Skip to main content

Principles, Design, and Operation of Multi-slice CT

  • Chapter
  • First Online:
Clinical PET-CT in Radiology
  • 2894 Accesses

Abstract

CT imaging has become a true three-dimensional (3D) modality that allows complete anatomic regions to be imaged within a few seconds at an isotropic spatial resolution of 0.5–0.7 mm. Modern scanners are cone-beam spiral CT scanners rotating at two to three revolutions per second. The improved performance of modern scanners has led to an increased use of CT scanning and, unfortunately, also to an increase in dose. Several issues of dose reduction (at given image quality) are discussed in this chapter. Among the most important are user education and protocol optimization and manufacturer adaptations. Exploiting all possibilities will certainly help to significantly reduce dose and therefore pave the way for scanners with even higher resolution and improved image quality in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalender WA, Seissler W, Vock P. Single-breath-hold spiral volumetric CT by continuous patient translation and scanner rotation. Radiology 1989;173(P):414.

    Google Scholar 

  2. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breathhold technique, continuous transport, and continuous scanner rotation. Radiology 1990;176(1):181–183.

    CAS  PubMed  Google Scholar 

  3. Kalender WA. Computed tomography. Fundamentals, system technology, image quality, applications, 2nd edn. Erlangen: Publicis MCD, 2005.

    Google Scholar 

  4. Schardt P, Deuringer J, Freudenberger J, Hell E, Knüpfer W, Mattern D, et al. New x-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med Phys 2004; 31(9):2699–2706.

    Article  PubMed  Google Scholar 

  5. Kachelriess M, Knaup M, Penssel C, Kalender WA. Flying focal spot (FFS) in cone-beam CT. IEEE Medical Imaging Conference Program, San Diego, 2005.

    Google Scholar 

  6. Medical electrical equipment. Part 2–44: Particular requirements for the safety of X-ray equipment for computed tomography. Geneva: International Electrotechnical Commission, 1999.

    Google Scholar 

  7. Kachelriess M, Schaller S, Kalender WA. Advanced single-slice rebinning in cone-beam spiral CT. Med Phys 2000;27(4):754–772.

    Article  CAS  PubMed  Google Scholar 

  8. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am 1984;1(6):612–619.

    Article  Google Scholar 

  9. Kachelriess M, Knaup M, Kalender WA. Extended parallel backprojection for standard 3D and phase-correlated 4D axial and spiral cone-beam CT with arbitrary pitch and 100% dose usage. Med Phys 2004;31(6):1623–1641.

    Article  PubMed  Google Scholar 

  10. Kachelriess M, Kalender WA. ECG-based phase-oriented reconstruction from sub-second spiral CT scans of the heart. Radiology 1997;205(P):215.

    Google Scholar 

  11. Kachelriess M, Kalender WA, Karakaya S, Achenbach S, Nossen J, Moshage W, et al. Imaging of the heart by ECG-oriented reconstruction from subsecond spiral CT scans. In: Glazer G, Krestin G (eds.). Advances in CT IV. Heidelberg: Springer-Verlag, 1998: 137–143.

    Google Scholar 

  12. Kachelriess M, Kalender WA. Electrocardiogram-correlated image reconstruction from subsecond spiral CT scans of the heart. Med Phys 1998;25(12):2417–2431.

    Article  CAS  PubMed  Google Scholar 

  13. Kachelriess M, Ulzheimer S, Kalender WA. ECG-correlated imaging of the heart with subsecond multi-slice spiral CT. IEEE Trans Med Imaging (Special issue) 2000;19(9):888–901.

    CAS  Google Scholar 

  14. Taguchi K, Anno H. High temporal resolution for multislice helical computed tomography. Med Phys 2000;27(5):861–872.

    Article  CAS  PubMed  Google Scholar 

  15. Flohr T, Ohnesorge B, Kopp AF, Becker C, Halliburton SS, Knez A. A reconstruction concept for ECG-gated multi-slice spiral CT of the heart with pulse-rate adaptive optimization of spatial and temporal resolution. Radiology 2000;217(P):438.

    Google Scholar 

  16. Kachelriess M, Fuchs T, Lapp R, Sennst D-A, Schaller S, Kalender WA. Image to volume weighting generalized ASSR for arbitrary pitch 3D and phase-correlated 4D spiral cone-beam CT reconstruction. Proceedings of the 2001 International Meeting on Fully 3D Image Reconstruction, CA, Monterey, 2001.

    Google Scholar 

  17. Kachelriess M, Sennst D-A, Maxlmoser W, Kalender WA. Kymogram detection and kymogram-correlated image reconstruction from sub-second spiral computed tomography scans of the heart. Med Phys 2002;29(7):1489–1503.

    Article  PubMed  Google Scholar 

  18. Ulzheimer S, Kalender WA. Assessment of calcium scoring performance in cardiac computed tomography. Eur Radiol 2003;13: 484–497.

    PubMed  Google Scholar 

  19. Lapp RM, Kachelriess M, Fuchs TO, Kalender WA. Variable isotropic resolution in computed tomography using spatial domain filtering. Radiology 2003;225(P):254.

    Google Scholar 

  20. Kalender WA, Suess C. Functional imaging with x-ray. In: von Schulthess GK, Henig J (eds.). Functional Imaging. Philadelphia: Lippincott-Raven, 1998:217–240.

    Google Scholar 

  21. Kachelriess M. Phase-correlated dynamic CT. IEEE International Symposium on Biomedical Imaging, Arlington, VA, 2004.

    Google Scholar 

  22. Ulzheimer S, Muresan L, Kachelriess M, Roemer W, Achenbach S, Kalender WA. Considerations on the assessment of myocardial perfusion with multislice spiral CT (MSCT) scanners. Radiology 2001;22(P):458.

    Google Scholar 

  23. http://www.qrm.de.

  24. http://www.ct-imaging.de/en/.

  25. Schmidt B, Kalender WA. A fast voxel-based Monte Carlo method for scanner- and patient-specific dose calculations in computed tomography. Phys Med 2002;18(2):43–53.

    Google Scholar 

  26. Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 1999;9:555–562.

    Article  CAS  PubMed  Google Scholar 

  27. Gies M, Kalender WA, Wolf H, Suess C, Madsen MT. Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 1999;26(11):2235–2247.

    Article  CAS  PubMed  Google Scholar 

  28. Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 1999;26(11):2248–2253.

    Article  CAS  PubMed  Google Scholar 

  29. Kachelriess M, Leidecker C, Kalender WA. Image quality-oriented automatic expo-sure control (iqAEC) for spiral CT. Radiology 2001;221(P):366.

    Google Scholar 

  30. Leidecker C, Kachelriess M, Kalender WA. Comparison of an attenuation-based automatic exposure control (AEC) to alternative methods utilizing localizer radiographs. Eur Radiol 2004;14(Suppl 2):247.

    Google Scholar 

  31. Eklundh JO, Rosenfeld A. Imaging smoothing based on neighbor linking. IEEE Trans Pattern Analy Machine Intel 1981;3(6):679–683.

    Article  Google Scholar 

  32. Keselbrener L, Shimoni Y, Akselrod S. Nonlinear filters applied on computerized axial tomography. Theory and phantom images. Med Phys 1992;19(4):1057–1064.

    Article  CAS  PubMed  Google Scholar 

  33. Lauro KL, Heuscher DJ, Kesavan H. Bandwidth filtering of CT scans of the spine. Radiology 1990;177:307.

    Google Scholar 

  34. Hsieh J. Generalized adaptive median filter and their application in computed tomography. SPIE Proc 1994;2298:662–672.

    Article  Google Scholar 

  35. Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. Med Phys 1998;25(11): 2139–2147.

    Article  CAS  PubMed  Google Scholar 

  36. Kachelriess M, Watzke O, Kalender WA. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 2001;28(4):475–490.

    Article  CAS  PubMed  Google Scholar 

  37. Kachelriess M, Kalender WA. Inventors. Patent Specification DE 198 53 143, assignee. Germany. 2000.

    Google Scholar 

  38. Baum U, Lell M, Kachelriess M, Greess H, Kalender WA, Bautz WA. Raw data-based 3D adaptive filtering for CT scans of the cervicothoracic region: clinical evaluation. Radiology 2000;217(P):413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kachelriess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kachelriess, M. (2011). Principles, Design, and Operation of Multi-slice CT. In: Shreve, P., Townsend, D. (eds) Clinical PET-CT in Radiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48902-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48902-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48900-1

  • Online ISBN: 978-0-387-48902-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics