Skip to main content

Second Messenger Systems Involved in Heart Mechanotransduction

  • Chapter
Cardiac Mechanotransduction

Abstract

Mechanical stress can be considered one of the major stimuli that evoke hypertrophic responses including reprogramming of gene expression in cardiac myocytes. Therefore, it is important to understand how mechanical loading is sensed by cardiomyocytes and converted into intracellular biomechanical signals leading to cardiac hypertrophy. When mechanical stress is received it is converted also into biochemical signals inside the cells. The signal transduction pathway leading to an increase in protein synthesis is similar to the pathway which is known to be activated by various humoral factors such as growth factors, hormones and cytokines in many other cells. In this review we start with initiation of stress induced signaling and then concentrate on signalling vie MAP-kinase, JAK/STAT and ECM/integrin pathways. Although multiple cellular events which occur in cardiac myocytes in response to mechanical stretch have been clarified, many questions remain unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frohlich ED. Cardiac hypertrophy in hypertension. N Engl J Med 1987; 317:831–833.

    PubMed  CAS  Google Scholar 

  2. Weber KT, Janicki JS, Shroff SG et al. Collagen remodeling of the pressure overloaded hypertrophied nonhuman primate myocardium. Circ Res 1988; 62:757–765.

    PubMed  CAS  Google Scholar 

  3. Bashey RI, Donnelly M, Insinga F et al. Growth properties and biochemical characterization of collagens synthesized by adult rat heart fibroblasts in culture. J Mol Cell Cardiol 1992; 24:691–700.

    PubMed  CAS  Google Scholar 

  4. Brilla CG, Maisch B. Regulation of the structural remodelling of the myocardium: From hypertrophy to heart failure. Eur Heart J 1994; 15:45–52.

    PubMed  Google Scholar 

  5. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83:1849–1865.

    PubMed  CAS  Google Scholar 

  6. Levy D, Garrison RJ, Savage DD et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 1990; 322:1561–1566.

    PubMed  CAS  Google Scholar 

  7. Komuro I, Yazaki Y. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 1993; 55:55–75.

    PubMed  CAS  Google Scholar 

  8. Chien KR, Grace AA, Hunter JJ. Molecular biology of cardiac hypertrophy and heart failure. In: Chien KR, ed. Molecular Basis of Cardiovascular Disease. Philadelphia: Saunders Co., 1998:211–250.

    Google Scholar 

  9. Berridge MJ, Bootman MD, Lipp P. Calcium-a life and death signal. Nature 1998; 395:645–648.

    PubMed  CAS  Google Scholar 

  10. McDonough PM, Glembotski CC. Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem 1992; 267:11665–11668.

    PubMed  CAS  Google Scholar 

  11. Ramirez MT, Zhao XL, Schulman H et al. The nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 1997; 272:31203–31208.

    PubMed  CAS  Google Scholar 

  12. Zhu W, Zou Y, Shiojima I et al. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 2000; 275:15239–15245.

    PubMed  CAS  Google Scholar 

  13. Passier R, Zeng H, Frey N et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 2000; 105:1395–1406.

    PubMed  CAS  Google Scholar 

  14. Komuro I, Kurabayashi M, Takaku F et al. Expression of cellular oncogenes in the myocardium during the developmental stage and pressure overloaded hypertrophy of the rat heart. Circ Res 1988; 62:1075–9.

    PubMed  CAS  Google Scholar 

  15. Komuro I, Kaida T, Shibazaki Y et al. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 1990; 265:3595–8.

    PubMed  CAS  Google Scholar 

  16. Siri FM, McNamara JJ. Effects of sympathectomy on heart size and function in aortic-constricted rats. Am J Physiol 1987; 252:H442–H447.

    PubMed  CAS  Google Scholar 

  17. Peterson MB, Lesch M. Protein synthesis and amino acid transport in isolated rabbit right ventricular muscle. Circ Res 1972; 31:317–327.

    PubMed  CAS  Google Scholar 

  18. Cooper G, Kent RL, Uboh CE et al. Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J Clin Invest 1985; 75:1403–1414.

    PubMed  CAS  Google Scholar 

  19. Yamazaki T, Tobe K, Hoh E et al. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 1993; 268:12069–76.

    PubMed  CAS  Google Scholar 

  20. Yamazaki T, Komuro I, Yazaki Y. Molecular mechanism of cardiac cellular hypertrophy by mechanical stress. J Mol Cell Cardiol 1995; 27:133–40.

    PubMed  CAS  Google Scholar 

  21. Yamazaki T, Komuro I, Yazaki Y. Signalling pathways for cardiac hypertrophy. Cell Signal 1998; 10:693–698.

    PubMed  CAS  Google Scholar 

  22. Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy. J Mol Med 1998; 76:725–746.

    PubMed  CAS  Google Scholar 

  23. Aikawa R, Komuro I, Yamazaki T et al. Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res 1999; 84:458–466.

    PubMed  CAS  Google Scholar 

  24. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 1997; 59:551–571.

    PubMed  CAS  Google Scholar 

  25. Baker KM, Booz GW, Dostal DE. Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol 1992; 54:227–241.

    PubMed  CAS  Google Scholar 

  26. Linz W, Schoelkens BA, Ganten D. Converting enzyme inhibitor specifically prevents development and induces the regression of cardiac hypertrophy in rats. Clin Exp Hypertens 1989; 11:1325–1350.

    CAS  Google Scholar 

  27. Kojima M, Shiojima I, Yamazaki T et al. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 1994; 89:2204–2211.

    PubMed  CAS  Google Scholar 

  28. Bruckschlegel G, Holmer SR, Jandeleit K et al. Blockade of the renin-angiotensin system in cardiac pressure overload hypertrophy in rats. Hypertension 1995; 25:250–259.

    PubMed  CAS  Google Scholar 

  29. Yamazaki T, Komuro I, Kudoh S et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 1995; 77:258–265.

    PubMed  CAS  Google Scholar 

  30. Sadoshima J, Xu Y, Slayter HS et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993; 75:977–984.

    PubMed  CAS  Google Scholar 

  31. Kudoh S, Komuro I, Mizuno T et al. Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 1997; 80:139–146.

    PubMed  CAS  Google Scholar 

  32. Izumi Y, Kim S, Zhan Y et al. Important role of angiotensin II-mediated c-Jun NH(2)-terminal kinase activation in cardiac hypertrophy in hypertensive rats. Hypertension 2000; 36:511–516.

    PubMed  CAS  Google Scholar 

  33. Pellieux C, Sauthier T, Aubert JF et al. Angiotensin II-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice. J Hypertens 2000; 18:1307–1137.

    PubMed  CAS  Google Scholar 

  34. Pan J, Fukuda K, Kodama H et al. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 1997; 81:611–617.

    PubMed  CAS  Google Scholar 

  35. Hunt RA, Bhat GJ, Baker KM. Angiotensin II-stimulated induction of sis-inducing factor is mediated by pertussis toxin-insensitive Gq proteins in cardiac myocytes. Hypertension 1999; 34:603–608.

    PubMed  CAS  Google Scholar 

  36. McWhinney CD, Dostal D, Baker K. Angiotensin II activates Stat5 through Jak2 kinase in cardiac myocytes. J Mol Cell Cardiol 1998;30:751–761.

    PubMed  CAS  Google Scholar 

  37. Zou Y, Komuro I, Yamazaki T et al. Cell type-specific angiotensin II-evoked signal transduction pathways. Critical roles of Gβγ subunit, Src family, and Ras in cardiac fibroblasts. Circ Res 1998; 82:337–345.

    PubMed  CAS  Google Scholar 

  38. Zou Y, Komuro I, Yamazaki T et al. Protein kinase C, but not tyrosine kinases or Ras, plays a criticle role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J Biol Chem 1996; 271:33592–33597.

    PubMed  CAS  Google Scholar 

  39. Sadoshima J, Izumo S. The heterotrimetric Gq protein-coupled angiotensin II receptor activates p21ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 1996; 15:775–787.

    PubMed  CAS  Google Scholar 

  40. Kudoh S, Komuro I, Hiroi Y et al. Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type la receptor knockout mice. J Biol Chem 1998; 273:24037–24043.

    PubMed  CAS  Google Scholar 

  41. Ito H, Hirata Y, Hiroe M et al. Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res 1991; 69:209–215.

    PubMed  CAS  Google Scholar 

  42. Yamazaki T, Komuro I, Kudoh S et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 1996; 271:3221–3228.

    PubMed  CAS  Google Scholar 

  43. Yamazaki T, Komuro I, Zou Y et al. Hypertrophic responses of cardiomyocytes induced by endothelin-1 through the protein kinase C-dependent but Src and Ras-independent pathways. Hypertens Res 1999; 22:113–119.

    PubMed  CAS  Google Scholar 

  44. Harada M, Itoh H, Nakagawa O et al. Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: Evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation 1997; 96:3737–3744.

    PubMed  CAS  Google Scholar 

  45. Sakai S, Miyauchi T, Kobayashi M et al. Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996; 384:353–355.

    PubMed  CAS  Google Scholar 

  46. Akhter SA, Luttrell LM, Rockman HA et al. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998; 280:574–577.

    PubMed  CAS  Google Scholar 

  47. Zou Y, Yao A, Zhu W et al. Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin. Circulation 2001; 104:102–108.

    PubMed  CAS  Google Scholar 

  48. Laks MM, Morady F, Swan HJC. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dogs. Chest 1973; 64:75–78.

    PubMed  CAS  Google Scholar 

  49. Brand T, Sharma HS, Schaper W. Expression of nuclear proto-oncogenes in isoproterenol-induced cardiac hypertrophy. J Mol Cell Cardiol 1993; 25:1325–1337.

    PubMed  CAS  Google Scholar 

  50. Milano CA, Dolber PC, Rockman HA et al. Myocardial expression of a constitutively active α1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci USA 1994; 91:10109–10113.

    PubMed  CAS  Google Scholar 

  51. Thorburn A. Ras activity is required for phenylephrine-induced activation of MAP kinase in cardiac muscle cells. Biochem Biophys Res Comm 1994; 205:1417–1422.

    PubMed  CAS  Google Scholar 

  52. Slotkin TA, Lappi SE, Seidler FJ. β-adrenergic control of c-fos expression in fetal and neonatal rat tissues: Relationship to cell differentiation and teratogenesis. Tox Appl Pharm 1995; 133:188–195.

    CAS  Google Scholar 

  53. Bogoyevitch MA, Andersson MB, Gillespie BJ et al. Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. Biochem J 1996; 314:115–121.

    PubMed  CAS  Google Scholar 

  54. Yamazaki T, Komuro I, Zou Y et al. Norepinephrine induces the raf-1 kinase/MAP kinase cascade through both al-and β-adrenoceptors. Circulation 1997; 95:1260–1268.

    PubMed  CAS  Google Scholar 

  55. Yamazaki T, Komuro I, Zou Y et al. Protein kinase A and protein kinase C synergistically activate the Raf-1 kinase/mitogen-activated protein kinase cascade in neonatal rat cardiomyocytes. J Mol Cell Cardiol 1997; 29:2491–2501.

    PubMed  CAS  Google Scholar 

  56. Zou Y, Komuro I, Yamazaki T et al. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J Biol Chem 1999; 274:9760–9770.

    PubMed  CAS  Google Scholar 

  57. Asakura M, Kitakaze M, Takashima S et al. Cardiac hypertrophy is inhibited by antagonism of ADAM 12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nat Med 2002; 8:35–40.

    PubMed  CAS  Google Scholar 

  58. Thorburn J, Carlson M, Mansour SJ et al. Inhibition of a signaling pathway in cardiac muscle cells by active mitogen-activated protein kinase kinase. Mol Biol Cell 1995; 6:1479–1490.

    PubMed  CAS  Google Scholar 

  59. Glennon PE, Kaddoura S, Sale EM et al. Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res 1996; 78:954–961.

    PubMed  CAS  Google Scholar 

  60. Fuller SJ, Davies EL, Gillespie BJ et al. Mitogen-activated protein kinase phosphatase 1 inhibits the stimulation of gene expression by hypertrophic agonists in cardiac myocytes. Biochem J 1997; 15:313–319.

    Google Scholar 

  61. Post GR, Goldstein D, Thuerauf DJ et al. Dissociation of p44 and p42 mitogen-activated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 1996; 271:8452–8457.

    PubMed  CAS  Google Scholar 

  62. Page C, Doubell AF. Mitogen-activated protein kinase (MAPK) in cardiac tissues. Mol Cell Biochem 1996; 157:49–57.

    PubMed  CAS  Google Scholar 

  63. Harada K, Komuro I, Zou Y et al. Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type la knockout mice. Circ Res 1998; 82:779–85.

