Skip to main content

Ankle

A. Radiologic Perspective: Magnetic Resonance Imaging of the Ankle

B. Orthopedic Perspective: Foot and Ankle Clinical Applications

  • Chapter
  • 3155 Accesses

Over the past two decades, magnetic resonance imaging (MRI) has become the imaging modality of choice for evaluating most soft tissue and osseous abnormalities in the ankle. The technique offers a noninvasive and expeditious diagnostic assessment of ankle injuries, which are often occult on conventional radiographs and computed tomography (CT). This chapter provides a brief review of the normal magnetic resonance (MR) anatomy and a detailed discussion of abnormalities around the ankle including tendons, ligaments, nerves, fascia, and bone.

Routine MR images are obtained in the axial, coronal, and sagittal planes (Fig. 11.1). We obtain the axial sequence immediately after a three-plane positioning scout. The coronal and sagittal planes are prescribed obliquely using the information acquired on the axial images. Thus, the coronal images are obtained parallel to the anterior margin of the talar dome, and the sagittal images parallel to the lateral wall of the calcaneus. Imaging the ankle is often performed with the patient supine and the ankle in neutral position.1 The ankle in neutral position has an inherent 10 to 20 degrees of plantar flexion2 and 10 to 30 degrees of external rotation. This mild degree of plantar flexion is useful for eliminating magic angle effect when examining the flexor and extensor tendons in the hindfoot and midfoot. 1 Increasing the fat planes between the peroneus brevis and peroneus longus tendons, and displacing the flexor and peroneal tendons away from the bones are other advantages of imaging the ankle in plantar flexion.3 Mechanical stabilization of the ankle is paramount for good image quality. 4 Immobilization can be achieved using foam sponges between the ankle and the coil and Velcro straps on the leg outside the coil.

Dedicated phased-array extremity coils are currently utilized to perform most studies of the ankle.5 This type of coil provides image homogeneity and an improved signal-to-noise ratio at depth. The main disadvantages are a lower signal-tonoise ratio in the periphery of the study part, and inability to cover the entire area of interest if the anatomy does not fit within the rigid structure of the coil.5 Utilization of the knee coil provided with most available commercial systems is a common practice for examining the ankle.1

We utilize an imaging protocol that combines T1-weighted and fast spin echo T2-weighted images as well as fluid-sensitive T2-weighted sequences with fat saturation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erickson SJ, Cox IH, Hyde JS, et al. Effect of tendon orientation on MR imaging signal intensity: A manifestation of the “magic angle” phenomenon. Radiology 1991;181:389–92.

    PubMed  CAS  Google Scholar 

  2. Farooki S, Sokoloff RM, Theodorou DJ, et al. Visualization of ankle tendons and ligaments with MR imaging: influence of passive positioning. Foot Ankle Int 2002;23:554–9.

    PubMed  Google Scholar 

  3. Bencardino J, Rosenberg ZS. MRI of the ankle and hindfoot. In: Current Protocols in Magnetic Resonance Imaging. New York: John Wiley, 2002;A25.1:1–12.

    Google Scholar 

  4. Kneeland JB. Technical considerations for magnetic resonance imaging of the ankle and foot. Magn Reson Imaging Clin North Am 1994;2:23–28.

    CAS  Google Scholar 

  5. Zlatkin MB. Techniques for MR imaging of joints in sports medicine. Magn Reson Imaging Clin North Am 1999;7:1–21.

    CAS  Google Scholar 

  6. Beltran J, Noto AM, Herman LJ, et al. Tendons: high-field strength, surface coil MR imaging. Radiology 1987;162:735–40.

    PubMed  CAS  Google Scholar 

  7. Mengiardi B, Pfirrmann CW, Schottle PB, et al. Magic angle effect in MR imaging of ankle tendons: influence of foot positioning on prevalence and site in asymptomatic subjects and cadaveric tendons. Eur Radiol 2006;16(10):2197–2206.

    PubMed  Google Scholar 

  8. Schweitzer ME, Van Leersum M, Ehrlich SS, et al. Fluid in normal and abnormal ankle joints: Amount and distribution as seen on MR images. AJR 1994;162:111–4.

    PubMed  CAS  Google Scholar 

  9. Klein MA. Reformatted three-dimensional Fourier transform gradient-recalled echo MR imaging of the ankle: Spectrum of normal and abnormal findings. AJR 1993;161:831.

    PubMed  Google Scholar 

  10. Jenkins DB. The leg. In: Jenkins DB, ed. Hollingshead's Functional Anatomy of the Limbs and Back. Philadelphia: WB Saunders, 1991:283–305.

    Google Scholar 

  11. Pufe T, Petersen WJ, Mentlein R, Tillmann BN. The role of vas-culature and angiogenesis for the pathogenesis of degenerative tendons disease. Scand J Med Sci Sports 2005;15:211–22.

    PubMed  CAS  Google Scholar 

  12. Kvist M, Jozsa L, Jarvinen M. Vascular changes in the ruptured Achilles tendon and paratenon. Int Orthop 1992;16:377–82.

    PubMed  CAS  Google Scholar 

  13. Soila K, Karjalainen PT, Aronen HJ, et al. High-resolution MR imaging of the asymptomatic Achilles tendon; new observations. AJR 1999;173:323–28.

    PubMed  CAS  Google Scholar 

  14. Schweitzer ME, Karasick D. MR imaging of disorders of the Achilles tendon. AJR 2000;175:612–25.

    Google Scholar 

  15. Mantel D, Falutre B, Bastian D, et al. Structural MRI study of the Achilles tendon: correlation with microanatomy and histology [French]. J Radiol 1996:77;261–5.

    PubMed  CAS  Google Scholar 

  16. Kvist M. Achilles tendon injuries in athletes. Sports Med 1994;18:173–201.

    PubMed  CAS  Google Scholar 

  17. Karjalainen PT, Soila K, Aronen JH, et al. MR imaging of overuse injuries of the Achilles tendon. AJR 2000;175:251–60.

    PubMed  CAS  Google Scholar 

  18. Theobald P, Bydder G, Dent C, Nokes L, Pugh N, Benjamin M. The functional anatomy of Kager's fat pad in relation to retrocalcaneal problems and other hindfoot disorders. J Anat 2006;208:91–7.

    PubMed  CAS  Google Scholar 

  19. Bottger BA, Schweitzer ME, El-Noueam KI, et al. MR imaging of the normal and abnormal retrocalcaneal bursae. AJR 1998;170:1239–1241.

    PubMed  CAS  Google Scholar 

  20. Mann RA, Thompson FM. Rupture of the posterior tibial tendon causing flat foot. J Bone Joint Surg 1995;67A:556–61.

    Google Scholar 

  21. Lim PS, Schweitzer ME, Deely DM, et al. Posterior tibial tendon dysfunction: secondary MR signs. Foot Ankle Int 1997;18:658–63.

    PubMed  CAS  Google Scholar 

  22. Rosenberg ZS, Bencardino J, Mellado JM. Normal variants and pitfalls in magnetic resonance imaging of the foot and ankle. Top Magn Reson Imaging 1998;9:262–72.

    PubMed  CAS  Google Scholar 

  23. Delfault EM, Demondion X, Bieganski A, et al. The fibrocartilaginous sesamoid: a cause of size and signal variation in the normal distal posterior tibial tendon. Eur Radiol 2003;13:2642–9.

    Google Scholar 

  24. Lovell AGH, Tanner HH. Synovial membranes, with special reference to those related to the tendons of the foot and ankle. J Anat 1988;42:414–423.

    Google Scholar 

  25. Nazarian LN, Rawool NM, Martin CE, et al. Synovial fluid in the hindfoot and ankle: detection of amount and distribution with US. Radiology 1995;197:275–8.

    PubMed  CAS  Google Scholar 

  26. Grogan DP, Walling AK, Odgen JA. Anatomy of the os trigonum. J Pediatr Orthop 1990;10:618–22.

    PubMed  CAS  Google Scholar 

  27. O'Sullivan E, Carare-Nnadi, Greenslade J, et al. Clinical significance of variations in the interconnections between flexor digitorum longus and flexor hallucis longus in the region of the knot of Henry. Clin Anat 2005;18:121–5.

