Skip to main content

Wrist

A. Radiologic Perspective: Magnetic Resonance Imaging of the Wrist

B. Orthopedic Perspective: Wrist Injuries

  • Chapter
Magnetic Resonance Imaging in Orthopedic Sports Medicine

Magnetic resonance imaging (MRI) is a noninvasive imaging method that offers remarkable information in assessing both the osseous and the soft tissue structures of the wrist. The ligaments, tendons, nerves, muscles, and cartilage can be resolveddue to the high spatial and contrast resolution of this method. It is an excellent technique for evaluating patients with wrist pain to help establish or confirm underlying wrist abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berquist T. Anatomy. In: Berquist T, ed. MRI of the Hand and Wrist. Philadelphia: Lippincott, 2003;1–32.

    Google Scholar 

  2. Resnick D. Wrist and hand. In: Resnick D, Kang SK, eds. Internal Derangement of Joints. Philadelphia: Elsevier and Saunders, 1997;387–472.

    Google Scholar 

  3. Kim S, Choi J, Huh Y, et al. Role of magnetic resonance imaging in entrapment and compressive neuropathy—what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 2. Upper extremity. Eur Radiol 2007;2:509–522.

    Article  Google Scholar 

  4. Aguiar RO, Gasparetto EL, Escuissato DL, et al. Radial and ulnar bursae of the wrist: cadaveric investigation of regional anatomy with ultrasonographic-guided tenography and MR imaging. Skeletal Radiol 2006; 35:828–832.

    Article  PubMed  Google Scholar 

  5. Palmer AK, Werner FW. The triangular fibrocartilage complex of the wrist—anatomy and function. J Hand Surg 1981;6:153–162.

    CAS  Google Scholar 

  6. Pfirrmann C, Zanetti M. Variant, pitfalls and asymptomatic findings in wrist and hand imaging. Eur J Radiol 2005;56: 286–295.

    Article  PubMed  Google Scholar 

  7. Robinson G, Chung T, Finlay K, Friedman L. Axial oblique MR imaging of the intrinsic ligaments of the wrist: initial experience. Skeletal Radiol 2006;35:765–773.

    Article  PubMed  CAS  Google Scholar 

  8. Breitenseher MJ, Metz VM, Gilula LA, et al. Radiographically occult scaphoid fractures: value of MR imaging in detection. Radiology 1997;203:245–250.

    PubMed  CAS  Google Scholar 

  9. Dobyns JH, Linscheid RL. Fractures and dislocations of the wrist. In: Rockwood CA Jr, Green DP, eds. Fractures in adults, 3rd ed. Philadelphia: Lippincott, 1984:411–509.

    Google Scholar 

  10. Goldfarb CA, Yin Y, Gilula LA, et al. Wrist fractures: what the clinician wants to know. Radiology 2001;219:11–28.

    PubMed  CAS  Google Scholar 

  11. Smith DK, Gilula LA, Amadio PC. Dorsal lunate tilt (DISI Configuration): sign of scaphoid fracture displacement. Radiology 1990;176:497–499.

    PubMed  CAS  Google Scholar 

  12. Resnick, D, Goergen TG. Physical injury: concepts and terminology. Bone and joint imaging. In: Resnick D, Kransdorf MJ, eds. Philadelphia: Elsevier and Saunders, 2005:789–830.

    Google Scholar 

  13. McNally EG, Goodman R, Burge P. The role of MRI in the assessment of scaphoid fracture healing: a pilot study. Eur Radiol 2000;10:1926–1928.

    Article  PubMed  CAS  Google Scholar 

  14. Cerezal L, Faustino A, Canga A, et al. Usefulness of gadolinium-enhanced MR imaging in the evaluation of the vascularity of scaphoid nonunions. AJR 1999;174:141–149.

    Google Scholar 

  15. Cohen M. Fractures of the carpal bones. Hand Clin 1997;13:587–599.

    PubMed  CAS  Google Scholar 

  16. Daunt N. Magnetic resonance imaging of the wrist: anatomy and pathology of interosseous ligaments and the triangular fibrocartilage complex. Curr Probl Diagn Radiol 2002;31:158–176.

