Skip to main content

Broadband fiber Bragg gratings for dispersion management

  • Chapter
Fiber Based Dispersion Compensation

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 5))

This paper provides an overview and technology update of a dispersion management component made from chirped fiber Bragg gratings. The history and technology of fiber Bragg gratings (FBGs) have been extensively covered in several excellent review articles, [1–6] book chapters, [7] and books. [8,9] We give a brief overview of fiber Bragg grating technology in this section and then focus on the details concerned with construction and performance of dispersion management devices in optical communications systems with a single broadband long-length grating used in reflection. Sampled chirped grating are sometimes referred to as broadband devices, but they actually have a narrow bandwidth of operation that is periodically repeated across a given spectral range. Although these periodic devices have shown promise as dispersion management devices in communications systems, they will not be discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.O. Hill, B. Malo, F. Bilodeau, and D.C. Johnson, Photosensitivity in optical fibers, Ann. Rev. Mater. Sci., 23, 125-157 (1993).

    Article  ADS  Google Scholar 

  2. W.W. Morey, G.A. Ball, and G. Meltz, Photoinduced Bragg gratings in Optical fibers, Opt. Photon. News, 5, 8-14 (1994).

    Article  ADS  Google Scholar 

  3. R.J. Campbell and R. Kashyap, The properties and applications of photosensitive ger- manosilicate fibre, Int. J. Optoelectron., 9, 33-57 (1994).

    Google Scholar 

  4. P.St.J. Russel, J.-L. Archambault, and L. Reekie, Fibre gratings, Physics World, 41-46, October 1993.

    Google Scholar 

  5. I. Bennion, J.A.R. Williams, L. Zhang, K. Sugden, and N.J. Doran, UV-written in-fibre gratings, Opt. Quant. Electron., 28, 93-135 (1996).

    Article  Google Scholar 

  6. See the invited papers in the special issue of J. Lightwave Technol., 15, (1997).

    Google Scholar 

  7. T.A. Strasser and T. Erdogan, Fiber gratings devices in high-performance optical commu-nications systems, in Optical Fiber Telecommunications IVA, edited by I. Kaminow and T. Li. (Academic Press, San Diego, 2002).

    Google Scholar 

  8. A. Othonos and K. Kalli, Fiber Bragg Gratings, Fundamentals and applications in telecom-munications and sensing (Artech House, Boston, 1999).

    Google Scholar 

  9. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego,1999).

    Google Scholar 

  10. K.O. Hill, Y. Fujii, D.C. Johnson, and B.S. Kawasaki, Photosensitivity in optical fiber wave-guides: applications to reflection filter fabrication, Appl. Phys. Lett., 32 647-649 (1978).

    Article  ADS  Google Scholar 

  11. J.L. Zyskind, J.A. Nagel, and H.D. Kidorf, Erbium-doped fiber amplifiers for optical com-munications, in Optical Fiber Telecommunications IIIB, edited by I.P. Kaminow and T.L. Koch (Academic Press, San Diego, 1997), pp. 13-68.

    Google Scholar 

  12. F. Ouellette, Dispersion cancellation using linearly chirped Bragg filters in optical wave- guides, Opt. Lett., 12, 180-182.

    Google Scholar 

  13. A.D. Kersey, M.A. Davis, H.J. Patrick, M. LeBlanc, K.P. Koo, C.G. Askins, M.A. Putnam, and E.J. Friebele, Fiber gratings sensors, J. Lightwave Technol., 15, 1442-1463 (1997).

    Article  ADS  Google Scholar 

  14. A. Galvanauskas, M.E. Fermann, D. Harter, K. Sugden, and I. Bennion, All-fiber fem-tosecond pulse amplification circuit using chirped Bragg gratings, Appl. Phys. Lett., 66, 1053-1055 (1995).

    Article  ADS  Google Scholar 

  15. A. Grunnet-Jepsen, A. Johnson, E. Maniloff, T. Mossberg, M. Munroe, and J. Sweetser, Spectral phase encoding and decoding using fiber Bragg gratings, in Proceedings of 1999 Optical fiber Communications, San Diego, CA, 1999, Paper PD33.

    Google Scholar 

  16. P.C. Chou, H.A. Haus, and J.F. Brennan III, Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating, Opt. Lett., 25, 524-526 (2000).

    Article  ADS  Google Scholar 

  17. N.G.R. Broderick, D.J. Richardson, and M. Ibsen, Nonlinear switching in a 20-cm-long fiber Bragg grating, Opt. Lett., 25, 536-538 (2000).

    Article  ADS  Google Scholar 

  18. J.A.R. Williams, L.A. Everall, I. Bennion, and N.J. Doran, Fiber Bragg grating fabrication for dispersion slope compensation, IEEE Photon. Tech. Lett., 8, 1187-1189 (1996).

    Article  ADS  Google Scholar 

  19. L. Quetel, L. Rivoallan, M. Morvan, M. Monerie, E. Delevaque, J.Y. Guilloux, and J.F. Bayon, Chromatic dispersion compensation by apodized Bragg gratings within controlled tapered fibers, Opt. Fiber Technol., 3, 267-271 (1997).

    Article  ADS  Google Scholar 

  20. M.G. Xu, A.T. Alavie, R. Maaskant, and M.M. Ohn, Tunable fibre bandpass filter based on a linearly chirped fibre Bragg grating for wavelength demultiplexing, Electron. Lett., 32, 1918-1919.

    Google Scholar 

  21. T. Imai, T. Komukai, and M. Nakazawa, Dispersion tuning of a linearly chirped fiber Bragg grating without a center wavelength shift by applying a strain gradient, IEEE Photon. Tech. Lett., 10, 845-847 (1998).

    Article  ADS  Google Scholar 

  22. J.A. Rogers. B.J. Eggleton, J.R. Pedrazzani, and T.A. Strasser, Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp, Appl. Phys. Lett., 74, 3131-3133 (1999).

    Article  ADS  Google Scholar 

  23. B.J. Eggleton, J.A. Rogers, P.S. Westbrook, and T.A. Strasser, Electrically tunable power efficient dispersion compensating fiber Bragg grating, IEEE Photon. Tech. Lett., 11, 854-856 (1999).

    Article  ADS  Google Scholar 

  24. R. Kashyap, P.F. McKee, R.J. Campbell, and D.L. Williams, A novel method of writing photo-induced chirped Bragg gratings in optical fibers, Electron. Lett., 30, 996 (1994).

    Article  Google Scholar 

  25. R. Kashyap, H.-G. Froehlich, A. Swanton, and D.J. Armes, 1.3 m long super-sep-chirped fibre Bragg grating with a continuous delay of 13.5 ns and bandwidth 10 nm for broadband dispersion compensation, Electron. Lett., 32, 1807-1809 (1996).

    Article  Google Scholar 

  26. H. Rourke, B. Pugh, S. Kanellopoulos, V. Baker, B. Napier, D. Greene, D. Goodchild, J. Fells, R. Epworth, A. Collar, and C. Rogers, Fabrication of extremely long fibre gratings by phase matched concatenation of multiple short sections, in proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, 23-25 September 1999, OSA: Stuart, Florida, OSA, pp. 32-34.

    Google Scholar 

  27. M.J. Cole, W.H. Loh, R.I. Laming, M.N. Zervas, and S. Barcelos, Moving Fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask, Electron. Lett., 31, 1488-1489 (1995).

    Article  Google Scholar 

  28. R. Stubbe, B. Sahlgren, S. Sandgren, and A. Asseh, Novel technique for writing long super-structured fiber Bragg gratings, in proceedings of Photosensitivity and Quadratic Nonlin-earity in Glass Waveguides: Fundamentals and Applications, 9-11 September 1995, OSA 1995 Technical Digest 22: Portland, Oregon, 1995, pp. PD1.

    Google Scholar 

  29. A. Asseh, H. Storoy, B.E. Sahlgren, S. Sahlgren, and R.A.H. Stubbe, A writing technique for long fiber Bragg gratings with complex reflectivity profiles, J Lightwave Technol., 15, 1419-1423 (1997).

    Article  ADS  Google Scholar 

  30. M. Ibsen, M.K. Durkin, M.J. Cole, and R.I. Laming, Optimised square pass-band fibre Bragg grating filter with in-band flat group delay response, Electron. Lett., 34, 800-802 (1998).

    Article  Google Scholar 

  31. J.F. Brennan III and D.L. LaBrake, Realization of >10 m long chirped fiber Bragg gratings, 1999 OSA Topical conference on Bragg gratings, Photosensitivity, and Poling in Glass Waveguides, Stuart, FL, Paper ThD2, 1999.

    Google Scholar 

  32. J.F. Brennan III, E. Hernandez, J.A. Valenti, P.G. Sinha, M.R. Matthews, D.E. Elder, G.A. Beauchesne, and C.H. Byrd, Dispersion and dispersion-slope correction with a fiber Bragg grating over the full C-band, in proceedings of Optical fiber Communications, Anaheim, CA, 17-22 March 2001, Paper PD12.

    Google Scholar 

  33. J.A. Stone and L.P. Howard, A simple technique for observing periodic nonlinearities in Michelson interferometers, Precision Engineering, 22, 220-232 (1998).

    Article  Google Scholar 

  34. J.F. Brennan III and D.L. LaBrake, Fabrication of long-period fiber gratings with arbitrary refractive index profiles and lengths, 1999 OSA topical conference on Bragg gratings, Pho-tosensitivity, and Poling in Glass Waveguides, Stuart, FL, paper ThE13, 84-86, 1999.

    Google Scholar 

  35. L. Poladian, Understanding profile induced group-delay ripple in Bragg gratings, Appl. Opt., 39,1920-1923 (2000).

    Article  ADS  Google Scholar 

  36. K. Ennser, M.N. Zervas, and R.I. Laming, Optimization of Apodized linearly chirped fiber gratings for optical communications, IEEE J Quant. Electron., 34, 770-778 (1998). and references therein.

    Article  ADS  Google Scholar 

  37. N.S. Bergano, Undersea amplified lightwave systems design, in Optical Fiber Telecommu-nications IIIA, edited by I.P. Kaminow and T.L. Koch (Academic Press, San Diego, 1997), pp. 302-335.

    Google Scholar 

  38. T.A. Strasser, T. Nielson, and J.R. Pedrazzani, Limitations of dispersion compensation grat-ings including impact on system performance, proceedings of 1998 National Fiber Optic Engineers Conference, Orlando, FL 13-17 September 1998, pp. 79-85.

    Google Scholar 

  39. L.L. Blyler Jr., F.V. DiMarcello, J.R. Simpson, E.A. Sigety, A.C. Hart Jr., and V.A. Foertmeyer, UV-radiation induced losses in optical fibers and their control, J. Non-Crystal. Solids, 38 & 39, 165-170 (1980).

    Article  Google Scholar 

  40. E.M. Dianov, V.M. Mashinsky, V.B. Neustruev, and O.D. Sazhin, “Origin of excess loss in single-mode optical fibers with high Ge)2-doped silica core, Opt. Fiber Technol., 3, 77-86 (1997)and references therein.

    Article  ADS  Google Scholar 

  41. J. Stone, Interactions of hydrogen and deuterium with silica optical fibers: a review, J. Lightwave. Tech., LT-5, 712-733 (1987).

    Article  ADS  Google Scholar 

  42. D.L. LaBrake, D.A. Sloan, and J.F. Brennan III, Optical losses due to grating fabrication processes in germanosilicate optical fibers, 1999 OSA Topical conference on Bragg Grat-ings, Photosensitivity, and Poling in Glass Waveguides, Stuart, FL, Paper ThE29, 130-133, 1999.

    Google Scholar 

  43. F.M. Araujo, E. Joanni, M.J. Marques, and O.G. Okhotnikov, Dynamics of IR absorption caused by hydroxyl groups and its effect on refractive index evolution in UV-exposed, hydrogen-loaded Ge)2-doped fibers, in proceedings of Conference on Lasers and Electro-optics, 1998 OSA Technical Digest, vol. 6, paper CWE3, 225-226, 1998.

    Google Scholar 

  44. R.M. Atkins and P.J. Lemaire, Effects of elevated temperature hydrogen exposure on short-wavelength optical losses and defect concentrations in germanosilicate optical fibers, J. Appl. Phys., 72, 344-348 (1992).

    Article  ADS  Google Scholar 

  45. V. Mizrahi and J.E. Sipe, Optical properties of photosensitive fiber phase gratings, J. Light- wave Technol., 11, 1513-1517 (1993).

    Article  ADS  Google Scholar 

  46. T. Erdogan, Cladding-mode resonances in short- and long-period fiber grating filters, J. Opt. Soc. Am. A, 14, 1760-1773 (1997).

    Article  ADS  Google Scholar 

  47. S.J. Hewlett, J.D. Love, G. Meltz, T.J. Bailey, and W.W. Morey, Cladding-mode coupling characteristics of Bragg gratings in depressed-cladding fibre, Electron. Lett., 31, 820-822 (1995).

    Article  ADS  Google Scholar 

  48. M.K. Durkin, M. Ibsen, R.I. Laming, and V. Gusmeroli, Equalization of spectral non-uniformities in broad-band chirped fibre gratings, in proceedings of Bragg Gratings, Pho-tosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals, OSA 1997 Technical Digest Volume 17, Paper BMG16, pp. 231-233, 1997.

    Google Scholar 

  49. V. Finazzi and M.N. Zervas, Cladding mode losses in chirped fibre Bragg gratings, in proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA 2001 Technical Digest, Paper BThB4, 2001.

    Google Scholar 

  50. F. Ghiringhelli and M.N. Zervas, Inverse scattering design of fiber Bragg gratings with cladding mode losses compensation, in proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA 2003 Technical Digest, Paper TuD2, pp. 226-228 (2003).

    Google Scholar 

  51. N.K. Viswanathan and D.L. LaBrake, Accelerated-aging studies of chirped Bragg gratings written in deuterium-loaded germano-silicate fibers, J. Lightwave Technol. 22, 1990-2000 (2004).

    Article  ADS  Google Scholar 

  52. R. Feced, and M.N. Zervas, Effects of random phase and amplitude errors on optical fiber Bragg gratings, J. Lightwave Technol., 18, 90-101 (2000).

    Article  ADS  Google Scholar 

  53. M. Sumetsky, B.J. Eggleton, and C. Martijn de Sterke, Theory of group delay ripple gener-ated by chirped fiber gratings, Opt. Express 10, 332-340 (2002).

    ADS  Google Scholar 

  54. B.J. Eggleton, P.A. Krug, L. Poladian, and F. Ouellette, Long superstructure Bragg gratings in optical fibers, Electron. Lett., 30, 1620-1622 (1994).

    Article  Google Scholar 

  55. M.R. Matthews, J. Porque, C.D. Hoyle, M.J. Vos, and T.L. Smith, Simple model of errors in chirped fiber gratings, Optics Express, 12, 189-197 (2004).

    Article  ADS  Google Scholar 

  56. L. Poladian, Graphical and WKB analysis of nonuniform Bragg gratings, Phys. Rev. E, 48, 4758-4767 (1993).

    Article  ADS  Google Scholar 

  57. Transmission characteristics of optical components and subsystems, International Telecom- munications Union, ITU-T G.671, 2002.

    Google Scholar 

  58. Generic requirements for fiber optic dispersion compensators, Telcordia document, GR-2854-CORE.

    Google Scholar 

  59. M.M. David, J.F. Brennan III, B. Cronk, B. Gates, B. Nelson, C. Jorgensen, D.L. LaBrake, D. Paolucci, C. Byrd, and J.Valenti, Diamond-like film encapsulated fibers for long-length fiber grating production, in proceedings of 2000 Optical Fiber Communication, OSA Technical Digest, Baltimore, MD, Paper PD1, 2000.

    Google Scholar 

  60. R.P. Espindola, R.M. Atkins, D.A. Simoff, K.T. Nelson, and M.A. Paczkowski, Fiber Bragg gratings written through a fiber coating, in proceedings of 1997 Optical Fiber Communica-tion, OSA Technical Digest Volume 6, Dallas, TX, Paper PD4, 1997.

    Google Scholar 

  61. K. Imamura, T. Nakai, K. Moriura, Y. Sudo, and Y. Imada, Mechanical strength character-istics of tin-doped germanosilicate fibre Bragg gratings by writing through UV-transparent coating, Electron. Lett., 34, 1016-1017 (1998).

    Article  Google Scholar 

  62. L. Chao and L. Reekie, Grating writing through the fibre coating using a 248 nm excimer laser, in proceedings of 1999 Optical Fiber Communication, OSA/IOOC Technical Digest, San Diego, CA, paper ThD5, 1999.

    Google Scholar 

  63. M. Ibsen and R.I. Laming, Fibre non-uniformity caused Bragg grating imperfections, in pro-ceedings of 1999 Optical Fiber Communication, OSA/IOOC Technical Digest, San Diego, CA, Paper FA1, 1999.

    Google Scholar 

  64. J. Mort and F. Jansen, Plasma Deposited Thin Films (CRC Press, Baco Raton, FL, 1986).

    Google Scholar 

  65. J.F. Brennan III, M.R. Matthews, W.V. Dower, D.J. Treadwell, W. Wang, J. Porque, and X. Fan, Dispersion correction with a robust fiber grating over the full C-band at 10 Gb/s rates with a <0.3-dB power penalties, IEEE Photon. Tech. Lett., 15, 1722-1724 (2003).

    Article  ADS  Google Scholar 

  66. J.F. Brennan III, P.M. Bungarden, C.E. Fisher, and R.M. Jennings, Packaging to reduce thermal gradients along the length of long fiber gratings, IEEE Photon. Technol. Lett., 16, 156-158 (2004).

    Article  ADS  Google Scholar 

  67. M.J. Li, Recent Progress in fiber dispersion compensators, in European Conference on Optical Communications 2001, Amsterdam, The Netherlands, Paper Th.M.1, (2001.

    Google Scholar 

  68. W.W. Morey and W.L. Glomb, Incorporated Bragg Filter Temperature Compensated Optical Waveguide Device, United States Patent # 5,042,898 (27 August 1991).

    Google Scholar 

  69. J.A. Rogers, B.J. Eggleton, J.R. Pedrazzani, and T.A Strasser, Distributed on-fiber thin film heaters for Bragg gratings with adjustable chirp, Appl. Phys. Lett., 74, 3131-3133 (1999).

    Article  ADS  Google Scholar 

  70. J.F. Brennan III, M.R. Matthews, and P.G. Sinha, The modulation transfer-function of chirped fiber Bragg gratings, in proceedings of Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA 2001 Technical Digest, Stresa, Italy, Paper BThC21, 2001.

    Google Scholar 

  71. B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielson, and B. Mikkel-son, Integrated tunable fiber gratings for dispersion management in high-bit rate systems, J. Lightwave Technol., 18, 1418-1432 (2000).

    Article  ADS  Google Scholar 

  72. D. Garthe, G. Milner, and Y. Cai, System performance of broadband dispersion compensating gratings, Electron. Lett., 34, 582-583 (1998).

    Article  Google Scholar 

  73. K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas, and R.I. Laming, Influence of nonideal chirped fiber grating characteristics on dispersion cancellation, IEEE Photon. Technol. Lett., 10, pp. 1476-1478 (1998).

    Article  ADS  Google Scholar 

  74. C. Scheerer, C. Glingener, G. Fischer, M. Bohn, and W. Rosenkranz, Influence of filter delay ripples on system performance, in proceedings of 1999 European Conference on Optical Communication, Nice France, Volume I, pp. 410-411, 1999.

    Google Scholar 

  75. P. Hernday, Dispersion Measurements, in Fiber Optic Test and Measurement, edited by D. Derickson (Prentice-Hall, New Jersey, 1998), chapter 12, pp. 475-518.

    Google Scholar 

  76. C. Scheerer, Phase distortions in optical transmission systems, Frequenz, 54, 42-46 (2000).

    Google Scholar 

  77. T. Niemi, M. Uusimaa, and H. Ludvigsen, Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings, IEEE Photon Technol. Lett. 13, 1334-1336 (2001).

    Article  ADS  Google Scholar 

  78. X. Fan and J.F. Brennan III, Performance effect in optical-communication systems caused by phase ripple of dispersive components, Appl. Opt., 43 (26), 5033-5036 (2004). Also, X. Fan, D.L. LaBrake, and J.F. Brennan III, Chirped fiber grating characterization with phase ripple, in proceedings of 2003 Optical Fiber Communications, OSA Technical Digest, Atlanta, Georgia, Paper FC2, 2003.

    Google Scholar 

  79. M. Eiselt, C.B. Clausen, and R.W. Tkach, Performance characterization of components with group delay fluctuations, Photon. Technol. Lett., 15, 1076-1078 (2003).Also in Symposium on Optical Fiber Measurements, NIST, Boulder, CO, 2002, Session III.

    Google Scholar 

  80. H. Yoshimi, Y. Takushima, and K. Kikuchi, A simple method for estimating eye-opening penalty caused by group-delay ripple of optical filters, in proceedings of 2002 European Conference on Optical Communications, Copenhagen, Denmark, 2002, Paper 10.4.4.

    Google Scholar 

  81. G.P. Agrawal, Fiber-Optic Communication Systems, 2nd edition (John Wiley & Sons, New York, 1997).

    Google Scholar 

  82. T. Erdogan and V. Mizrahi, Characterization of UV induced birefringence in photosensitive Ge-doped silica optical fiber , J. Opt. Soc. Am. B, 11, 2100-2105 (1994).

    Article  ADS  Google Scholar 

  83. D. Wang, M. Matthews, and J.F. Brennan III, PMD measurement of dispersion compensation grating and its effect on system penalty estimation, in proceedings of 2003 Optical Fiber Communications, OSA Technical Digest, Atlanta, Georgia, Paper WC3, 2003.

    Google Scholar 

  84. M. Schiano, and G. Zaffiro, Polarisation mode dispersion in chirped fiber gratings, in 24th European Conference on Optical Communication, Madrid, Spain, pp. 403-404, 1998.

    Google Scholar 

  85. S. Bonino, M. Norgia, E. Riccardi, and M. Schiano, Measurement of polarization properties of chirped fiber gratings, in 1997 Optical Fiber Measurement Conference, pp. 49-55, 1997.

    Google Scholar 

  86. E. Ciaramella, E. Riccardl, and M. Schiano, System penalties due to polarisation mode dispersion of chirped gratings in 24th European Conference on Optical Communication, Madrid, Spain, pp. 515-516, 1998.

    Google Scholar 

  87. L.C.B. Linares, A.O. Dal Forno, and J.P. von der Weid, Polarimetric measurements of PMD and differential group delay ripple in chirped fiber Bragg gratings, Microwave Opt. Technol. Lett., 34, 270-273 (2002).

    Article  Google Scholar 

  88. D. Wang, M.R. Matthews, and J.F. Brennan III, Polarization mode dispersion in chirped fiber Bragg gratings, Opt. Express, 12 , 5741-5753 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5741.

  89. N.K. Viswanathan, Photoerasure of ultraviolet-induced birefringence and polarization-mode dispersion of chirped fiber Bragg gratings, Optics Lett., 29, 2470-2472 (2004).

    Article  ADS  Google Scholar 

  90. M Ibsen and R Feced, Broadband fibre Bragg gratings for pure third-order dispersion com-pensation, in proceedings of 2002 Optical Fiber Communications, OSA Technical Digest, Anaheim, CA, Paper FA7, 2002.

    Google Scholar 

  91. B.J. Koch and J.F. Brennan III, Dispersion compensation in an optical communications system with an electroabsorption modulated laser and a fiber grating, IEEE Photon Technol. Lett., 15, 1633-1635 (2003).

    Article  ADS  Google Scholar 

  92. M.E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast Lasers, Technology and Applica- tions (Marcel Dekker, New York, 2003).

    Google Scholar 

  93. K. Kim, S. Lee, P.J. Delfyett Jr., X-CPA (extreme chirped pulse amplification)—Beyond the energy storage limit of semiconductor gain media, in proceedings of 2004 Conference on Lasers & Electro-Optics, San Francisco, CA, Paper CTuY2, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brennan, J.F. (2007). Broadband fiber Bragg gratings for dispersion management. In: Fiber Based Dispersion Compensation. Optical and Fiber Communications Reports, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48948-3_10

Download citation

Publish with us

Policies and ethics