    PubMed  CAS  Google Scholar 

  64. Pause A, Belsham GJ, Gingras AC et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 1994; 371:762–767.

    PubMed  CAS  Google Scholar 

  65. Wada H, Ivester CT, Carabello BA et al. Translational initiation factor eIF-4E. J Biol Chem 1996; 271:8359–8364.

    PubMed  CAS  Google Scholar 

  66. Ihle JN. Cytokine receptor signalling. Nature 1995; 377:591–594.

    PubMed  CAS  Google Scholar 

  67. Mascareno E, Dhar M, Siddiqui MA. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: A cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci USA 1998; 95:5590–5594.

    PubMed  CAS  Google Scholar 

  68. Pan J, Fukuda K, Saito M et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 1999; 84:1127–1136.

    PubMed  CAS  Google Scholar 

  69. Uozumi H, Hiroi Y, Zou Y et al. gp130 plays a critical role in pressure overload-induced cardiac hypertrophy. J Biol Chem 2001; 276:23115–23119.

    PubMed  CAS  Google Scholar 

  70. Hirota H, Chen J, Betz UA et al. Loss of a gpl 30 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97:189–98.

    PubMed  CAS  Google Scholar 

  71. Kunisada K, Hirota H, Fujio Y et al. Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 1996; 94:2626–2632.

    PubMed  CAS  Google Scholar 

  72. Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993;120:577–85.

    PubMed  CAS  Google Scholar 

  73. Hynes RO. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 1992; 69:11–25.

    PubMed  CAS  Google Scholar 

  74. Hamasaki K, Mimura T, Furuya H et al. Stretching mesangial cells stimulates tyrosine phosphorylation of focal adhesion kinase pp125FAK. Biochem Biophys Res Commun 1995; 212:544–549.

    PubMed  CAS  Google Scholar 

  75. Aikawa R, Nagai T, Kudoh S et al. Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension 2002; 39:233–8.

    PubMed  CAS  Google Scholar 

  76. Ingber D. Integrins as mechanochemical transducer. Curr OpinCell Biol 1991; 3:841–848.

    CAS  Google Scholar 

  77. Simpson DG, Terracio L, Terracio M et al. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol 1994; 161:89–105.

    PubMed  CAS  Google Scholar 

  78. Ross RS. The extracellular connections: The role of integrins in rnyocardial remodeling. J Card Fail 2002; 8:S326–31.

    PubMed  CAS  Google Scholar 

  79. Parsons JT. Integrin-mediated signalling: Regulation by protein tyrosine kinases and small GTP-binding proteins. Curr Opin Cell Biol 1996; 8:146–152.

    PubMed  CAS  Google Scholar 

  80. Buck CA, Baldwin HS, DeLisser H et al. Cell adhesion receptors and early mammalian heart development: An overview. Sciences de la Vie 1993; 316:838–859.

    PubMed  CAS  Google Scholar 

  81. Brancaccio M, Fratta L, Notte A et al. Melusin, a muscle-specific integrin betal-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 2003; 9:68–75.

    PubMed  CAS  Google Scholar 

  82. Morris CE. Mechanosensitive ion channels. J Membrane Biol 1990; 113:93–107.

    CAS  Google Scholar 

  83. Bustamante JO, Ruknudin A, Sachs F. Stretch-activated channels in heart cells: Relevance to cardiac hypertrophy. J Cardiovasc Pharm 1991; 17:S110–S113.

    Google Scholar 

  84. Craelius W, Chen V, el-Sherif N. Stretch activated ion channels in ventricular myocytes. Bio-science Rep 1988; 8:407–414.

    CAS  Google Scholar 

  85. Lederer WJ, He S, Luo S et al. The molecular biology of the Na+-Ca2+ exchanger and its functional roles in heart, smooth muscle cells, neurons, glia, lymphocytes, and nonexcitable cells. Ann NY Acad Sci 1996; 779:7–17.

    PubMed  CAS  Google Scholar 

  86. Yamazaki T, Komuro I, Kudoh S et al. Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res 1998; 82:430–437.

    PubMed  CAS  Google Scholar 

  87. Sigurdson W, Ruknudin A, Sachs F. Ca imaging of mechanically induced fluxes in tissue-cultured chick heart: Role of stretch-activated ion channels. Am J Physiol 1992; 262:H1110–H1115.

    PubMed  CAS  Google Scholar 

  88. Nabauer M, Morad M. Ca2+-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes. Am J Physiol 1990; 258:C189–C193.

    PubMed  CAS  Google Scholar 

  89. Sham JS, Cleemann L, Morad M. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci USA 1995; 92:121–125.

    PubMed  CAS  Google Scholar 

  90. Means AR, VanBerkum MF, Bagchi I et al. Regulatory functions of calmodulin. Pharmacol Therapeut 1991; 50:255–270.

    CAS  Google Scholar 

  91. Gruver CL, DeMayo F, Goldstein MA et al. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 1993; 133:376–388.

    PubMed  CAS  Google Scholar 

  92. Braun AP, Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: From form to function. Annu Rev Physiol 1995; 57:417–445.

    PubMed  CAS  Google Scholar 

  93. Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 1998; 273:13367–13370.

    PubMed  CAS  Google Scholar 

  94. Lu J, McKinsey TA, Nicol RL et al. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 2000; 97:4070–4075.

    PubMed  CAS  Google Scholar 

  95. Muller J, Nemoto S, Laser M et al. Calcineurin inhibition and cardiac hypertrophy. Science 1998; 282:1007.

    Google Scholar 

  96. Luo Z, Shyu KG, Gualberto A et al. Calcineurin inhibitors and cardiac hypertrophy. Nat Med 1998; 4:1092-1093.

    Google Scholar 

  97. Zhang W, Kowal RC, Rusnak F et al. Failure of calcineurin inhibitors to prevent pressure overload left ventricular hypertrophy in rats. Circ Res 1999; 84:722–728.

    PubMed  CAS  Google Scholar 

  98. Ding B, Price RL, Borg TK et al. Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin. Circ Res 1999; 84:729–734.

    PubMed  CAS  Google Scholar 

  99. Zou Y, Hiroi Y, Uozumi H et al. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 2001; 104:97–101.

    PubMed  CAS  Google Scholar 

  100. De Windt LJ, Lim HW, Bueno OF et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 2001; 98:3322–3327.

    PubMed  Google Scholar 

  101. Rothermel BA, McKinsey TA, Vega R et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 2001; 98:328–333.

    Google Scholar 

  102. Sussman MA, Lim HW, Gude N et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 1998; 281:1690–1693.

    PubMed  CAS  Google Scholar 

  103. Meguro T, Hong C, Asai K et al. Cyclosporine attenuates pressure overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res 1999; 84:735–740.

    PubMed  CAS  Google Scholar 

  104. Shimoyama M, Hayashi D, Takimoto E et al. Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation 1999; 100:2449–2454.

    PubMed  CAS  Google Scholar 

  105. Lim HW, De Windt LJ, Steinberg L et al. Calcineurin expression, activation, and function in cardiac pressure overload hypertrophy. Circulation 2000; 101:2431–2437.

    PubMed  CAS  Google Scholar 

  106. Hill JA, Karimi M, Kutschke W et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 2000; 101:2863–2869.

    PubMed  CAS  Google Scholar 

  107. Molkentin JD, Lu JR, Antos CL et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998; 93:215–228.

    PubMed  CAS  Google Scholar 

  108. De Windt L, Lim H, Taigen T et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res 2000; 86:255–263.

    PubMed  Google Scholar 

  109. Shibasaki F, McKeon F. Calcineurin functions in Ca2+-activated cell death in mammalian cells. J Cell Biol 1995; 131:735–743.

    PubMed  CAS  Google Scholar 

  110. Brewster JL, de Valoir T, Dwyer ND et al. An osmosensing signal transduction pathway in yeast. Science 1993; 259:1760–1763.

    PubMed  CAS  Google Scholar 

  111. De Windt LJ, Lim HW, Haq S et al. Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem 2000; 275:13571–13579.

    PubMed  Google Scholar 

  112. Wang HG, Pathan N, Ethell IM et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999; 284:339–343.

    PubMed  CAS  Google Scholar 

  113. Saito S, Hiroi Y, Zou Y et al. β-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 2000; 275:34528–34533.

    PubMed  CAS  Google Scholar 

  114. Lotem J, Kama R, Sachs L. Suppression or induction of apoptosis by opposing pathways down stream from calcium-activated calcineurin. Proc Natl Acad Sci USA 1999; 96:12016–12020.

    PubMed  CAS  Google Scholar 

  115. Olivetti G, Abbi R, Quaini F et al. Apoptosis in the failing human heart. N Engl J Med 1997; 336:1131–1141.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hasegawa, H., Takano, H., Zou, Y., Akazawa, H., Komuro, I. (2007). Second Messenger Systems Involved in Heart Mechanotransduction. In: Cardiac Mechanotransduction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48868-4_6

Download citation

Publish with us

Policies and ethics