Fiber-based tunable dispersion compensation

  • N. M. Litchinitser
  • M. Sumetsky
  • P. S. Westbrook
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 5)

Tunable dispersion has been implemented in various technology platforms, including fiber gratings, planar waveguides, thin film etalons, and bulk optic technologies. This paper will focus on fiber grating based tunable dispersion compensation, because fiber gratings are at present one of the best developed TDC technologies available. The paper is divided into three parts. In the first part we describe grating based TDC technologies and discuss their advantages and disadvantages.We focus on thermally tuned linearly chirped fiber gratings, as these have to date been the most successful grating technology for 40 Gbit/s. We also compare grating TDCs to two other prominent tunable dispersion technologies: thin film etalons and planar waveguide ring resonators. In the second section we describe the techniques used to fabricate high performance dispersion compensation gratings as well as the theory of the primary defect of fiber grating dispersion compensation: group delay ripple (GDR). In the third section we describe the telecom system related issues for tunable gratings, including characterization of grating performance, tunability requirements and results from actual system trials using tunable FBGs.


Fiber Bragg Grating IEEE Photon Free Spectral Range Chromatic Dispersion Phase Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ramachandran, S. Ghalmi, S. Chandrasekhar, Fellow, IEEE, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, and P. Wisk, “Tunable Dispersion Compensators Utilizing Higher Order Mode Fibers”, IEEE Photon. Technol. Lett. 15 (5), 727-729 (2003).CrossRefADSGoogle Scholar
  2. 2.
    B.J.  Eggleton, A. Ahuja, P.S. Westbrook, J.A.  Rogers, P. Kuo, T.N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems”, J. Lightwave Technol. 18, 1418-1432 (2000).CrossRefADSGoogle Scholar
  3. 3.
    K.O. Hill, Y. Fujii, D.C. Johnson, and B.S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys.s Lett. 32, 647-649 (1978).CrossRefADSGoogle Scholar
  4. 4.
    R. Kashyap, Fiber Bragg Gratings (San Diego: Academic Press, 1999).Google Scholar
  5. 5.
    A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecom-munications and Sensing (Boston: Artech House, 1999).Google Scholar
  6. 6.
    F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847-849 (1987).CrossRefADSGoogle Scholar
  7. 7.
    R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, “Novel technique for writing long superstructured fiber Bragg gratings,” Photosensitivity and quadratic nonlinearity in glass waveguides: fundamentals and applications, vol. 22, PD1-1 PD1-3 (1995).Google Scholar
  8. 8.
    M.J. Cole, W.H. Loh, R.I. Laming, M.N. Zervas, and S. Barcelos, “Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask,” Electron. Lett. 31, 1488-1490 (1995).CrossRefGoogle Scholar
  9. 9.
    M. Brienza, “Extended length embedded Bragg grating manufacturing method and arrange-ment,” USA Patent 5066133: United Technologies, Hartford, Conn., 1991.Google Scholar
  10. 10.
    J.F. Brennan, D. LaBrake, G.A. Beauchesne, and R.P. Pepin, “Method for fabrication of in-line optical waveguide index grating of any length,” USA Patent, 5912999: Minnesota Mining and Manufacturing Company, 1999.Google Scholar
  11. 11.
    J.F. Brennan, M.R. Matthews, W.V. Dower, D.J. Treadwell, W. Wang, J. Porque, and X.D. Fan, “Dispersion correction with a robust fiber grating over the full C-band at 10-Gbit/s rates with < 0.3-dB power penalties,” IEEE Photon. Technol. Lett. 15, 1722-1724 (2003).CrossRefADSGoogle Scholar
  12. 12.
    J.F. Brennan, P.M. Bungarden, C.E. Fisher, and R.M. Jennings, “Packaging to reduce thermal gradients along the length of long fiber gratings,” IEEE Photon. Technol. Lett. 16, 156-158 (2004).CrossRefADSGoogle Scholar
  13. 13.
    F. Ouellette, P.A. Krug, T. Stephens, G. Dhosi, and B.J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31, 899-901 (1995).CrossRefGoogle Scholar
  14. 14.
    Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, and G. Hancin, “Multi-Channel High-Performance Tunable Dispersion Compensator for 40 Gbit/s Transmission Systems,” Optical Fiber Communication Conference and Exhibition, Atlanta, GA, paper ThL4, pp. 517-519 (2003).Google Scholar
  15. 15.
    P.I. Reyes, M. Sumetsky, N.M. Litchinitser, and P.S. Westbrook, “Reduction of group delay ripple of multi-channel chirped fiber gratings using adiabatic UV correction,” Opt. Express 12,2676 (2004).CrossRefADSGoogle Scholar
  16. 16.
    M. Ibsen, M.K. Durkin, M.J. Cole, and R.I. Laming, “Sinc-Sampled Fiber Bragg Gratings for Identical Multiple Wavelength Operation,” IEEE Photon. Technol. Lett. 10, 842-844 (1998).CrossRefADSGoogle Scholar
  17. 17.
    A.V. Buryak, K.Y. Kolossovski, and D.Y. Stepanov, “Optimization of refractive index sam-pling for multichannel fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 91-98 (2003).CrossRefADSGoogle Scholar
  18. 18.
    J. Rothenberg, F. Babian, Z. Brodzeli, P. Chou, H. Li,Y. Li, J. Popelek, and R.Wilcox, “Phase-Only Sampling for Fabrication and Design of High Channel-Count Fiber Bragg Gratings,” Technical Digest, Optical Fiber Communications Conference, Atlanta, GA, 2003, paper ThL3, pp. 516-517.Google Scholar
  19. 19.
    J. Lauzon, S. Thibault, J. Martin, and F. Ouellette, “Implementation and characterization of fiber Bragg gratings linearly chirped by a temperature gradient,” Opt. Lett. 19 (23), 2027-2029 (1994).ADSGoogle Scholar
  20. 20.
    B.J. Eggleton, J.A. Rogers, P.S. Westbrook, and T.A. Strasser, “Electrically tunable power efficient dispersion compensating fiber Bragg grating,” IEEE Photon. Technol. Lett. 11, 854-856 (1999).CrossRefADSGoogle Scholar
  21. 21.
    S. Kannan, J.Z.Y. Guo, P.J. Lemaire, “Thermal stability analysis of UV-induced fiber gragg gratings”, J. Lightwave Technol. 8, 1478-1483 (1997).CrossRefADSGoogle Scholar
  22. 22.
    B.J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J.A. Rogers, P.S. Westbrook, T.N. Nielsen, S. Stulz, and K. Dreyer, “Tunable Dispersion Compensation in a 160-Gbit/s TDM System by a Voltage Controlled Chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 12, 1022-1024 (2000).CrossRefADSGoogle Scholar
  23. 23.
    S. Wielandy, P.S. Westbrook, M. Fishteyn, P. Reyes, W. Schairer, H. Rohde, and G. Lehmann, “Demonstration of automatic dispersion control for 160 Gbit/s transmission over 275 km of deployed fibre," Electron. Lett. 40, 690-691 (2004).CrossRefGoogle Scholar
  24. 24.
    P.C. Hill and B.J. Eggleton, “Strain gradient chirp of fibre Bragg gratings,” Electron. Lett. 30,1172-1173 (1994).CrossRefGoogle Scholar
  25. 25.
    M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, “Tunable fiber grating dispersion using a piezoelectric stack,” Technical Digest, Optical Fiber Communi-cation Conference 1997, paper WJ3, pp. 155-156.Google Scholar
  26. 26.
    M.M. Ohn, A.T. Alavie, R. Maaskant, M.G. Xu, F. Bilodeau, and K.O. Hill, “Dispersion variable fibre Bragg grating using a piezoelectric stack,” Electron. Lett. 32, 2000-2001 (1997).CrossRefGoogle Scholar
  27. 27.
    Junhee Kim, Junkye Bae, Young-Geun Han, Sang Hyuck Kim, Je-Myung Jeong, and Sang Bae Lee, “Effectively tunable dispersion compensation based on chirped fiber Bragg gratings without central wavelength shift”, Photon. Technol. Lett. IEEE 16 (3), 849-851 (March 2004).CrossRefADSGoogle Scholar
  28. 28.
    M. Pacheco, A. Mendez, L.A. Zenteno, and F. Mendoza-Santoyo, “Chirping optical fibre Bragg gratings using tapered-thickness piezoelectric ceramic,” Electron. Lett. 34, 2348-2349 (1998).CrossRefGoogle Scholar
  29. 29.
    T. Imai, T. Komukai, and M. Nakazawa, “Dispersion Tuning of a Linearly Chirped Fiber Bragg Grating Without a Center Wavelength Shift by Applying a Strain Gradient,” IEEE Photon. Technol. Lett. 10, 845-847 (1998).CrossRefADSGoogle Scholar
  30. 30.
    X. Dong, P. Shum, N.Q. Ngo, C.C. Chan, J.H. Ng, and C. Zhao, “Largely tunable CFBG-based dispersion compensator with fixed center wavelength,” Opt. Express 11, 2970-2974 (2003).CrossRefADSGoogle Scholar
  31. 31.
    R. Caponi, E. Ciaramella, E. Riccardi, M. Schiano, T. Tambosso, G. Zaffiro, “Origin and system effects of polarization mode dispersion in chirped Bragg gratings”, Fiber Int. Opt. 19,295-309 (2000).CrossRefGoogle Scholar
  32. 32.
    A.E. Willner, K.-M. Feng, J. Cai, S. Lee, J. Peng, and H. Sun, “Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,” IEEE J. Select. Topics Quantum Electron. 5, 1298-1311 (1999).CrossRefGoogle Scholar
  33. 33.
    J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, V. Baker, H.F.M. Priddle, W.S. Lee, A.J. Collar, C.B. Rogers, D.P. Goodchild, R. Feced, B.J. Pugh, S.J. Clements, and A. Hadjifotiou, “Twin fiber grating tunable dispersion compensator,” IEEE Photon. Technol. Lett. 13, 984-986 (2001).CrossRefADSGoogle Scholar
  34. 34.
    X.W. Shu, K. Sugden, and K. Byron, “Bragg-grating-based all-fiber distributed Gires-Tournois etalons”, Opt. Lett. 28 (11), 881-883 (June 1 2003).CrossRefADSGoogle Scholar
  35. 35.
    S. Vorbeck and R. Leppla, “Dispersion and Dispersion Slope Tolerance of 160-Gbit/s Sys-tems, Considering the Temperature Dependence of Chromatic Dispersion,” IEEE Photon. Technol. Lett. 15 (10), 1470-1472 (Oct. 2003).CrossRefADSGoogle Scholar
  36. 36.
    C.S. Goh, S.Y. Set, K. Taira, S.K. Khijwania, K. Kikuchi, “Nonlinearly strain-chirped fiber Bragg grating with an adjustable dispersion slope,” IEEE Photon. Technol. Lett. 14 (5), 663-665 (May 2002).CrossRefADSGoogle Scholar
  37. 37.
    C.S. Goh, S.Y. Set, and K. Kikuchi, “Design and Fabrication of a Tunable Dispersion-slope Compensating Module Based on Strain-Chirped Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 16 (2), 524-526 (Feb. 2004).CrossRefADSGoogle Scholar
  38. 38.
    P.I. Reyes, N. Litchinitser, M. Sumetsky, and P.S. Westbrook, “160-Gbit/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater”, IEEE Photon. Technol. Lett. 17 (4), 831-833 (2005).CrossRefADSGoogle Scholar
  39. 39.
    S. Matsumoto, M. Takabayashi, K. Yoshiara, T. Sugihara, T. Miyazaki, and F. Kubota, “Tun-able Dispersion Slope Compensator With a Chirped Fiber Grating and a Divided Thin-Film Heater for 160-Gbit/s RZ Transmissions,” IEEE Photon. Technol. Lett. 16 (4), 1095-1097 (April 2004).CrossRefADSGoogle Scholar
  40. 40.
    P.S.J. Russell, “BlochWaveAnalysis of Dispersion and Pulse Propagation in Pure Distributed Feedback Structures,” J. Mod. Opt. 38, 1599-1619 (1991).CrossRefADSGoogle Scholar
  41. 41.
    B.J. Eggleton, T. Stephens, P.A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, Electron. Lett. 32,1610-1611 (1996).CrossRefGoogle Scholar
  42. 42.
    N.M. Litchinitser and D.B. Patterson, “Analysis of fiber Bragg gratings for dispersion com- pensation in reflective and transmissive geometries,” IEEE J. Lightwave Technol. 15, 1323-1328 (1997).ADSGoogle Scholar
  43. 43.
    N.M. Litchinitser, B.J. Eggleton, and D.B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: Theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303-1313 (1997).CrossRefADSGoogle Scholar
  44. 44.
    D.B. Patterson and B.C. Moore, US Patent US 6,356,684 B1 (2002).Google Scholar
  45. 45.
    J. Skaar, “Synthesis of fiber Bragg gratings for use in transmission,” J. Opt. Soc. Am. A 18, 557-564 (2001).CrossRefADSGoogle Scholar
  46. 46.
    C.K. Madsen and J.H. Zhao, Optical Filter Design and Analysis (New York: Wiley, 1999).CrossRefGoogle Scholar
  47. 47.
    C.K. Madsen, G. Lenz, A.J. Bruce, M.A. Cappuzzo, L.T. Gomez, and R.E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).CrossRefADSGoogle Scholar
  48. 48.
    C.K. Madsen, S. Chandrasekhar, E.J. Laskowski, M.A. Cappuzzo, J. Bailey, E. Chen, L.T. Gomez, A. Griffin, R. Long, M. Rasras, A. Wong-Foy, L.W. Stulz, J. Weld, and Y. Low, “An integrated tunable chromatic dispersion compensator for 40 Gbit/s NRZ and CSRZ," Optical Fiber Communications Conference and Exhibition, Anaheim, CA, postdeadline paper FD-9, 2002.Google Scholar
  49. 49.
    M. Jablonski, Y. Takushima, K. Kikuchi, Y. Tanaka, and N. Nigashi, “Adjustable coupled two-cavity allpass filter for dispersion slope compensation of optical fibres,” Electron. Lett. 36,511-512 (2000).CrossRefGoogle Scholar
  50. 50.
    D.J. Moss, S. McLaughlin, G. Randall, M. Lamont, M. Ardekani, P. Colbourne, S. Kiran, and C.A. Hulse, “Multichannel tunable dispersion compensation using all-pass multicavity etalons,” Technical Digest of the Optical Fiber Communications Conference and Exhibit, Anaheim, CA, paper TuT2, 2002, pp. 132-133.Google Scholar
  51. 51.
    L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C.A. Hulse, “Tunable Dispersion Compensation at 40-Gbit/s Using a Multicavity Etalon All-Pass Filter With NRZ, RZ, and CS-RZ Modulation,” J. Lightwave Technol. 20, 2136-2144 (2002).CrossRefADSGoogle Scholar
  52. 52.
    M. Bohn, W. Rosenkranz, and P.M. Krummrich, “Adaptive Distortion Compensation With Integrated Optical Finite Impulse Response Filters in High Bitrate Optical Communication Systems,” IEEE J. Select. Topics Quantum Electron., 10, 273-280 (2004).CrossRefGoogle Scholar
  53. 53.
    C.R. Doerr, S. Chandrasekhar, M. Cappuzzo, E. Chen, A. Wong-Foy, L. Gomez, S. Patel, and L. Buhl, “Two Mach-Zehnder, tunable dispersion compensators integrated in series to increase bandwidth and/or range while maintaining single knob control”, IEEE Photon. Technol. Lett. 17, 828-830 (2005).CrossRefADSGoogle Scholar
  54. 54.
    M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett. 9, 1598-1600 (1997).CrossRefADSGoogle Scholar
  55. 55.
    F. Ouellette, “All-fiber filter for efficient dispersion compensation,” Opt. Lett., 16, 303-305 (1991).CrossRefADSGoogle Scholar
  56. 56.
    C.R. Doerr, L.W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator With 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15, 1258-1260 (2003).CrossRefADSGoogle Scholar
  57. 57.
    C.R. Doerr, D.M. Marom, M.A. Cappuzzo, E.Y. Chen, A. Wong-Foy, L.T. Gomez, and S. Chandrasekhar, “40 Gbit/s colorless tunable compensator with 1000 ps/nm tuning range employing a planar lightwave circuit and a deformable mirror”, Proceeings of the Optical Fiber Communications Conference, Anaheim, CA, postdeadline paper PDP5, 2005.Google Scholar
  58. 58.
    R.D. Gittlin, J.F. Hayes, and S.B. Weinstein, Data Communications Principles (New York: Plenum, 1992).Google Scholar
  59. 59.
    S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory (Englewood Cliffs, NJ: Prentice-Hall, 1987).zbMATHGoogle Scholar
  60. 60.
    J.G. Proakis, Digital Communications, 3rd ed. (New York: McGraw-Hill, 1995).Google Scholar
  61. 61.
    T. Nielsen and S. Chandrasekhar, “OFC 2004 workshop on optical and electronic mitigation of impairments”, J. Lightwave Technol. 23, 131-142 (2005).CrossRefADSGoogle Scholar
  62. 62.
    H.F. Haunstein, W. Sauer-Greff, A. Dittrich, K. Sticht, and R. Urbansky, “Principles for Electronic Equalization of Polarization-Mode Dispersion," IEEE J. Lightwave Technol. 22, 1169-1182 (2004).CrossRefADSGoogle Scholar
  63. 63.
    S.L. Woodward, S.-Y. Huang, M.D. Feuer, and M. Boroditsky, “Demonstration of an Elec-tronic Dispersion Compensator in a 100-km 10-Gbit/s Ring Network,” IEEE Photon. Tech-nol. Lett. 15, 867-869 (2003).CrossRefADSGoogle Scholar
  64. 64.
    M.D. Feuer, S.-Y. Huang, S.L. Woodward, O. Coskun, and M. Boroditsky, “Electronic Dis-persion Compensation for a 10-Gbit/s Link Using a Directly Modulated Laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).CrossRefADSGoogle Scholar
  65. 65.
    D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gbit/s with no optical dispersion compensation”, Proc. of the Optical Fiber Communications Conference, Anaheim, CA, postdeadline paper PDP27, 2005.Google Scholar
  66. 66.
    H. Jiang, R. Saunders, S. Colaco, “SiGe IC for PMD mitigation and signal optimization of 40 Gbit/s transmission”, Proc. Opt. Fiber Commun. 2005, Anaheim, CA, paper OWO2.Google Scholar
  67. 67.
    M. Nakamura, H. Nosaka, M. Ida, K. Kurishima, and M. Tokumitsu, “Electrical PMD equal-izer Ics for a 40 Gbit/s transmission”, Opt. Fiber Commun. Conf., Los Angeles, CA, paper TuG4, 2004.Google Scholar
  68. 68.
    M. Ibsen, M.K. Durkin, R. Feced, M.J. Cole, M.N. Zervas, and R.I. Laming, “Dispersion compensating fibre Bragg gratings”, in Active and Passive Optical Components for WDM Communication, Proc. SPIE 4532, 540-551 (2001).CrossRefGoogle Scholar
  69. 69.
    K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas, and R.I. Laming, IEEE Photon. Technol. Lett. 10,1476-1478 (1998).CrossRefADSGoogle Scholar
  70. 70.
    C. Scheerer, C. Glingener, G. Fischer, M. Bohn, and W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proc. ECOC 1999, pp.1410-1411.Google Scholar
  71. 71.
    F. Ouellette, “The effect of profile noise on the spectral response of fiber gratings” in Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, Paper BMG13-2, Williamsburg, 1997.Google Scholar
  72. 72.
    R. Feced and M.N. Zervas, “Effect of random phase and amplitude errors in optical fiber gratings”, J. Lightwave Technol. 18, 90-101 (2000).CrossRefADSGoogle Scholar
  73. 73.
    R. Feced, J.A.J. Fells, S.E. Kanellopoulos, P.J. Bennett, and H.F.M. Priddle, “Impact of random phase errors on the performance of fiber grating dispersion compensators”, Opt.l Fiber Commun. Conf. (OFC), 2001, Anheim, CA, Paper WDD89, 2001.Google Scholar
  74. 74.
    M. Sumetsky, B.J. Eggleton, and C.M. de Sterke, “Theory of group delay ripple generated by chirped fiber gratings”, Opt. Express 10, 332-340 (2002).ADSGoogle Scholar
  75. 75.
    L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings”, Phys. Rev. E 48, 4758-4767 (1993).CrossRefADSGoogle Scholar
  76. 76.
    N.G.R. Broderick and C.M. de Sterke, “Theory of grating superstructures”, Phys. Rev. E55, 3634-3646 (1997).ADSGoogle Scholar
  77. 77.
    I. Riant, S. Gurib, J. Gourhant, P. Sansonetti, C. Bungarzeanu, and R. Kashyap, “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gbit/s transmission,” IEEE J. Select.Topics Quant. Electron. 5, 1312-1324 (1999).CrossRefGoogle Scholar
  78. 78.
    S.J. Mihailov, F. Bilodeau, K.O. Hill, D.C. Johnson, J. Albert, and A.S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670-3677 (2000).CrossRefADSGoogle Scholar
  79. 79.
    T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).CrossRefGoogle Scholar
  80. 80.
    A.V. Buryak and D.Yu. Stepanov, “Correction of systematic errors in the fabrication of fiber Bragg gratings,” Opt. Lett. 27, 1099-1101 (2002).CrossRefADSGoogle Scholar
  81. 81.
    M. Sumetsky, P.I. Reyes, P.S. Westbrook, N.M. Litchinitser, and B.J. Eggleton, “Group delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777-779 (2003).CrossRefADSGoogle Scholar
  82. 82.
    J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19, 2229-2237 (2002).CrossRefADSGoogle Scholar
  83. 83.
    M. Sumetsky, Y. Dulashko, J. W. Fleming, A. Kortan, P.I. Reyes, and P.S. Westbrook, “Ther-momechanical modification of diffraction gratings,” Opt. Lett. 29, 1315-1317 (2004).CrossRefADSGoogle Scholar
  84. 84.
    B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, S. Dey, F. Rosca, “Real-world issues for High-capacity and long-haul transmission at 40 Gbit/s,” ECOC 2003.Google Scholar
  85. 85.
    W.H. Hatton and M. Nishimure, “Temperature dependence of chromatic dispersion in single mode fibers,” J. Lightwave Technol. 4, 1552-1555 (1986).CrossRefADSGoogle Scholar
  86. 86.
    G.P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).Google Scholar
  87. 87.
    S. Leli èvre, E. Pelletier, A.W. Farr, Y. Painchaud, R. Lachance, and M. Brown, “Grating based solutions for chromatic dispersion management in DWDM systems,” NFOEC 2002.Google Scholar
  88. 88.
    A.H. Gnauck, J.M. Weisenfield, L.D. Garrett, R.M. Dersier, F. Forghieri, V. Gusmeroli, and D. Scarano, “4×40 Gbit/s 75 km WDM transmission over conventional fiber using a broadband fiber grating,” IEEE Photon. Technol. Lett. 11, 1503-1505 (1999).CrossRefADSGoogle Scholar
  89. 89.
    R. DeSalvo, A.G. Wilson, J. Rollman, D.F. Schneider, L.M. Lunardi, S. Lumish, N. Agrawal, A.H. Steinbach, W. Baun, T. Wall, R. Ben-Michael, M.A. Itzler, A. Fejzuli, R.A. Chipman, G.T. Kiehne, and K.M. Kissa, “Advanced components and sub-system solutions for 40 Gbit/s transmission,” J. Lightwave Technol. 20, 2154-2181 (2002).CrossRefADSGoogle Scholar
  90. 90.
    S.G. Evangelides, Jr., N.S. Bergano, C.R. Davidson, “Intersymbol interference induced by delay ripple in fiber Bragg gratings,” ECOC’99 Paper FA2, pp. 5-7.Google Scholar
  91. 91.
    R.L. Lachance, M. Morin, and Y. Painchaud, “Group delay ripple in fibre Bragg grating tunable dispersion compensators,” Electron. Lett. 38, (2002).Google Scholar
  92. 92.
    HYoshimi,Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” ECOC 2002, Paper 10.4.4.Google Scholar
  93. 93.
    N. Litchinitser, Y. Li, M. Sumetsky, P. Westbrook, B. Eggleton, “Tunable dispersion com-pensation devices: group delay ripple and system performance,” OFC 2003, Paper TuD2, 163-164.Google Scholar
  94. 94.
    M.H. Eiselt, C.B. Clausen, R.W. Tkach, “Performance characterization of components with group delay fluctuations,” IEEE Photon. Technol. Lett. 15, 1076-1078 (2003).CrossRefADSGoogle Scholar
  95. 95.
    M. Derrien, D. Gauden, E. Goyat, A. Mugnier, P. Yvernault, and D. Pureur, “Wavelength-frequency analysis of dispersion compensator group delay ripples,” OFC 2003, Paper MF31, pp. 34-35.Google Scholar
  96. 96.
    X. Fan, D. Labrake, and J. Brennan, “Chirped fiber grating characterization with phase ripples,” OFC 2003, Paper FC2, pp. 638-640.Google Scholar
  97. 97.
    X. Liu, L.F. Mollenauer, X. Wei, “Impact of group-delay ripple on differential-phase-shift-keying transmission systems, ECOC 2003.Google Scholar
  98. 98.
    M. Sumetsky, N.M. Litchinitser, P.S. Westbrook, P.I. Reyes, B.J. Eggleton, Y. Li, R. Desh-mukh, C. Soccolic, F. Rosca, J. Bennike, F. Liu, and S. Dey, “High performance 40 Gbit/s fibre Bragg grating tunable dispersion compensator fabricated using group delay ripple cor-rection technique,” Electron. Lett. 39, 1196-1198 (2003).CrossRefGoogle Scholar
  99. 99.
    T.N. Nielsen, B.J. Eggleton, J.A. Rogers, P.S. Westbrook, P.B. Hansen, and T.A. Strasser, “Dynamic post dispersion optimization at 40 Gbit/s using a tunable fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 173-175 (2000).CrossRefADSGoogle Scholar
  100. 100.
    T. Inui, T. Komukai, M. Nakazawa, K. Suzuki, K.R. Tamura, K. Uchiyama, and T. Morioka, “Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique,” IEEE Photon. Technol. Lett. 14, 549-551 (2002).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • N. M. Litchinitser
    • 1
  • M. Sumetsky
    • 1
  • P. S. Westbrook
    • 1
  1. 1.OFS LaboratoriesSomersetUSA

Personalised recommendations