    Article  PubMed  Google Scholar 

  17. McAlinden PS, Teh J. Imaging of the wrist. Imaging 2003;15:180–192.

    Google Scholar 

  18. Haims AH, Schweitzer ME, Morrison WB, et al. Internal derangement of the wrist: indirect arthrography versus unenhanced MR imaging. Radiology 2003;227:701–707.

    Article  PubMed  Google Scholar 

  19. Watson HK, Kao S. Degenerative disorders of the carpus. In: Lichtman DM, Alexander AH, eds. The Wrist and Its Disorders, 2nd ed. Philadelphia: WB Saunders, 1997:583–591.

    Google Scholar 

  20. Schmitt R, Froehner S, Coblenz G, et al. Carpal instability. Eur J Radiol 2006;10:2161–2178.

    Google Scholar 

  21. Dobyns JH, Linscheid RL, Macksoud WS. Proximal carpal row instability—nondissociative. J Hand Surg [Br] 1994;19: 763–773.

    Google Scholar 

  22. Mikic ZD. Age changes in the triangular fibrocartilage of the wrist joint. J Anat 1978;126:367–384.

    PubMed  CAS  Google Scholar 

  23. Palmer A. Triangular fibrocartilage disorders: injury patterns and treatment. J Arthrosc Rel Surg 1990;6:125–32.

    Article  CAS  Google Scholar 

  24. Kang HS, Kindynis P, Brahme SK, et al. Triangular fibrocartilage and intercarpal ligaments of the wrist: cadaveric study with gross pathologic and histologic correlation. Radiology 1992;181: 401–404.

    Google Scholar 

  25. Zanetti M, Bram J, Hodler J. Triangular fibrocartilage and intercarpal ligaments of the wrist: Does MR arthrography improve standard MRI? J Magn Reson Imaging 1997;7:590–594.

    Article  PubMed  CAS  Google Scholar 

  26. Friedman SL, Palmer AK. The ulnar impaction syndrome. Hand Clin 1991;7:295–310.

    PubMed  CAS  Google Scholar 

  27. Deitch, MA, Stern PJ. Ulnocarpal abutment. Hand Clin 1998;14:251–263.

    PubMed  CAS  Google Scholar 

  28. Lee ML. The intraosseous arterial pattern of the carpal lunate bone and its relation to avascular necrosis. Acta Orthop Scand 1963;33:43–55.

    Article  PubMed  CAS  Google Scholar 

  29. Hulten O. Uber anatomische variationen der handgelenkknochen. Acta Radiol Scand 1928;9:155.

    Article  Google Scholar 

  30. Lichtman DM, Gaenslen ES, Pollock GR. Keinbock's disease and idiopathic necrosis of carpal bones. In: Lichtman DM, Alexander AH, eds. The Wrist and Its Disorders, 2nd ed. Philadelphia: WB Saunders, 1997:329–346.

    Google Scholar 

  31. Mesgarzadeh M, Schneck C, Bonakdarpour A, et al. Carpal tunnel: MR imaging. Part II carpal tunnel syndrome. Radiology 1989;171:749–754.

    PubMed  CAS  Google Scholar 

  32. Wu HT, Schweitzer ME, Culp RW. Potential MR signs of recurrent carpal tunnel syndrome: initial experience. J Comput Assist Tomogr 2004;28:860–864.

    Article  PubMed  Google Scholar 

  33. Grundberg AB. Ulnar tunnel syndrome. J Hand Surg [Br] 1984;9:72–74.

    CAS  Google Scholar 

  34. Liskutin J, Dorffner R, Resinger M, et al. Hypothenal hammer syndrome. Eur Radiol 2000;10:542.

    Article  PubMed  Google Scholar 

  35. Glajchen N, Schweitzer ME. MRI features of de Quervain's tenosynovitis of the wrist. Skeletal Radiol 1996;25:63–65.

    Article  PubMed  CAS  Google Scholar 

  36. Carneriro RS, Fontana R., Mazzer N. Ulnar wrist pain in athletes caused by erosion of the floor of the sixth dorsal compartment. Am J Sports Med 2005;33:1910–1913.

    Article  Google Scholar 

  37. Allende C, LeViet D. Extensor carpi ulnaris problems at the wrist-classification, surgical treatment and results. J Hand Surg 2005;30B:265–272.

    Google Scholar 

  38. Montalvan B, Parier J, Brasseur JL, et al. Extensor carpi ulnaris injuries in tennis players: a study of 28 cases. Br J Sports Med 2006;40:424–429.

    Article  PubMed  CAS  Google Scholar 

  39. de Lima JE, Kim HJ, Alberotti F, et al. Intersection syndrome: MR imaging with anatomic comparison of the distal forearm. Skeletal Radiol 2004;33:627–631.

    Article  PubMed  Google Scholar 

  40. Palmer DH, Lane-Larsen CL. Helicopter skiing injuries: a case report of “bugaboo forearm.” Am J Sports Med 1994;22:148–149.

    Article  PubMed  CAS  Google Scholar 

  41. Dobyns JH, Sim FH, Linscheid RL. Sports stress syndrome of hand and wrist. Am J Sports Med 1978;6:236–254.

    Article  PubMed  CAS  Google Scholar 

  42. Howard N. Peritendinitis crepitans. J Bone Joint Surg [Br] 1937;19:447–459.

    Google Scholar 

  43. Grundberg AB, Reagen, DS. Pathologic anatomy of the forearm: intersection syndrome. J Hand Surg 1985;10:299–302.

    CAS  Google Scholar 

  44. El Noueam KI, Schweitzer ME, Blasbalg R, et al. Is a subset of wrist ganglia the sequela of internal derangements of the wrist joint? MR imaging findings. Radiology 1999;212:537–540.

    PubMed  CAS  Google Scholar 

  45. Mayfield JK, et al. Carpal dislocations: pathomechanics and progressive perilunar instability. J Hand Surg 1980;5A: 226–241.

    Google Scholar 

  46. Lavernia CJ, et al. Treatment of scapholunate dissociation by ligamentous repair and capsulodesis. J Hand Surg 1992;17A: 354–359.

    Google Scholar 

  47. Watson HK, Ballet FL. The SLAC wrist: scapholunate advanced collapse pattern of degenerative arthritis. J Hand Surg 1984;9A:358–365.

    Google Scholar 

  48. Hildebrand KA, et al. Dorsal perilunate dislocations and fracture-dislocations: questionnaire, clinical, and radiographic evaluation. J Hand Surg 2000;25A:1069–1079.

    Google Scholar 

  49. Palmer AK, Werner FW. The triangular fibrocartilage complex of the wrist—anatomy and function. J Hand Surg 1981;6A: 153–162.

    Google Scholar 

  50. Potter HG, et al. The utility of high-resolution magnetic resonance imaging in the evaluation of the triangular fibrocartilage complex of the wrist. J Bone Joint Surg 1997;79A:1675–1684.

    Google Scholar 

  51. Smith DK, et al. The effects of simulated unstable scaphoid fractures on carpal motion. J Hand Surg 1989;14A:283–291.

    Google Scholar 

  52. Cooney WP, Scaphoid fractures: current treatments and techniques. Instr Course Lect 2003;52:197–208.

    PubMed  Google Scholar 

  53. Fowler C, et al. A comparison of bone scintigraphy and MRI in the early diagnosis of the occult scaphoid waist fracture. Skeletal Radiol 1998;27(12):683–687.

    Article  PubMed  CAS  Google Scholar 

  54. Bond CD, et al. Percutaneous screw fixation or cast immobilization for non-displaced scaphoid fractures. J Bone Joint Surg 2001;83A:483–488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Chang, W., Resnick, D., Meunier, M., Steinvurzel, J.N. (2008). Wrist. In: Pedowitz, R.A., Chung, C.B., Resnick, D. (eds) Magnetic Resonance Imaging in Orthopedic Sports Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48898-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48898-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48897-4

  • Online ISBN: 978-0-387-48898-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics