Skip to main content

Principles of PET in Cancer Treatment for the Assessment of Chemotherapy and Radiotherapy Response and for Radiotherapy Treatment Planning

  • Chapter
  • First Online:

Abstract

Inclusion of PET images to guide radiotherapy planning has advantages. Definition of target volumes of areas equivocal for malignancy can be done with greater certainty, but depends on sensitivity and specificity at that site. There is a huge potential for biologic dose planning using intensity-modulated radiation therapy (IMRT), which will expand with the development of new tracers. However, only one published study demonstrates a survival benefit from incorporating PET into treatment planning. Further clinical studies and outcome analysis are required to evaluate cost effectiveness and overall utility before a change in practice can be recommended. For current radiotherapy treatment planning, PET images are best used as a guide alongside CT images and should be done so with caution.

PET is a functional imaging tool that provides quantitative, repeatable, and sensitive 3D data. There has been increased availability and uptake of PET and PET-CT in cancer diagnosis and management over recent years. This has implications not only for staging, response assessment, and radiotherapy treatment planning, but also for tumor phenotyping and predictive testing.

The commonest tracer used for routine PET scanning is the glucose analogue, 18F-Fluorodeoxyglucose (FDG). Wahrburg demonstrated several decades ago that cancer cells had higher rates of glucose uptake compared to normal cells. Thus, when the tracer FDG is administered, it accumulates preferentially in malignant cells, so increasing the signal given by tumor compared to normal tissue. Glucose uptake and metabolism are dependent on the glucose transporter Glut-1, which facilitates glucose uptake into cells and hexokinase enzymes, which irreversibly phosphorylate cellular glucose, trapping it within the cell. Increased uptake of FDG indicates a likelihood of disease presence, but is not an absolute measure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brock CS, Young H, O’Reilly SM, et al. Early evaluation of tumor metabolic response using [18F]fluorodeoxyglucose and positron emission tomography: a pilot study following the phase II chemotherapy schedule for temozolomide in recurrent high-grade gliomas. Br J Cancer 2000;82:608–615.

    Article  PubMed  CAS  Google Scholar 

  2. Chesnay E, Babin E, Constans JM, et al. Early response to chemotherapy in hypopharyngeal cancer: assessment with (11)C-methionine PET, correlation with morphological response, and clinical outcome. J Nucl Med 2003;44:526–532.

    PubMed  CAS  Google Scholar 

  3. Antoch G, Kanja J, Bauer S. Comparison of PET, CT, and dual-modality PET/CT imaging for monitoring of imatinib (STI571) therapy in patients with gastrointestinal stromal tumors. J Nucl Med 2004;45:357–365.

    PubMed  CAS  Google Scholar 

  4. Chen X, Moore MO, Lehman CD. Combined use of MRIU and PET to monitor response and assess residual disease for locally advanced breast cancer treated with neoadjuvant chemotherapy. Acad Radiol 2004;11:1115–1124.

    Article  PubMed  Google Scholar 

  5. Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001;19:3058–3065.

    PubMed  CAS  Google Scholar 

  6. Lordick F, Ott K, Krause BJ, et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 2007;8:797–805.

    Article  PubMed  Google Scholar 

  7. Capirci C, Rubello D, Chierichetti F, et al. Restaging after neoadjuvant chemoradiotherapy for rectal adenocarcinoma: role of F18-FDG PET. Biomed Pharmacother 2004;58:451–457.

    PubMed  CAS  Google Scholar 

  8. Putra LJ, Lawrentschuk N, Ballok Z et al. 18F-fluorodeoxyglucose positron emission tomography in evaluation of germ cell tumor after chemotherapy. Urology 2004;64:1202–1207.

    Article  PubMed  Google Scholar 

  9. Facey K, Bradbury I, Laking G, Payne E. Ultra rapid review positron emission tomography. PET imaging in cancer management. Health Technology Assessment NHS R&D HTA Programme 2004.

    Google Scholar 

  10. Roberts KB, Manus MP, Hicks RJ, et al. Lung cancer. PET imaging for suspected residual tumor or thoracic recurrence of non-small cell lung cancer after pneumonectomy. Lung Cancer 2005;47:49–57

    Article  PubMed  Google Scholar 

  11. De Witte O, Hildebrand J, Luxen A, et al. Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 1994;74:2836–2842.

    Article  PubMed  Google Scholar 

  12. Dehdashti F, Flanagan FL, Mortimer JE, et al. Positron emission tomographic assessment of metabolic flare to predict response of metastatic breast cancer to antioestrogen therapy. Eur J Nucl Med 1999;26:51–56.

    Article  PubMed  CAS  Google Scholar 

  13. Spence AM. [18F]Fluoro-2-deoxyglucose and glucose uptake in malignant gliomas before and after radiotherapy: correlation with outcome. Clin Cancer Res 2002;8:971–979.

    PubMed  Google Scholar 

  14. Haberkorn U, Strauss LG, Dimitrakopolou A, et al: PET studies of fluorodeoxyglucose metabolism in patients with recurrent ­colorectal tumors receiving radiotherapy. J Nucl Med 1991;32:1485–1490.

    PubMed  CAS  Google Scholar 

  15. Ryan WR, Fee WE Jr, Le QT, Pinto HA. Positron-emission tomography for surveillance of head and neck cancer. Laryngoscope 2005;15:645–650.

    Article  Google Scholar 

  16. Carson KJ, Young VA, Cosgrove VP et al. Personnel radiation dose considerations in the use of an integrated PET-CT scanner for radiotherapy treatment planning. Br J Radiol 2009; 82(983):946–9.

    Google Scholar 

  17. Hall L, Severn O, Rosenberg I et al. The UCLH experience in registration of PET/CT fused images with radiotherapy planning CT studies. BJR S. 2005 BIR Meeting.

    Google Scholar 

  18. Caldwell CB, Mah K, Ung YC, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51:923–931.

    Article  PubMed  CAS  Google Scholar 

  19. Mah K, Caldwell CB, Ung YC, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–350.

    Article  PubMed  Google Scholar 

  20. Schwartz DL, Ford E, Rajendran J, et al. FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2005;61:129–136.

    Article  PubMed  Google Scholar 

  21. Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005;63:511–519.

    Article  PubMed  CAS  Google Scholar 

  22. Lee YK, Cook G, Flower MA, et al. Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol 2004;73:277–283.

    Article  PubMed  Google Scholar 

  23. Konski A, Doss M, Milestone B, et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 2005;61:1123–1128.

    Article  PubMed  Google Scholar 

  24. van Der Wel A, Nijsten S, Hochstenbag M, et al. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 2005;61:649–655.

    Article  Google Scholar 

  25. Nestle U, Walter K, Schmidt S, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–597.

    Article  PubMed  CAS  Google Scholar 

  26. Graeter TP, Hellwig D, Hoffmann K, et al. Mediastinal lymph node staging in suspected lung cancer: comparison of positron emission tomography with F-18-fluorodeoxyglucose and mediastinoscopy. Ann Thorac Surg 2003;75:231–235.

    Article  PubMed  Google Scholar 

  27. Gregoire V. Is there any future in radiotherapy planning without the use of PET: unraveling the myth. Radiother Oncol 2004;73:261–263.

    Article  PubMed  Google Scholar 

  28. Ciernik IF, Huser M, Burger C, et al. Automated functional image guided radiation treatment planning for rectal cancer. Int J Radiat Oncol Biol Phys 2005;62:893–900.

    Article  PubMed  Google Scholar 

  29. Daisne JF, Duprez T, Weynand B, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.

    Article  PubMed  Google Scholar 

  30. Jankowska P, Goodchild K, Lemon C, et al. The impact of FDG PET on local control and survival in patients with occult primary head and neck cancers. BJR S 2005 BIR meeting.

    Google Scholar 

  31. Lavely WC, Scarfone C, Cevikalp H, et al. Phantom validation of coregistration of PET and CT for image-guided radiotherapy. Med Phys 2004;31:1083–1092.

    Article  PubMed  Google Scholar 

  32. Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004;59:78–86.

    Article  PubMed  Google Scholar 

  33. Yaremko B, Riauka T, Robinson D, et al. Threshold modification for tumor imaging in non-small-cell lung cancer using positron emission tomography. Nucl Med Commun 2005;26:433–440.

    Article  PubMed  Google Scholar 

  34. Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003;55:1381–1393.

    Article  PubMed  Google Scholar 

  35. Nehmeh SA, Erdi YE, Ling CC, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876–881.

    PubMed  Google Scholar 

  36. Lehtio K, Eskola O, Viljanen T, et al. Imaging perfusion and hypoxia with PET to predict radiotherapy response in head and neck cancer. Int J Radiat Oncol Biol Phys 2004;59:971–982.

    Article  PubMed  Google Scholar 

  37. Anderson H, Yap JT, Wells P, et al. Measurement of renal tumor and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 2003;89:262–267.

    Article  PubMed  CAS  Google Scholar 

  38. Collingridge DR, Glaser M, Osman S, et al. In vitro selectivity, in vivo biodistribution and tumor uptake of annexin V radiolabelled with a positron emitting radioisotope. Br J Cancer 2003;89: 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  39. Haubner R, Weber WA, Beer AJ, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [(18)F]Galacto-RGD. PLoS Med 2005;2:e70.

    Article  PubMed  CAS  Google Scholar 

  40. Barthel H, Cleij MC, Collingridge DR, et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63:3791–3798.

    PubMed  CAS  Google Scholar 

  41. Nioutsikou E, Partridge M, Bedford JL, Webb S. Prediction of radiation induced normal tissue complications in radiotherapy using functional image data. Phys Med Biol 2005;50:1035–1046.

    Article  PubMed  Google Scholar 

  42. Wallace WE, Gupta NC, Hubbs AF, et al. Cis-4-[(18)F]fluoro-L-proline PET imaging of pulmonary fibrosis in a rabbit model. J Nucl Med 2002;43:413–420.

    PubMed  CAS  Google Scholar 

  43. Schwartz DL, Ford EC, Rajendran J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: A pilot investigation. Head Neck 2005;27:478–487.

    Article  PubMed  Google Scholar 

  44. Lee NY, Mechalakos JG, Nehmeh S, et al. Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 2008;70:2–13

    Article  PubMed  CAS  Google Scholar 

  45. Sorensen M, Horsman MR, Cumming P, et al. Effect of intratumor heterogeneity in oxygenation status on FMISO PET, autoradiography, and electrode Po2 measurements in murine tumors. Int J Radiat Oncol Biol Phys 2005;62:854–861.

    Article  PubMed  Google Scholar 

  46. Nahum AE, Chapman J. Boosting the dose to hypoxic regions-what does a TCP model tell us about the increase in local control? Radiotherapy Oncology 2004;73(Suppl):S188.

    Google Scholar 

  47. Aboagye E, Saleem A, Price P. Tumor imaging applications in the testing of new drugs. In Baguley B, Kerr D (eds), Anticancer Drug Development. San Diego: Academic, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Charnley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Charnley, N., Jones, T., Price, P. (2011). Principles of PET in Cancer Treatment for the Assessment of Chemotherapy and Radiotherapy Response and for Radiotherapy Treatment Planning. In: Shreve, P., Townsend, D. (eds) Clinical PET-CT in Radiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48902-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48902-5_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48900-1

  • Online ISBN: 978-0-387-48902-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics