,1476-1478 (1998).

    Article  ADS  Google Scholar 

  70. C. Scheerer, C. Glingener, G. Fischer, M. Bohn, and W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proc. ECOC 1999, pp.1410-1411.

    Google Scholar 

  71. F. Ouellette, “The effect of profile noise on the spectral response of fiber gratings” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Paper BMG13-2, Williamsburg, 1997.

    Google Scholar 

  72. R. Feced and M.N. Zervas, “Effect of random phase and amplitude errors in optical fiber gratings”, J. Lightwave Technol. 18, 90-101 (2000).

    Article  ADS  Google Scholar 

  73. R. Feced, J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, and H.F.M. Priddle, “Impact of random phase errors on the performance of fiber grating dispersion compensators”, Opt.l Fiber Commun. Conf. (OFC), 2001, Anheim, CA, Paper WDD89, 2001.

    Google Scholar 

  74. M. Sumetsky, B.J. Eggleton, and C.M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings”, Opt. Express 10, 332-340 (2002).

    ADS  Google Scholar 

  75. L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings”, Phys. Rev. E 48, 4758-4767 (1993).

    Article  ADS  Google Scholar 

  76. N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures”, Phys. Rev. E55, 3634-3646 (1997).

    ADS  Google Scholar 

  77. I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, and R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gbit/s transmission,” IEEE J. Select.Topics Quant. Electron. 5, 1312-1324 (1999).

    Article  Google Scholar 

  78. S.J. Mihailov, F. Bilodeau, K.O. Hill, D.C. Johnson, J. Albert, and A.S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670-3677 (2000).

    Article  ADS  Google Scholar 

  79. T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).

    Article  Google Scholar 

  80. A.V. Buryak and D.Yu. Stepanov, “Correction of systematic errors in the fabrication of fiber Bragg gratings,” Opt. Lett. 27, 1099-1101 (2002).

    Article  ADS  Google Scholar 

  81. M. Sumetsky, P.I. Reyes, P.S. Westbrook, N.M. Litchinitser, and B.J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777-779 (2003).

    Article  ADS  Google Scholar 

  82. J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19, 2229-2237 (2002).

    Article  ADS  Google Scholar 

  83. M. Sumetsky, Y. Dulashko, J. W. Fleming, A. Kortan, P.I. Reyes, and P.S. Westbrook, “Ther-momechanical modification of diffraction gratings,” Opt. Lett. 29, 1315-1317 (2004).

    Article  ADS  Google Scholar 

  84. B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, S. Dey, F. Rosca, “Real-world issues for High-capacity and long-haul transmission at 40 Gbit/s,” ECOC 2003.

    Google Scholar 

  85. W.H. Hatton and M. Nishimure, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552-1555 (1986).

    Article  ADS  Google Scholar 

  86. G.P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).

    Google Scholar 

  87. S. Leli èvre, E. Pelletier, A.W. Farr, Y. Painchaud, R. Lachance, and M. Brown, “Grating based solutions for chromatic dispersion management in DWDM systems,” NFOEC 2002.

    Google Scholar 

  88. A.H. Gnauck, J.M. Weisenfield, L.D. Garrett, R.M. Dersier, F. Forghieri, V. Gusmeroli, and D. Scarano, “4×40 Gbit/s 75 km WDM transmission over conventional fiber using a broadband fiber grating,” IEEE Photon. Technol. Lett. 11, 1503-1505 (1999).

    Article  ADS  Google Scholar 

  89. R. DeSalvo, A.G. Wilson, J. Rollman, D.F. Schneider, L.M. Lunardi, S. Lumish, N. Agrawal, A.H. Steinbach, W. Baun, T. Wall, R. Ben-Michael, M.A. Itzler, A. Fejzuli, R.A. Chipman, G.T. Kiehne, and K.M. Kissa, “Advanced components and sub-system solutions for 40 Gbit/s transmission,” J. Lightwave Technol. 20, 2154-2181 (2002).

    Article  ADS  Google Scholar 

  90. S.G. Evangelides, Jr., N.S. Bergano, C.R. Davidson, “Intersymbol interference induced by delay ripple in fiber Bragg gratings,” ECOC’99 Paper FA2, pp. 5-7.

    Google Scholar 

  91. R.L. Lachance, M. Morin, and Y. Painchaud, “Group delay ripple in fibre Bragg grating tunable dispersion compensators,” Electron. Lett. 38, (2002).

    Google Scholar 

  92. HYoshimi,Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” ECOC 2002, Paper 10.4.4.

    Google Scholar 

  93. N. Litchinitser, Y. Li, M. Sumetsky, P. Westbrook, B. Eggleton, “Tunable dispersion com-pensation devices: group delay ripple and system performance,” OFC 2003, Paper TuD2, 163-164.

    Google Scholar 

  94. M.H. Eiselt, C.B. Clausen, R.W. Tkach, “Performance characterization of components with group delay fluctuations,” IEEE Photon. Technol. Lett. 15, 1076-1078 (2003).

    Article  ADS  Google Scholar 

  95. M. Derrien, D. Gauden, E. Goyat, A. Mugnier, P. Yvernault, and D. Pureur, “Wavelength-frequency analysis of dispersion compensator group delay ripples,” OFC 2003, Paper MF31, pp. 34-35.

    Google Scholar 

  96. X. Fan, D. Labrake, and J. Brennan, “Chirped fiber grating characterization with phase ripples,” OFC 2003, Paper FC2, pp. 638-640.

    Google Scholar 

  97. X. Liu, L.F. Mollenauer, X. Wei, “Impact of group-delay ripple on differential-phase-shift-keying transmission systems, ECOC 2003.

    Google Scholar 

  98. M. Sumetsky, N.M. Litchinitser, P.S. Westbrook, P.I. Reyes, B.J. Eggleton, Y. Li, R. Desh-mukh, C. Soccolic, F. Rosca, J. Bennike, F. Liu, and S. Dey, “High performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple cor-rection technique,” Electron. Lett. 39, 1196-1198 (2003).

    Article  Google Scholar 

  99. T.N. Nielsen, B.J. Eggleton, J.A. Rogers, P.S. Westbrook, P.B. Hansen, and T.A. Strasser, “Dynamic post dispersion optimization at 40 Gbit/s using a tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 173-175 (2000).

    Article  ADS  Google Scholar 

  100. T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K.R. Tamura, K. Uchiyama, and T. Morioka, “Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique,” IEEE Photon. Technol. Lett. 14, 549-551 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Litchinitser, N.M., Sumetsky, M., Westbrook, P.S. (2007). Fiber-based tunable dispersion compensation. In: Fiber Based Dispersion Compensation. Optical and Fiber Communications Reports, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48948-3_11

Download citation

Publish with us

Policies and ethics