    PubMed  Google Scholar 

  28. Edwards ME. The relations of the peroneal tendons to the fibula, calcaneus and cuboideum. Am J Anat 1928;42:213–53.

    Google Scholar 

  29. Sarrafian SK. Myology. In: Sarrafian SK, ed. Anatomy of the Foot and Ankle: Descriptive, Topographic, Functional, 2nd ed. Philadelphia: JB Lippincott, 1993:235–9.

    Google Scholar 

  30. Wang XT, Rosenberg ZS, Mechlin MB, Schweitzer ME. Normal variants and diseases of the peroneal tendons and superior peroneal retinaculum: MR imaging features. Radiographics 2005;25:587–602.

    PubMed  Google Scholar 

  31. Rosenberg ZS, Beltran J, Cheung YY, et al. MR features of longitudinal splits of the peroneus brevis tendon. AJR 1997;168:141–7.

    PubMed  CAS  Google Scholar 

  32. Hyer CF, Dawson JM, Philbin TM Berlet GC, Lee TH. The peroneal tubercle: description, classification, and relevance to peroneus longus tendon pathology. Foot Ankle Int 2005;26: 947–50.

    PubMed  Google Scholar 

  33. Rosenberg ZS, Beltran J, Bencardino JT. MR imaging of the ankle and foot. Radiographics 2000;20:S153–79.

    PubMed  Google Scholar 

  34. Teitz CC, Garrett WE, Mioniaci A, et al. Tendon problems in athletic individual. J Bone Joint Surg 1997;79A:138–52.

    Google Scholar 

  35. Trevino S, Ford Baumhauer J. Tendon injuries of the foot and ankle. Clin Sports Med 1992;11:727–39.

    PubMed  CAS  Google Scholar 

  36. Józsa L, Balint BJ, Reffy A, et al. Hypoxic alterations of tenocytes in degenerative tendinopathy. Arch Orthop Trauma Surg 1982;99(4):234–246.

    Google Scholar 

  37. Kannus P, Jozsa L. Histopathological changes preceding spontaneous rupture of tendon: a controlled study of 891 patients. J Bone Joint Surg 1991;73A:1507–25.

    Google Scholar 

  38. Duddy RK, Meredith R, Visser HJ, Brooks JS. Tendon sheath injuries of the foot and ankle. J Foot Surg 1991;30:179–86.

    PubMed  CAS  Google Scholar 

  39. Bencardino J, Rosenberg ZS, Beltran J, et al. Dislocation of the posterior tibial tendon: MR imaging. AJR 1997;169:1109–1112.

    PubMed  CAS  Google Scholar 

  40. Rosenberg ZS, Bencardino J, Astion D, Schweitzer ME, Rokito A, Sheskier S. MRI features of chronic injuries of the superior peroneal retinaculum. AJR Am J Roentgenol 2003;181:1551–7.

    PubMed  Google Scholar 

  41. Stiskal M, Szolar DH, Stenzel I, et al. Magnetic resonance imaging of Achilles tendon in patients with rheumatoid arthritis. Invest Radiol 1997;32:602–8.

    PubMed  CAS  Google Scholar 

  42. Erdem CZ, Sarikaya S, Erdem LO. MR imaging features of foot involvement in ankylosing spondylitis. Eur J Radiol 2005;53:110–9.

    PubMed  Google Scholar 

  43. McDermott E P. Basketball injuries of the foot and ankle. Clin Sports Med 1993;12:373–93.

    PubMed  CAS  Google Scholar 

  44. Lehto MU, Jarvinen M, Suominen P. Chronic Achilles peritendinitis and retrocalcaneal bursitis. Long-term follow-up of surgically treated cases. Knee Surg Sports Traumatol Arthrosc1994;2:182–5.

    PubMed  CAS  Google Scholar 

  45. Astrom M, Gentz CF, Nilsson P, Rausing A, Sjoberg S, Westlin N. Imaging in chronic Achilles tendinopathy: a comparison of ultrasonography, magnetic resonance imaging and surgical findings in 27 histologically verified cases. Skeletal Radiol 1996;25:615–20.

    PubMed  CAS  Google Scholar 

  46. Hattrup SJ, Johnson KA. A review of rupture of the Achilles tendon. Foot Ankle 1985;6:34–38.

    PubMed  CAS  Google Scholar 

  47. Scioli MW. Achilles tendinitis. Orthop Clin North Am 1994;25:133–182.

    Google Scholar 

  48. Keene JS, Lash EG, Fisher DR, et al. Magnetic resonance imaging of Achilles tendon ruptures. Am J sports Med 1989;17:333–7.

    PubMed  CAS  Google Scholar 

  49. Panageas E, Greenberg S, Franklin PD, et al. Magnetic resonance imaging of pathologic conditions of the Achilles tendon. Orthop Rev 1990;19:975–80

    PubMed  CAS  Google Scholar 

  50. Dillon EH, Pope CF, Barber V, et al. Achilles tendon healing: 12 month follow-up with MR imaging. Radiology 1990;177:306.

    Google Scholar 

  51. Wagnon R, Akayi M. The Webb-Bannister percutaneous technique for acute Achilles' tendon ruptures: a functional and MRI assessment. J Foot Ankle Surg 2005;44:437–44.

    PubMed  Google Scholar 

  52. Kraus R, Stahl JP, Meyer C, Pavlidis T, Alt V, Horas U, Schnettler R. Frequency and effects of intratendinous and peritendinous calcifications after open Achilles tendon repair. Foot Ankle Int 2004;25:827–32.

    PubMed  Google Scholar 

  53. Pavlov H, Heneghan MA, Hersh A, et al. The Haglund syndrome: initial and differential diagnosis. Radiology 1982;144:83–8.

    PubMed  CAS  Google Scholar 

  54. Dussualt RG, Kaplan PA, Roederer G. MR imaging of Achilles tendon in patients with familial hyperlipidemia: Comparison with plain films, physical examination, and patients with traumatic tendon lesions. AJR 1995;164:403–7.

    Google Scholar 

  55. Conti SF. Posterior tibial tendon problems in athletes. Orthop Clin North Am 1994;25:109–21.

    PubMed  CAS  Google Scholar 

  56. Holmes GB Jr, Mann RA. Possible epidemiological factors associated with rupture of the posterior tibial tendon. Foot Ankle 19992;13:70–9.

    Google Scholar 

  57. Kiter E, Gunal I, Karatosun V, Korman E. The relationship between the tibialis posterior tendon and the accessory navicular. Ann Anat 2000;182:65–8.

    PubMed  CAS  Google Scholar 

  58. Rosenberg ZS, Cheung YY, Jahss MH, et al. Rupture of posterior tibial tendon: CT and MR imaging with surgical correlation. Radiology 1988;169:229–35.

    PubMed  CAS  Google Scholar 

  59. Anderson MW, Kaplan PA, Dussault RG. Association of posterior tibial tendon abnormalities with abnormal signal intensity in the sinus tarsi on MR imaging. Skeletal Radiol 2000;29:514–9.

    PubMed  CAS  Google Scholar 

  60. Schweitzer Me Caccese R, Karasick D. Posterior tibial tendon tears: Utility of secondary signs for MR imaging diagnosis. Radiology 1993;188:655–9.

    PubMed  CAS  Google Scholar 

  61. Marcus RE, Good fellow DB, Pfister ME. The difficult diagnosis of posterior tibialis tendon rupture in sports injuries. Orthopedics 1995;715–21.

    Google Scholar 

  62. Rocco Monto R, Moorman CT, Mallon WJ, et al. Rupture of the posterior tibial tendon associated with closed ankle fracture. Foot Ankle Int 1991;11;400–3.

    Google Scholar 

  63. Chen YJ, Hsu RW, Liang SC. Degeneration of the accessory navicular synchondrosis presenting as rupture of the posterior tibial tendon. J Bone Joint Surg 1997;79A:1791–8.

    Google Scholar 

  64. Loncarich DP, Clapper M. Dislocation of posterior tibial tendon. Foot Ankle Int 1998;19:821–4.

    PubMed  CAS  Google Scholar 

  65. Sammarco GJ, Cooper PS. Flexor hallucis longus tendon injury in dancers and nondancers. Foot Ankle Int 1998;19:356–62.

    PubMed  CAS  Google Scholar 

  66. Michelson J, Dunn L. Tenosynovitis of the flexor hallucis longus: a clinical study of the spectrum of presentation and treatment. Foot Ankle Int 2005;26:291–303.

    PubMed  Google Scholar 

  67. Carr JB. Complications of calcaneus fractures entrapment of the flexor hallucis longus: report of two cases. J Orthop Trauma 1990;4:166–168.

    PubMed  CAS  Google Scholar 

  68. Karasick D, Schweitzer Me. The os trigonum syndrome: imaging features. AJR 1996;166:125–9.

    PubMed  CAS  Google Scholar 

  69. Lo LD, Schweitzer ME, Fan JK, et al. MR imaging findings of entrapment of the flexor hallucis longus tendon. AJR 2001;176:1145–8.

    PubMed  CAS  Google Scholar 

  70. Eberle CF, Moran B, Gleason T. The accessory flexor digitorumlongus as a cause of flexor hallucis syndrome. Foot Ankle Int 2002;23:51–5.

    PubMed  Google Scholar 

  71. Bureau NJ, Cardinal E, Hobden R, et al. Posterior ankle impingement syndrome: MR imaging findings in seven patients. Radiology 2000;215:497–503.

    PubMed  CAS  Google Scholar 

  72. Sanhudo JA. Stenosing tenosynovitis of the flexor hallucis longustendon at the sesamoid area. Foot Ankle Int 2002;23:801–3.

    PubMed  Google Scholar 

  73. Boruta PM, Beauperthuy GD. Partial tear of the flexor hallucis longus at the knot of Henry: presentation of three cases. Foot Ankle Int 1997;18:243–6.

    PubMed  CAS  Google Scholar 

  74. Renard M, Simonet J, Bencteux P, et al. Intermittent dislocation of the flexor hallucis longus tendon. Skeletal Radiol 2003;32:78–81.

    PubMed  CAS  Google Scholar 

  75. Boles MA, Lomasney LM, Demos TC, et al. Enlarged peroneal process with peroneus longus tendon entrapment. Skeletal Radiol 1997;26:313–315.

    PubMed  CAS  Google Scholar 

  76. Pierson JL, Inglis AE. Stenosing tenosynovitis of the peroneus longus tendon associated with hypertrophy of the peroneal tubercle and an os peroneum. J Bone Joint Surg [Am] 1992;74:440–442.

    CAS  Google Scholar 

  77. Mota J, Rosenberg ZS. Magnetic resonance imaging of the peroneal tendons. Top Magn Reson Imaging 1998;9:273–285.

    PubMed  CAS  Google Scholar 

  78. Bencardino J, Rosenberg ZS. MR imaging in sports injuries of the foot and ankle. MR Imag Clin North Am 1999;7:131–149.

    CAS  Google Scholar 

  79. Sammarco GJ. Peroneal tendon injuries. Orthop Clin North Am 1994;25:135–145.

    PubMed  CAS  Google Scholar 

  80. LeMelle DP, Janis LR. Longitudinal rupture of the peroneus brevis tendon: a study of eight cases. J Foot Surg 1989;28:132–136.

    PubMed  CAS  Google Scholar 

  81. Sammarco GJ, DiRaimondo CV. Chronic peroneus brevis tendon lesions. Foot Ankle 1989;9:163–170.

    PubMed  CAS  Google Scholar 

  82. Sobel M, Geppert MJ, Olson EJ, et al. The dynamics of peroneus brevis tendon splits: a proposed mechanism, technique of diagnosis and classification of injury. Foot Ankle 1992;13:413–422.

    PubMed  CAS  Google Scholar 

  83. Larsen E. Longitudinal rupture of the peroneus brevis tendon. J Bone Joint Surg Br 1987;69:340–341.

    PubMed  CAS  Google Scholar 

  84. Buschmann WR, Cheung Y, Jahss MH. Magnetic resonance imaging of anomalous leg muscles: accessory soleus, peroneus quartus, and the flexor digitorum longus accessorius. Foot Ankle 1991;12:109–116.

    PubMed  CAS  Google Scholar 

  85. Cheung YY, Rosenberg ZS, Ramsinghani R, et al. Peroneus quartus muscle: MR imaging features. Radiology 1997;1202:745–750.

    Google Scholar 

  86. Rademaker J, Rosenberg ZS, Beltran J, et al. Alterations in the distal extension of the musculus peroneus brevis with foot movement. AJR 1997;168:787–789.

    PubMed  CAS  Google Scholar 

  87. Sobel M, Bohne WH, O'Brien SJ. Peroneal tendon subluxation in case of anomalous peroneus brevis muscle. Acta Orthop Scand 1992;63:682–684.

    PubMed  CAS  Google Scholar 

  88. Springer KR. Isolated rupture of the peroneus brevis treated with a free split thickness tendon graft. J Foot Surg 1992;31:595–8.

    PubMed  CAS  Google Scholar 

  89. Karlsson J, Brandsson S, Kalebo P, et al. Surgical treatment of concomitant chronic ankle instability and longitudinal rupture of the peroneus brevis tendon. Scand J Med Sci Sports 1998;8:42–49.

    PubMed  CAS  Google Scholar 

  90. Rademaker J, Rosenberg ZS, Delfaut EM, et al. Tear of the peroneus longus tendon: MR imaging features in nine patients. Radiology 2000;214:700–704.

    PubMed  CAS  Google Scholar 

  91. Goodwin MI, O'Brien PJ, Connell DG. Intra-articular fracture of the calcaneus associated with rupture of the peroneus longus tendon. Injury 1993;24:269–71.

    PubMed  CAS  Google Scholar 

  92. Peacock KC, Resnick EJ, Thoder JJ. Fracture of the os perineum with rupture of the peroneus longus tendons: a case report and review of the literature. Clin Orthop Relat Res 1986;202:223–6.

    PubMed  Google Scholar 

  93. O'Donnell P. Saifuddin A. Cuboid oedema due to peroneus longus tendinopathy: a report of four cases. Skeletal Radiol 2005;34:381–388.

    PubMed  Google Scholar 

  94. Wander DS, Galli K, Ludden JW, et al. Surgical management of a ruptures peroneus longus tendon with a fractured multipartite os perineum. J Foot Ankle Surg 1994;33:124–8.

    PubMed  CAS  Google Scholar 

  95. Sobel M, Geppert MJ, Warren RF. Chronic ankle instability as a cause of peroneal tendon injury. Clin Orthop 1993;296:187–91.

    PubMed  Google Scholar 

  96. Mason RB, Henderson JP. Traumatic peroneal tendon instability. Am J Sports Med 1996;24:652–8.

    PubMed  CAS  Google Scholar 

  97. Oden RR. Tendon injuries about the ankle resulting from skiing. Clin Orthop Rel Res 1997;216:63–9.

    Google Scholar 

  98. Mengiardi B, Pfirrmann CWA, Vienne P, et al. Anterior tibial tendon abnormalities, MR imaging findings. Radiology 2005;235:977–84.

    PubMed  Google Scholar 

  99. Otte S, Klinger HM, Lorenz F, Haerer T. Operative treatment in case of a closed rupture of the anterior tibial tendon. Arch Orthop Trauma Surg 2002;122:188–90.

    PubMed  Google Scholar 

  100. Erickson SJ, Smith JW, Ruiz ME, et al. MR imaging of the lateral collateral ligament of the ankle. AJR 1991;156:131–6.

    PubMed  CAS  Google Scholar 

  101. Chandnani VP, Harper MT, Ficke JR, et al. Chronic ankle instability: evaluation with MR arthrography, MR imaging, and stress radiography. Radiology 1994;192:189–94.

    PubMed  CAS  Google Scholar 

  102. Lee SH, Jacobson J, Trudell D, et al. Ligaments of the ankle: normal anatomy and MR arthrography. J Comput Assist Tomogr 1998;22:807–13.

    PubMed  CAS  Google Scholar 

  103. Farroki S, Sokoloff RM, Theodorou DJ, et al, Visualization of ankle tendons and ligaments with MR imaging: influence of passive positioning. Foot Ankle Int 2002;23:554–559.

    Google Scholar 

  104. Mengiardi B, Zanetti M, Schottle PB, et al. Spring ligament complex: MR imaging anatomic correlation and findings in asymptomatic subjects. Radiology 2005;237:242–9.

    PubMed  Google Scholar 

  105. Sarrafian S. Syndesmology. In: Sarrafian S, ed. Anatomy of the Foot and Ankle: Descriptive Topographic, Functional. Philadelphia: Lippincott Williams & Wilkins, 1993:159–217.

    Google Scholar 

  106. Brown KW, Morrison WB, Schweitzer ME, et al. MRI findings associated with distal tibiofibular syndesmosis injury. AJR 2004;182:131–6.

    PubMed  Google Scholar 

  107. Milner CE, Soames RW. The medial collateral ligaments of the human ankle joint: anatomical variations. Foot Ankle Int 1998;19:289–92.

    PubMed  CAS  Google Scholar 

  108. Pankovich AM, Shivaram MS. Anatomical basis of variability in injuries of the medial malleolus and the deltoid ligament. I. Anatomical studies. Acta Orthop Scand 1979;50:217–223.

    PubMed  CAS  Google Scholar 

  109. Rasmussen O, Kromann-Andersen C, Boe S. Deltoid ligament. Functional analysis of the medial collateral ligamentous apparatus of the ankle joint. Acta Orthop Scand 1983;54:36–44.

    PubMed  CAS  Google Scholar 

  110. Klein MA. MR imaging of the ankle: normal and abnormal findings in the medial collateral ligament. AJR 1994;162:377–83.

    PubMed  CAS  Google Scholar 

  111. Koulouris G, Connell D, Schneider T, et al. Posterior tibiotalar ligament injury resulting in posteromedial impingement. Foot Ankle Int 2003;24:575–83.

    PubMed  Google Scholar 

  112. Muhle C, Frank LR, Rand T, et al. Collateral ligaments of the ankle: high-resolution MR imaging with a local gradient coil and anatomic correlation in cadavers. Radiographics 1999;19:673–83.

    PubMed  CAS  Google Scholar 

  113. Toye LR, Helms CA, Hoffman BD, et al. MRI of spring ligament tears. AJR 2005;184:1475–80.

    PubMed  Google Scholar 

  114. Harper MC. The lateral ligamentous support of the subtalar joint. Foot Ankle 1991;11:354–8.

    PubMed  CAS  Google Scholar 

  115. Garrick JG. The frequency of injury, mechanism of injury, and epidemiology of ankle sprains. Am J Sports Med 1977;5:241–2.

    PubMed  CAS  Google Scholar 

  116. Cass J. Ankle instability current concepts, diagnosis and treatment. Mayo Clinic Proc 1984;59:165–70.

    CAS  Google Scholar 

  117. Holmer P, Sondergaard L, Konradsen L, et al. Epidemiology of sprains in the lateral ankle and foot. Foot Ankle Int 2994;15:72–4.

    Google Scholar 

  118. Jackson DW, Ashley RL, Powell JW. Ankle sprains in young athletes. Relation of severity and disability. Clin Orthop Rel Res 1974;101:201–15.

    Google Scholar 

  119. Gerber JP, Williams GN, Scoville CR, et al. Persistent disability associated with ankle sprains: a prospective examination of an athletic population. Foot Ankle Int 1998;19:653–60.

    PubMed  CAS  Google Scholar 

  120. Labovitz JM, Schweitzer ME, Larka UB, et al. Magnetic resonance imaging of ankle ligament injuries correlated with time. J Am Podiatr Med Assoc 1998;88:387–93.

    PubMed  CAS  Google Scholar 

  121. Kreitner KF, Ferber A, Grebe P, et al. Injuries of the lateral collateral ligaments of the ankle: assessment with MR imaging. Eur Radiol 1999;9:519–24.

    PubMed  CAS  Google Scholar 

  122. Povacz P, Unger SF, Miller WK, et al. A randomized, prospective study of operative and non-operative treatment of injuries of the fibular collateral ligaments of the ankle. J Bone Joint Surg 1998;80A:345–51.

    Google Scholar 

  123. Frank C, Amiel D, Woo SL, et al. Normal ligament properties and ligament healing. Clin Orthop Rel Res 1985;196:15–25.

    Google Scholar 

  124. Labovitz JM, Schweitzer ME. Occult osseous injuries after ankle sprains: incidence, location, pattern, and age. Foot Ankle Int 1998;19:661–7.

    PubMed  CAS  Google Scholar 

  125. Breitenseher MJ, Trattnig S, Kukla C, et al. MRI versus lateral stress radiography in acute lateral ankle ligament injuries. J Comput Assist Tomogr 1997;21:280–5.

    PubMed  CAS  Google Scholar 

  126. Schaffler GJ, Tirman PF, Stoller DW, et al. Impingement syndrome of the ankle following supination external rotation trauma. Eur Radiol 2003;13:1357–62.

    PubMed  Google Scholar 

  127. Hauger O, Moinard M, Lasalarie JC, et al. Anterolateral compartment of the ankle in the lateral impingement syndrome: appearance on CT arthrography. AJR 1999;173:685–90.

    PubMed  CAS  Google Scholar 

  128. Liu SH, Raskin A, Osti L, et al. Arthroscopic treatment of anterolateral ankle impingement. Arthroscopy 1994;10:215–18.

    PubMed  CAS  Google Scholar 

  129. Rubin DA, Tishkoff NW, Britton CA, Conti SF, Towers JD. Anterolateral soft-tissue impingement in the ankle: diagnosis using MR imaging. AJR 1997;169:829–835.

    PubMed  CAS  Google Scholar 

  130. Farooki S, Yao L, Seeger LI. Anterolateral impingement of the ankle: Effectiveness of MR imaging. Radiology 1998;207:357–360.

    PubMed  CAS  Google Scholar 

  131. Jordan LK, Helms CA, Cooperman AE, et al. Magnetic resonance imaging findings in anterolateral impingement of the ankle. Skeletal Radiol 2000;29:34–39.

    PubMed  Google Scholar 

  132. Urguden M, Soyuncu Y, Ozdemir H, et al. Arthroscopic treatment of anterolateral soft tissue impingement of the ankle: evaluation of factors affecting outcome. Arthroscopy2005;21:317–22.

    PubMed  Google Scholar 

  133. Boytim MJ, Fischer DA, Neumann L. Syndesmotic ankle sprains. Am J sports Med 1991;19:294–8.

    PubMed  CAS  Google Scholar 

  134. Ono A, Nishikawa S, Nagao A, et al. arthroscopically assisted treatment of ankle fractures; arthroscopic findings and surgical outcomes. Arthroscopy 2004;20:627–31.

    PubMed  Google Scholar 

  135. Mosier-LaClair S, Pike H, et al. Syndesmosis injuries: acute, chronic, new techniques for failed treatment. Foot Ankle Clin 2002;7:551–65.

    PubMed  Google Scholar 

  136. Leeds HC, Ehrlich MG. Instability of the distal tibiofibular syndesmosis after bimalleolar and trimalleolar ankle fractures. J Bone Joint Surg 1984;66A:490–503.

    Google Scholar 

  137. Oae K, Takao M, Naito K, et al. Injury of the tibiofibular syndesmosis; value of MR imaging for diagnosis. Radiology 2003;227:155–61.

    PubMed  Google Scholar 

  138. Ogilvie-Harris DJ, Reed Sc. Disruption of the ankle syndesmosis: diagnosis and treatment by arthroscopic surgery. Arthros copy 1994;10:561–8.

    CAS  Google Scholar 

  139. Harper MC. Deltoid ligament: an anatomical evaluation of function. Foot Ankle 1987;8:19–22.

    PubMed  CAS  Google Scholar 

  140. Roberts CS, DeMaio M, Larkin JJ, et al. Eversion ankle sprains. Orthopedics 1995;18:299–304.

    PubMed  CAS  Google Scholar 

  141. Michelson JD, Varner KE, Checcone M. Diagnosing deltoid injury in ankle fractures: the gravity stress view. Clin Orthop Rel Res 2001;387:178–182.

    Google Scholar 

  142. Mosier-La Clair SM, Monroe MT, Manoli A. Medial impingement syndrome of the anterior tibiotalar fascicle of the deltoid ligament on the talus. Foot Ankle Int 2000;21:385–391.

    PubMed  CAS  Google Scholar 

  143. Egol Ka, Parisien JS. Impingement syndrome of the ankle caused by a medial meniscoid lesion. Arthroscopy 1997;13:522–25.

    PubMed  CAS  Google Scholar 

  144. Conti S, Michelson J, Jahss M. Clinical significance of magnetic resonance imaging in preoperative planning for reconstruction of posterior tibial tendon ruptures. Foot Ankle 1992;13:208–214.

    PubMed  CAS  Google Scholar 

  145. Gazdag AR, Cracchiolo A 3rd. Rupture of the posterior tibial tendon. Evaluation of injury of the spring ligament and clinical assessment of tendon transfer and ligament repair. J Bone Joint Surg 1997;79A:675–81.

    Google Scholar 

  146. Yao L, Gentili A, Cracchiolo A. MR imaging findings in spring ligament insufficiency. Skeletal Radiol 1999;28:245–50.

    PubMed  CAS  Google Scholar 

  147. Balen PF, Helms CA. Association of posterior tibial tendon injury with spring ligament injury, sinus tarsi abnormality, and plantar fasciitis on MR imaging. AJR 2001;176:1137–43.

    PubMed  CAS  Google Scholar 

  148. Tochigi Y, Yoshinaga K, Wada Y, et al. Acute inversion injury of the ankle: magnetic resonance imaging and clinical out comes. Foot Ankle Int 1998;19:730–4.

    PubMed  CAS  Google Scholar 

  149. Klein MA, Spreitzer AM. MR imaging of the tarsal sinus and canal: normal anatomy, pathologic findings, and features of the sinus tarsi syndrome. Radiology 1993;186:233–40.

    PubMed  CAS  Google Scholar 

  150. Lektrakul N, Chung CB, Lai Y, et al. Tarsal sinus: arthro graphic, MR imaging, MR arthrographic, and pathologic findings in cadavers and retrospective study data in patients with sinus tarsi syndrome. Radiology 2001;219:802–10.

    PubMed  CAS  Google Scholar 

  151. Anderson MW, Kaplan PA, Dussault RG, et al. Association of posterior tibial tendon abnormalities with abnormal signal intensity in the sinus tarsi on MR imaging. Skeletal Radiol 2000;29:514–9.

    PubMed  CAS  Google Scholar 

  152. Muthukumar T, Butt SH, Cassar-Pullicino VN. Stress fractures and related disorders in foot and ankle: plain films, scintigraphy, CT and MR imaging. Semin Musculoskelet Radiol 2005;9:210–26.

    PubMed  Google Scholar 

  153. Umans H, Pavlov H. Insufficiency fracture of the talus: diagnosis with MR imaging. Radiology 1995;197:439–442.

    PubMed  CAS  Google Scholar 

  154. Kathol MH, El-Khoury GY, Moore TE, Marsh JL. Calcaneal insufficiency avulsion fractures in patients with diabetes mellitus. Radiology 1991;180:725–729.

    PubMed  CAS  Google Scholar 

  155. Franco M, Albno L, Kacso I, Gaid H, Jaeger P. An uncommon cause of foot pain: the cuboid insufficiency stress fracture. Joint Bone Spine 2005;72:76–8.

    PubMed  Google Scholar 

  156. Chantelau E, Richter A, Schmidt-Grigoriadis P, Scherbaum VA. The diabetic Charcot foot: MRI discloses bone stress injury as trigger mechanism of neuroarthropathy. Exp Clin Endocrinol Diabetes 2006;114:118–23.

    PubMed  CAS  Google Scholar 

  157. Maenpaa H, Lehto MU, Belt EA. Stress fractures of the ankle and forefoot in patients with inflammatory arthritides. Foot Ankle Int 2002;23:833–7.

    PubMed  Google Scholar 

  158. Stafford SA, Rosenthal KI, Gebhardt MC, Brady TJ, Scott JA. MRI in stress fracture. AJR 1986;147:553–556.

    PubMed  CAS  Google Scholar 

  159. Berger PE, Ofstein RA, Jackson DW, Morrison DS, Silvin N, et al. MRI demonstration of radiographically occult fractures: What have we been missing? RadioGraphics 1989;9:407–436.

    PubMed  CAS  Google Scholar 

  160. Lee JK, Yao L. Occult intraosseous fractures: Detection with MR imaging. Radiology 1988;168:749–750.

    Google Scholar 

  161. Lynch TCP, Crues JV, Morgan FW, Sheeha WE, Harter LP, et al. Bone abnormalities of the knee: Prevalence and significance at MR imaging. Radiology 1989;171:761–766.

    PubMed  CAS  Google Scholar 

  162. Flick AB, Gould N. Osteochondritis dissecans of the talus (transchondral fractures of the talus): review of the literature and new surgical approach for medial dome lesions. Foot Ankle 1985;5:165–185.

    PubMed  CAS  Google Scholar 

  163. De Smet AA, Fisher DR, Burnstein MI, Graf BK, Lange RH. Value of MR imaging in staging osteochondral lesions of the talus (osteochondritis dissecans): results in 14 patients. AJR 1990;154:555–558.

    PubMed  Google Scholar 

  164. Berndt AL, Harty M. Transchondral fractures (osteochondritis dis-secans) of the talus. J Bone Joint Surg [Am] 1959;41:988–1020.

    Google Scholar 

  165. Hepple S, Winson IG, Glew D. Osteochondral lesions of the talus: a revised classification. Foot Ankle Int 1999;20:789–93.

    PubMed  CAS  Google Scholar 

  166. Taranow WS, Bisignani GA, Towers JD, et al. Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int 1999;20:474–80.

    PubMed  CAS  Google Scholar 

  167. Mintz DN, Tashjian GS, Connel DA, et al. Osteochondrallesions of the talus: a new magnetic resonance grading system with arthroscopic correlation. Arthroscopy 2003;19:353–9.

    PubMed  Google Scholar 

  168. Shelton ML, Pedowitz WJ. Injuries to the talar dome, subtalar joint, and mid foot. In: MH Jahss, ed. Disorders of the Foot and Ankle. Philadelphia: WB Saunders, 1991:2274–2292.

    Google Scholar 

  169. Zengerink M, Szerb I, Hangody L, Dopirak RM, Ferkel RD, van Dijk CN. Current concepts: treatment of osteochondral ankle defects. Foot Ankle Int 2006;11:331–59.

    Google Scholar 

  170. Sasaki K, Ishibashi Y, Sato H, Toh S. Arthroscopically assisted osteochondral autogenous transplantation for osteochondral lesion of the talus using a transmalleolar approach. Arthros copy 2003;19:922–7.

    Google Scholar 

  171. Koulalis D, Schultz W, Psychogios B, Papagelopoulos PJ. Articular reconstruction of osteochondral defects of the talus through autologous chondrocyte transplantation. Orthopedics 2004;27:559–61.

    PubMed  CAS  Google Scholar 

  172. Giannini S, Buda R, Grigolo B, Vannini F, De Franceschi L, Facchini A. The detached osteochondral fragment as a source of cells for autologous chondrocyte transplantation (ACI) in the ankle joint. Osteoarthritis Cartilage 2005;13:601–7.

    PubMed  CAS  Google Scholar 

  173. Schibany N, Ba-Ssalamah A, Marlovits S, et al. Impact of high field (3.0 T) magnetic resonance imaging on diagnosis of osteochondral defects in the ankle joint. Eur J Radiol 2005;55:283–8.

    PubMed  CAS  Google Scholar 

  174. Verhagen RA, Maas M, Dijkgraaf MG, Tol JL, Krips R, van Dijk CN. Prospective study on diagnostic strategies in osteo chondral lesions of the talus. Is MRI superior to helical CT? J Bone Joint Surg [Br] 2005;87:41–6.

    CAS  Google Scholar 

  175. Mesgarzadeh M, Sapega AA, Bonakdarpour A Revesz G, Moyer RA, et al. Osteochondritis dissecans: Analysis of mechanical stability with radiography, scintigraphy, and MR imaging. Radiology 1987;165:775–780.

    PubMed  CAS  Google Scholar 

  176. Nelson DW, DiPaola J, Colville M, Schmidgall J. Osteochon dritis dissecans of the talus and knee: prospective comparison of MR and arthroscopic classifications. J Comput Assist Tomogr 1990;14:804–808.

    PubMed  CAS  Google Scholar 

  177. Yulish BS, Mulopulos GP, Goodfellow DB, Bryan PJ, Modic MT, et al. MR imaging of osteochondral lesions of the talus. J Comput Assist Tomogr 1987;11:296–301.

    PubMed  CAS  Google Scholar 

  178. De Smet A, Ilahi O, Graf B. Reassessment of the MR criteria for stability of osteochondritis dissecans of the femoral con dyles: prediction of patient outcome using radiographic and MR findings. Skeletal Radiol 1997;26:463.

    PubMed  Google Scholar 

  179. Scranton PE Jr, Frey CC, Feder KS. Outcome of osteo chondral autograft transplantation for type-V cystic osteo chondral lesions of the talus. J Bone Joint Surg Br 2006;88:614–9.

    PubMed  Google Scholar 

  180. Elias I, Jung JW, Raikin SM, Schweitzer MW, Carrino JA, Morrison WB. Osteochondral lesions of the talus: change in MRI findings over time in talar lesions without operative inter vention and implications for staging systems. Foot Ankle Int 2006;27:157–66.

    PubMed  Google Scholar 

  181. Resnick D, Niwayama G. Osteonecrosis: Diagnostic techniques, specific situations, and complications. In: Resnick D, Niwayama G, eds. Diagnosis of Bone and Joint Disorders. Philadelphia: WB Saunders, 1988:3238–3288.

    Google Scholar 

  182. Pearce DH, Mongiardi CN, Fornasier VL, Daniels TR. Avas cular necrosis of the talus: a pictorial essay. Radiographics 2005;25:399–410.

    PubMed  Google Scholar 

  183. Haller J, Sartoris DJ, Resnick D, et al. Spontaneous osteone-crosis of the tarsal navicular in adults: imaging findings. AJR 1988;151:355–8.

    PubMed  CAS  Google Scholar 

  184. Neary MT, Jones RO, Sushein K, et al. Avascular necrosis of the first metatarsal head following Austin osteotomy: a follow up study. J Foot Ankle Surg 1993;32:530–5.

    PubMed  CAS  Google Scholar 

  185. Abrahimzadeh R, Klein RM, Leslie D, et al. Characteristics of calcaneal bone infarction: An MR imaging investigation. Skeletal Radiol 1998;27:231–324.

    Google Scholar 

  186. Li KCP, Hiette P. Contrast-enhanced fat saturation magnetic resonance imaging for studying the Pathophysiology of osteo necrosis of the hips. Skeletal Radiol 1992;21:375–79.

    PubMed  CAS  Google Scholar 

  187. Nadel Sn, Debatin JF, Richardson WJ, et al. Detection of acute avascular necrosis of the femoral head in dogs; Dynamic contrast-enhanced MR imaging vs. spin-echo and STIR sequences. AJR 1992;159:1255–61.

    PubMed  CAS  Google Scholar 

  188. Raikin SM. Stage VI: massive osteochondral defects of the talus. Foot Ankle Clin 2004;9:737–44.

    PubMed  Google Scholar 

  189. Toms AP, Marshall TJ, Becker E, Donell ST, Lobo-Mueller EM, Barker T. Regional migratory osteoporosis: a review illustrates by five cases. Clin Radiol 2005;60:425–38.

    PubMed  CAS  Google Scholar 

  190. Miltner O, Niedhart C, Piroth W, Weber M, Siebert CH. Transient osteoporosis of the navicular bone in a runner. Arch Orthop Trauma Surg 2003;123:505–8.

    PubMed  CAS  Google Scholar 

  191. Beaulieu JG, Razzano CD, Levine RB. Transient osteoporosis of the hip in pregnancy: review of the literature and a case report. Clin Orthop 1976;115:165–8.

    PubMed  Google Scholar 

  192. Rozenbaum M, Zinman C, Nagel AM, Pollak S. Transient osteoporosis of the hip joint with liver cirrhosis. J Rheumatol 1984:11:241–243.

    PubMed  CAS  Google Scholar 

  193. Coates PT, Tie M, Russ GR, et al. Transient bone marrow edema in renal transplantation: a distinct post-transplantation syndrome with a characteristic MRI appearance. Am J Transplant 2002;2:467–70.

    PubMed  Google Scholar 

  194. Goffin E, Vande Berg B, Devogelaer JP, et al. Post-renal transplant syndrome of transient lower limb joint pain: description under a tacrolimus-based immunosuppression. Clin Nephrol 2003;59:98–105.

    PubMed  CAS  Google Scholar 

  195. Pinals RS, Jabss JM. Type-IV hyperlipoproteinemia and transient osteoporosis. Lancet 1972;II:929.

    Google Scholar 

  196. Rodriguez S, Paniagua O, Nugent KM, Phy MP. Regional transient osteoporosis of the foot and vitamin C deficiency. Clin Rheumatol 2007;26(6):976–978.

    PubMed  Google Scholar 

  197. Gigena LM, Chung CB, Nittaya Lektrakul, Pfirrmann CWA, Sung MS, Resnick D. Transient bone marrow edema of the talus: MR imaging findings in five patients. Skeletal Radiol 2002;31:202–7.

    PubMed  Google Scholar 

  198. Ringe JK, Dorst A, Faber H. Effective and rapid treatment of painful localized transient osteoporosis (bone marrow edema) with intravenous ibandronate. Osteoporos Int 2005;16:2063–8.

    PubMed  CAS  Google Scholar 

  199. Meizer R, Radda C, Stolz G, et al. MRI-controlled analysis of 104 patients with painful bone marrow edema in different joint localizations treated with the prostacyclin analogue iloprost. Wien Klin Wochenschr 2005;117:278–86.

    PubMed  Google Scholar 

  200. Berkowitz JF, Kier R, Rudicel S. Plantar fasciitis: MR imaging. Radiology 1991;179:665–667.

    PubMed  CAS  Google Scholar 

  201. Grasel RP, Schweitzer ME, Kovalovich AM, et al. MR imaging of plantar fasciitis: edema, tears and occult abnormalities correlated with outcome. AJR 1999;173:699–701.

    PubMed  CAS  Google Scholar 

  202. Narvaez JA, Narvaez J, Ortega R, Aguilera C, Sanchez A, Andia E. Painful heel: MR imaging findings. Radiographics 2000;20:333–52.

    PubMed  CAS  Google Scholar 

  203. Theodorou DJ, Theodorou SJ, Daditsubata Y, et al. Plantar fas-ciitis and fascial rupture: MR findings in 26 patients supplemented by anatomic data in cadavers. Radiographics 2000;20:S181–97.

    PubMed  Google Scholar 

  204. Yu JS. Pathologic and post-operative conditions of the plantar fascia: review of MR imaging appearances. Skeletal Radiol 2000;29:491–501.

    PubMed  CAS  Google Scholar 

  205. Zhu F, Johnson JE, Hirose CB, Bae KT. Chronic plantar fasci-itis: Acute changes in the heel after extracorporeal high-energyshock wave therapy—observations at MR imaging. Radiology2005;234:206–10.

    PubMed  Google Scholar 

  206. Baxter DE, Pfeffer GB. Treatment of chronic heel pain by surgical release of the first branch of the lateral plantar nerve. Clin Orthop Rel Res 1992;279:229–36.

    Google Scholar 

  207. Erickson SJ, Quinn SF, Kneeland JB, et al. MR imaging of the tarsal tunnel and related spaces: normal and abnormal findings with anatomic correlation. AJR 1990;155:323–328.

    PubMed  CAS  Google Scholar 

  208. Kinoshita M, Okuda R, Morikawa J, Abe M. Tarsal tunnel syndrome associated with an accessory muscle. Foot Ankle Int 2003;24:132–6.

    PubMed  Google Scholar 

  209. Sugimoto K, Iwai M, Kawate K, Yajima H, Takakura Y. Teno-synovial osteochondromatosis of the tarsal tunnel. Skeletal Radiol 2003;32:99–102.

    PubMed  Google Scholar 

  210. Mezrow CK, Sanger JR, Matloub HS. Acute tarsal tunnel syndrome following partial avulsion of the flexor hallucis longus muscle: a case report. J Foot Ankle Surg 2002;41:243–6.

    PubMed  Google Scholar 

  211. Lee MF, Chan PT, Chau LF, Yu KS. Tarsal tunnel syndrome caused by talocalcaneal coalition. Clin Imaging 2002;26:140–3.

    PubMed  CAS  Google Scholar 

  212. Kinoshita M, Okuda R, Yasuda T, Abe M. Tarsal tunnel syndrome in athletes. Am J Sports Med 2006;34:1307–12.

    PubMed  Google Scholar 

  213. Labib SA, Gould JS, Rodriguez-del-Rio FA, Lyman S. Heel pain triad (HPT): the combination of plantar fasciitis, posterior tibial tendon dysfunction and tarsal tunnel syndrome. Foot Ankle Int 2002:23:212–20.

    PubMed  Google Scholar 

  214. Golovchinsky V. Double crush syndrome in lower extremities. Electromyogr Clin Neurophysiol 1998;38:115–20.

    PubMed  CAS  Google Scholar 

  215. Bracilovic A, Nihal A, Houston VL, Beattie AC, Rosenberg ZS, Trepman E. Effect of foot and ankle position on tarsal tunnel compartment volume. Foot Ankle Int 2006;27:431–7.

    PubMed  Google Scholar 

  216. Kirkwood BR, Sterne JAC, Medical Statistics, 2nd ed. Malden, MA: Blackwell, 2003.

    Google Scholar 

  217. Sharp RJ, Wade CM, Hennessy MS, et al. The role of MRI and ultrasound imaging in Morton's neuroma and the effect ofsize of lesion on symptoms. J Bone Joint Surg [Br] 2003;85(7):999–1005.

    CAS  Google Scholar 

  218. Verhagen RA, Maas M, Dijkgraaf MG, et al. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT? J Bone Joint Surg [Br] 2005;87(1):41–6.

    CAS  Google Scholar 

  219. Radke S, Vispo-Seara J, Walther M, et al. [Osteochondrallesions of the talus—indications for MRI with a contrast agent]. Z Orthop Ihre Grenzgeb 2004;142(5):618–24.

    PubMed  CAS  Google Scholar 

  220. Lohman M, Kivisaari A, Vehmas T, et al. MRI abnormalities of foot and ankle in asymptomatic, physically active individuals. Skeletal Radiol 2001;30(2):61–6.

    PubMed  CAS  Google Scholar 

  221. Karlsson J, Brandsson S, Kalebo P, et al. Surgical treatment of concomitant chronic ankle instability and longitudinal rup ture of the peroneus brevis tendon. Scand J Med Sci Sports 1998;8(1):42–9.

    PubMed  CAS  Google Scholar 

  222. Hintermann B, Boss A, Schafer D, Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med 2002;30(3):402–9.

    PubMed  Google Scholar 

  223. Schafer D, Hintermann B. Arthroscopic assessment of the chronic unstable ankle joint. Knee Surg Sports Traumatol Arthrosc 1996;4(1):48–52.

    PubMed  CAS  Google Scholar 

  224. Ogilvie-Harris DJ, Gilbart MK, Chorney K. Chronic pain following ankle sprains in athletes: the role of arthroscopic surgery. Arthroscopy 1997;13(5):564–74.

    PubMed  CAS  Google Scholar 

  225. Bonnin M, Bouysset M. Arthroscopy of the ankle: analysis of results and indications on a series of 75 cases. Foot Ankle Int 1999;20(11):744–51.

    PubMed  CAS  Google Scholar 

  226. Ferkel RD, Chams RN. Chronic lateral instability: arthroscopic findings and long-term results. Foot Ankle Int 2007;28(1):24–31.

    PubMed  Google Scholar 

  227. Ferkel RD, Fasulo GJ. Arthroscopic treatment of ankle injuries. Orthop Clin North Am 1994;25(1):17–32.

    PubMed  CAS  Google Scholar 

  228. Helgason JW, Chandnani VP. MR arthrography of the ankle. Radiol Clin North Am 1998;36(4):729–38.

    PubMed  CAS  Google Scholar 

  229. Boyer D, Younger AS. Anatomic lateral ligament reconstruction using the gracilis tendon. Foot Ankle Clin 2006;11(3):585–595.

    PubMed  Google Scholar 

  230. van Dijk CN, Bossuyt PM, Marti RK. Medial ankle pain after lateral ligament rupture. J Bone Joint Surg [Br] 1996;78(4):562–7.

    Google Scholar 

  231. Hepple S, Winson IG, Glew D. Osteochondral lesions of the talus: a revised classification. Foot Ankle Int 1999;20(12):789–93.

    PubMed  CAS  Google Scholar 

  232. Mintz DN, Tashjian GS, Connell DA, et al. Osteochondrallesions of the talus: a new magnetic resonance grading system with arthroscopic correlation. Arthroscopy 2003;19(4):353–9.

    PubMed  Google Scholar 

  233. De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 1996;25(2):159–63.

    PubMed  Google Scholar 

  234. Jordan LK 3rd, Helms CA, Cooperman AE, et al. Magnetic resonance imaging findings in anterolateral impingement of the ankle. Skeletal Radiol 2000;29(1):34–9.

    PubMed  Google Scholar 

  235. Biedert R. Anterior ankle pain in sports medicine: aetiology and indications for arthroscopy. Arch Orthop Trauma Surg 1991;110(6):293–7.

    PubMed  CAS  Google Scholar 

  236. Amendola A, Petrik J, Webster-Bogaert S. Ankle arthroscopy: outcome in 79 consecutive patients. Arthroscopy 1996;12(5):565–73.

    PubMed  CAS  Google Scholar 

  237. Rubin DA, Tishkoff NW, Britton CA, et al. Anterolateral soft- tissue impingement in the ankle: diagnosis using MR imaging. AJR Am J Roentgenol 1997;169(3):829–35.

    PubMed  CAS  Google Scholar 

  238. Masciocchi C, Catalucci A, Barile A. Ankle impingement syndromes. Eur J Radiol 1998;27(suppl 1):S70–3.

    PubMed  Google Scholar 

  239. Farooki S, Yao L, Seeger LL. Anterolateral impingement of the ankle: effectiveness of MR imaging. Radiology 1998;207(2):357–60.

    PubMed  CAS  Google Scholar 

  240. Schaffler GJ, Tirman PF, Stoller DW, et al. Impingement syndrome of the ankle following supination external rotation trauma: MR imaging findings with arthroscopic correlation. Eur Radiol 2003;13(6):1357–62.

    PubMed  Google Scholar 

  241. Berberian WS, Hecht PJ, Wapner KL, et al. Morphology of tib-iotalar osteophytes in anterior ankle impingement. Foot Ankle Int 2001;22(4):313–7.

    PubMed  CAS  Google Scholar 

  242. Huh YM, Suh JS, Lee JW, et al. Synovitis and soft tissue impingement of the ankle: assessment with enhanced three- dimensional FSPGR MR imaging. J Magn Reson Imaging 2004;19(1):108–16.

    PubMed  Google Scholar 

  243. Tol JL, Verhagen RA, Krips R, et al. The anterior ankle impingement syndrome: diagnostic value of oblique radiographs. Foot Ankle Int 2004;25(2):63–8.

    PubMed  Google Scholar 

  244. Coull R, Raffiq T, James LE, et al. Open treatment of anterior impingement of the ankle. J Bone Joint Surg [Br] 2003;85(4):550–3.

    CAS  Google Scholar 

  245. Miller CD, Shelton WR, Barrett GR, et al. Deltoid and syn-desmosis ligament injury of the ankle without fracture. Am J Sports Med 1995;23(6):746–50.

    PubMed  CAS  Google Scholar 

  246. Breitenseher MJ, Trattnig S, Kukla C, et al. MRI versus lateral stress radiography in acute lateral ankle ligament injuries. J Comput Assist Tomogr 1997;21(2):280–5.

    PubMed  CAS  Google Scholar 

  247. Verhaven EF, Shahabpour M, Handelberg FW, et al. The accuracy of three-dimensional magnetic resonance imaging in the diagnosis of ruptures of the lateral ligaments of the ankle. Am J Sports Med 1991;19(6):583–7.

    PubMed  CAS  Google Scholar 

  248. Uys HD, Rijke AM. Clinical association of acute lateral ankle sprain with syndesmotic involvement: a stress radiography and magnetic resonance imaging study. Am J Sports Med 2002;30(6):816–22.

    PubMed  Google Scholar 

  249. Ferkel RD, Karzel RP, Del Pizzo W, et al. Arthroscopic treatment of anterolateral impingement of the ankle. Am J Sports Med 1991;19(5):440–6.

    PubMed  CAS  Google Scholar 

  250. Niemi WJ, Savidakis J Jr, DeJesus JM. Peroneal subluxation: a comprehensive review of the literature with case presentations. J Foot Ankle Surg 1997;36(2):141–5.

    PubMed  CAS  Google Scholar 

  251. Peacock KC, Resnick EJ, Thoder JJ. Fracture of the os peroneum with rupture of the peroneus longus tendon. A case report and review of the literature. Clin Orthop 1986(202):223–6.

    Google Scholar 

  252. Nelson DR, Younger A. Acute posttraumatic planovalgus foot deformity involving hindfoot ligamentous pathology. Foot Ankle Clin 2003;8(3):521–37.

    PubMed  Google Scholar 

  253. Marks RM, Schon LC. Posttraumatic posterior tibialis tendon insertional elongation with functional incompetency: a case report. Foot Ankle Int 1998;19(3):180–3.

    PubMed  CAS  Google Scholar 

  254. Malicky ES, Crary JL, Houghton MJ, et al. Talocalcaneal and subfibular impingement in symptomatic flatfoot in adults. J Bone Joint Surg [Am] 2002;84—A(11):2005–9.

    Google Scholar 

  255. Kamel M, Eid H, Mansour R. Ultrasound detection of heel enthesitis: a comparison with magnetic resonance imaging. J Rheumatol 2003;30(4):774–8.

    PubMed  Google Scholar 

  256. Bleakney RR, White LM. Imaging of the Achilles tendon. Foot Ankle Clin 2005;10(2):239–54.

    PubMed  Google Scholar 

  257. Kayser R, Mahlfeld K, Heyde CE. Partial rupture of the proximal Achilles tendon: a differential diagnostic problem in ultrasound imaging. Br J Sports Med 2005;39(11):838—42; discussion 842.

    PubMed  CAS  Google Scholar 

  258. Tuite MJ. MR imaging of the tendons of the foot and ankle. Semin Musculoskelet Radiol 2002;6(2):119–31.

    PubMed  Google Scholar 

  259. Eberle CF, Moran B, Gleason T. The accessory flexor digitorum longus as a cause of Flexor Hallucis Syndrome. Foot Ankle Int 2002;23(1):51–5.

    PubMed  Google Scholar 

  260. Landorf KB, Keenan AM, Herbert RD. Effectiveness of footorthoses to treat plantar fasciitis: a randomized trial. Arch Intern Med 2006;166(12):1305–10.

    PubMed  Google Scholar 

  261. Pfeffer G, Bacchetti P, Deland J, et al. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot Ankle Int 1999;20(4):214–21.

    PubMed  CAS  Google Scholar 

  262. Barry LD, Barry AN, Chen Y. A retrospective study of standing gastrocnemius-soleus stretching versus night splinting in the treatment of plantar fasciitis. J Foot Ankle Surg 2002;41(4):221–7.

    PubMed  Google Scholar 

  263. Rompe JD, Schoellner C, Nafe B. Evaluation of low-energy extracorporeal shock-wave application for treatment of chronic plantar fasciitis. J Bone Joint Surg [Am] 2002;84—A(3):335–41.

    Google Scholar 

  264. Sems A, Dimeff R, Iannotti JP. Extracorporeal shock wave therapy in the treatment of chronic tendinopathies. J Am Acad Orthop Surg 2006;14(4):195–204.

    PubMed  Google Scholar 

  265. Wang CJ, Wang FS, Yang KD, et al. Long-term results of extracorporeal shockwave treatment for plantar fasciitis. Am J Sports Med 2006;34(4):592–6.

    PubMed  Google Scholar 

  266. Hogan KA, Webb D, Shereff M. Endoscopic plantar fascia release. Foot Ankle Int 2004;25(12):875–81.

    PubMed  Google Scholar 

  267. Jerosch J. Endoscopic release of plantar fasciitis—a benign procedure? Foot Ankle Int 2000;21(6):511–3.

    PubMed  CAS  Google Scholar 

  268. Saxena A. Uniportal endoscopic plantar fasciotomy: a prospective study on athletic patients. Foot Ankle Int 2004;25(12):882–9.

    PubMed  Google Scholar 

  269. Conflitti JM, Tarquinio TA. Operative outcome of partial plantar fasciectomy and neurolysis to the nerve of the abductor digiti minimi muscle for recalcitrant plantar fasciitis. Foot Ankle Int 2004;25(7):482–7.

    PubMed  Google Scholar 

  270. Baxter DE. Release of nerve to abductor digiti quinti. In: Johnson KA, ed. Master Techniques in Orthopaedic Surgery. Philadelphia: Lippincott-Raven, 1994:333–40.

    Google Scholar 

  271. Jarde O, Diebold P, Havet E, et al. Degenerative lesions of the plantar fascia: surgical treatment by fasciectomy and excision of the heel spur. A report on 38 cases. Acta Orthop Belg 2003;69(3):267–74.

    PubMed  Google Scholar 

  272. Boyle RA, Slater GL. Endoscopic plantar fascia release: a case series. Foot Ankle Int 2003;24(2):176–9.

    PubMed  CAS  Google Scholar 

  273. Ogilvie-Harris DJ, Lobo J. Endoscopic plantar fascia release. Arthroscopy 2000;16(3):290–8.

    PubMed  CAS  Google Scholar 

  274. Watson TS, Anderson RB, Davis WH. Periarticular injuries to the hallux metatarsophalangeal joint in athletes. Foot Ankle Clin 2000;5(3):687–713.

    PubMed  CAS  Google Scholar 

  275. Bracilovic A, Nihal A, Houston VL, et al. Effect of foot and ankle position on tarsal tunnel compartment volume. Foot Ankle Int 2006;27(6):431–7.

    PubMed  Google Scholar 

  276. Tsai CC, Lin TM, Lai CS, et al. Tarsal tunnel syndrome secondary to neurilemoma—a case report. Kaohsiung J Med Sci 2001;17(4):216–20.

    PubMed  CAS  Google Scholar 

  277. Verleisdonk EJ, van Gils Avan der Werken C. The diagnostic value of MRI scans for the diagnosis of chronic exertional compartment syndrome of the lower leg. Skeletal Radiol 2001;30(6):321–5.

    PubMed  CAS  Google Scholar 

  278. Vertullo C. Unresolved lateral ankle pain. It's not always “just a sprain.” Aust Fam Physician 2002;31(3):247–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Bencardino, J.T., Rosenberg, Z.S., Younger, A.S., Pohl, M. (2008). Ankle. In: Pedowitz, R.A., Chung, C.B., Resnick, D. (eds) Magnetic Resonance Imaging in Orthopedic Sports Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48898-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48898-1_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48897-4

  • Online ISBN: 978-0-387-48898-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics