Skip to main content

The Role of the Sarcomere and Cytoskeleton in Cardiac Mechanotransduction

  • Chapter
Cardiac Mechanotransduction

Abstract

The basic contractile unit of the cardiac myocyte is the sarcomere. Force develops as a result of the interaction of myosin heads with the actin thin filament. Actin filaments are directly connected to the Z line of the sarcomere, whereas myosin filaments are secured via the giant elastic protein titin. When cardiac muscle is stretched there is an immediate increase in contractility. This is an acute and fundamental cardiac adaptive response to an increase in demand. Evidence suggests that an increase in the probability of crossbridge formation, through titin strain and positive cooperative mechanisms, underlies the length-dependent activation of cardiac muscle. The sarcomere is connected to the sarcolemma by cytoskeletal components which link the Z-line with the membrane-spanning integrins and dystroglycan complex. Integrins and dystroglycan, in turn, bind to components of the extracellular matrix, such as laminin, which sheath the cardiac myocyte. Connections also exist between Z-line and nucleus via the intermediate filament protein desmin. The intracellular connections between the Z-line of the sarcomere and the sarcolemma allow transmission of force developed by the myofilaments. However, the physical pathway that links the extracellular matrix, membrane-spanning proteins, and the cell interior also plays a fundamental role in mechanotransduction. These links allow the cell to sense and respond to mechanical stimuli through connections with the cytoskeleton and activation of signalling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frank O. Zur dynamik des herzmusckels. Z Biol 1895;32:370–447.

    Google Scholar 

  2. Patterson S, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol 1914;48:357–337.

    PubMed  CAS  Google Scholar 

  3. Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol 1915;50:65–84.

    PubMed  CAS  Google Scholar 

  4. Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 1966;184:170–192.

    PubMed  CAS  Google Scholar 

  5. Allen DG, Jewell BR, Murray JW. The contribution of activation processes to the length-tension relation of cardiac muscle. Nature 1974;248:606–607.

    PubMed  CAS  Google Scholar 

  6. Fabiato A, Fabiato F. Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 1975;256:54–56.

    PubMed  CAS  Google Scholar 

  7. Allen DG, Kentish JC. The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 1985;17:821–840.

    PubMed  CAS  Google Scholar 

  8. Lakatta EG. Length modulation of muscle performance: Frank-Starling law of the heart. In: Fozzard HA, Haber E, Jennings RB et al, eds. The Heart and Cardiovascular System, 2nd ed. New York: Raven Press, 1992:1325–1352.

    Google Scholar 

  9. Allen DG, Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 1982;327:79–94.

    PubMed  CAS  Google Scholar 

  10. Calaghan SC, White E. The role of calcium in the response of cardiac muscle to stretch. Prog Biophys Mol Biol 1999;71:59–90.

    PubMed  CAS  Google Scholar 

  11. Hibberd MC, Jewell BR. Calcium and length-dependent force production in rat ventricular muscle. J Physiol 1982;329:527–540.

    PubMed  CAS  Google Scholar 

  12. Kentish JC, Wrzosek A. Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol 1998;506:431–444.

    PubMed  CAS  Google Scholar 

  13. Hofmann PA, Fuchs F. Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C. Am J Physiol 1987;253:C90–C96.

    PubMed  CAS  Google Scholar 

  14. Babu A, Sonnenblick E, Gulati J. Molecular basis for the influence of muscle length on myocardial performance. Science 1988;240:74–76.

    PubMed  CAS  Google Scholar 

  15. Gulati J. Is cardiac troponin C the length sensor in Starling’s law of the heart. Trends Cardiovasc Med 1996;6:245–246.

    Google Scholar 

  16. Akella AB, Su H, Sonnenblick EH et al. The cardiac troponin C isoform and the length dependence of Ca2+ sensitivity of tension in myocardium. J Mol Cell Cardiol 1997;29:381–389.

    PubMed  CAS  Google Scholar 

  17. Moss RL, Nwoye LO, Greaser ML. Substitution of cardiac troponin C into rabbit muscle does not alter the length-dependence of Ca2+ sensitivity of tension. J Physiol 1991;440:273–289.

    PubMed  CAS  Google Scholar 

  18. McDonald KS, Field LJ, Parmacek MS et al. Length-dependence of Ca2+ sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C. J Physiol 1995;483:131–139.

    PubMed  CAS  Google Scholar 

  19. Kajiwara H, Morimoto S, Fukuda N et al. Effect of troponin I phosphorylation by protein kinase A on length-dependence of tension activation in skinned cardiac muscle fibers. Biochem Biophys Res Comm 2000;272:104–110.

    PubMed  CAS  Google Scholar 

  20. Allen DG, Kentish JC. Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol 1988;407:489–503.

    PubMed  CAS  Google Scholar 

  21. Lehrer SS, Geeves MA. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 1998;277:1081–1089.

    PubMed  CAS  Google Scholar 

  22. Bremel RD, Weber A. Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 1972;238:97–101.

    PubMed  CAS  Google Scholar 

  23. Fitzsimons DP, Moss RL. Strong binding of myosin modulates length-dependent Ca2+ activation of rat ventricular myocytes. Circ Res 1998;83:602–607.

    PubMed  CAS  Google Scholar 

  24. Fuchs F, Smith SH. Calcium, crossbridges and the Frank Starling relationship. News Physiol Sci 2001;16:5–10.

    PubMed  CAS  Google Scholar 

  25. Konhilas JP, Irving TC, de Tombe PP. Frank-Starling law of the heart and the cellular mechanisms of length-dependent activation. Pflugers Archiv 2002;445:305–310.

    PubMed  CAS  Google Scholar 

  26. Moss RL, Fitzsimons DP. Frank-Starling relationship: Long on importance, short on mechanism. Circ Res 2002;90:111–113.

    Google Scholar 

  27. Fukuda N, Kajiwara H, Ishiwata S et al. Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle. Circ Res 2000;86:E1–6.

    PubMed  CAS  Google Scholar 

  28. Godt RE, Maughan DW. Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit. Pflugers Arch 1981;391:334–337.

    PubMed  CAS  Google Scholar 

  29. McDonald KS, Moss RL. Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short length. Circ Res 1995;77:115–119.

    Google Scholar 

  30. Fuchs F, Wang Y-P. Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding. J Mol Cell Cardiol 1996;28:1375–1383.

    PubMed  CAS  Google Scholar 

  31. Cazorla O, Wu Y, Irving TC et al. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 2001;88:1028–1035.

    PubMed  CAS  Google Scholar 

  32. Konhilas JP, Irving TC, de Tombe PP. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: Role of interfilament spacing. Circ Res 2002;90:59–65.

    PubMed  CAS  Google Scholar 

  33. Irving TC, Konhilas J, Perry D et al. Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium. Am J Physiol 2000;279:H2568–H2573.

    CAS  Google Scholar 

  34. Irving TC, Millman BM. Changes in thick filament structure during compression of the filament lattice in relaxed frog sartorius muscle. J Muscle Res Cell Motil 1989;10:385–94.

    PubMed  CAS  Google Scholar 

  35. Trombitas K, Granzier H. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am J Physiol 1997;273:C662–70.

    PubMed  CAS  Google Scholar 

  36. Helmes M, Trombitas K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ Res 1996;79:619–26.

    PubMed  CAS  Google Scholar 

  37. Cazorla O, Vassort G, Garnier D et al. Length modulation of active force in rat cardiac myocytes: Is titin the sensor? J Mol Cell Cardiol 1999;31:1215–1227.

    PubMed  CAS  Google Scholar 

  38. Granzier HL, Irving TC. Passive tension in cardiac muscle: Contribution of collagen, titin, micro-tubules and intermediate filaments. Biophys J 1995;68:1027–1044.

    PubMed  CAS  Google Scholar 

  39. Wu Y, Cazorla O, Labeit D et al. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 2000;32:2151–2162.

    PubMed  CAS  Google Scholar 

  40. Fukuda N, Sasaki D, Ishiwata S et al. Length dependence of tension generation in rat skinned cardiac muscle: Role of titin in the Frank-Starling mechanism of the heart. Circulation 2001;104:1639–1645.

    PubMed  CAS  Google Scholar 

  41. Rodriguez EK, Omens JH, Waldman, LK et al. Effect of residual stress on transmural sarcomere length distributions in rat left ventricle. Am J Physiol 1993;264:H1048–1056.

    PubMed  CAS  Google Scholar 

  42. Solovyova O, Katsnelson L, Guriev S et al. Mechanical inhomogeniety of myocardium studied in parallel and series cardiac muscle duplexes: Experiments and models. Chaos Solitons Fractal 2002;13:1685–1711.

    CAS  Google Scholar 

  43. Lab M. Mechanosensitivity as an integrative system in the heart: An audit. Prog Biophys Mol Biol 1999;71:7–27.

    PubMed  CAS  Google Scholar 

  44. Moulton MJ, Downing SW, Creswell LL et al. Mechanical dysfunction in the border zone of an ovine model of left ventricular aneurysm. Ann Thorac Surg 1995;60:986–998.

    PubMed  CAS  Google Scholar 

  45. Natali AJ, Wilson LA, Peckham M et al. Different regional effects of voluntary exercise on the mechanical and electrical properties of rat ventricular myocytes. J Physiol 2002;541:863–875.

    PubMed  CAS  Google Scholar 

  46. Diffee GM, Nagle DF. Exercise training alters length dependence of contractile properties in rat myocardium. J Appl Physiol 2003;94:1137–1144.

    PubMed  Google Scholar 

  47. Diffee GM, Nagle D. Regional differences in effects of exercise training on contractile and biochemical properties of rat cardiac myocytes. J Appl Physiol 2003;95:35–42.

    PubMed  CAS  Google Scholar 

  48. Cazorla O, Freiburg A, Helmes M et al. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 2000;86:59–67.

    PubMed  CAS  Google Scholar 

  49. Trombitas K, Wu Y, Labeit D et al. Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol 2001;281:H1793–H1799.

    CAS  Google Scholar 

  50. Schwinger RH, Bohm M, Koch A et al. The failing human heart is unable to use the Frank-Starling mechanism. Circ Res 1994;74:959–969.

    PubMed  CAS  Google Scholar 

  51. Morano I, Hadicke K, Grom S et al. Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 1994;26:361–368.

    PubMed  CAS  Google Scholar 

  52. Vahl CF, Timek T, Bonz A et al. Length dependence of calcium and force transients in normal and failing human myocardium. J Mol Cell Cardiol 1998;30:957–966.

    PubMed  CAS  Google Scholar 

  53. Holubarsch C, Ruf T, Goldstein DJ et al. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels. Circulation 1996;94:683–689.

    PubMed  CAS  Google Scholar 

  54. de Tombe PP. Altered contractile function in heart failure. Cardiovasc Res 1998;37:367–380.

    PubMed  Google Scholar 

  55. Hongo K, White E, Le Guennec J-Y et al. Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. J Physiol 1996;491:599–609.

    Google Scholar 

  56. Tavi P, Han C, Weckstrom M. Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: Role of increase troponin C affinity and stretch-activated ion channels. Circ Res 1998;83:1165–1177.

    PubMed  CAS  Google Scholar 

  57. Tucci PFJ, Bregagnollo EA, Spadaro J et al. Length dependence of activation studied in the isovolumic blood-perfused dog heart. Circ Res 1984;55:171–188.

    Google Scholar 

  58. Cingolani HE, Perez NG, Pieske B et al. Stretch-elicited Na+/H+ exchanger activation: The autocrine/paracrine loop and its mechanical counterpart. Cardiovasc Res 2003;57:953–960.

    PubMed  CAS  Google Scholar 

  59. Calaghan SC, Belus A, White E. Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Prog Biophys Mol Biol 2003;82:82–95.

    Google Scholar 

  60. Calaghan SC, Colyer J, White E. Cyclic AMP but not phosphorylation of phospholamban contributes to the slow inotropic response to stretch in ferret papillary muscle. Pflugers Arch 1999;437:780–782.

    PubMed  CAS  Google Scholar 

  61. Todaka K, Ogino K, Gu A et al. Effect of ventricular stretch on contractile strength, calcium transient, and cAMP in intact canine heart. Am J Physiol 1998;274:H990–H1000.

    PubMed  CAS  Google Scholar 

  62. Perez NG, de Hurtado MC, Cingolani HE. Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: Underlying mechanism of the slow force response. Circ Res 2001;88:376–382.

    PubMed  CAS  Google Scholar 

  63. Calaghan SC, White E. The involvement of angiotensin II, endothelin 1 and the endothelium on the slow inotropic effect of stretch in ferret papillary muscle. Pflugers Archiv 2001;441:514–520.

    PubMed  CAS  Google Scholar 

  64. Vila-Petroff MG, Kim SH, Pepe S et al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 2001;3:867–873.

    CAS  Google Scholar 

  65. Chuck L, Parmley CC. Caffeine reversal of the length-dependent changes in myocardial state in the cat. Circ Res 1980;47:592–598.

    PubMed  CAS  Google Scholar 

  66. Tavi P, Weckström M, Ruskoaho H. cAMP-and cGMP-independent stretch-induced changes in the contraction of rat atrium. Pflugers Arch 2000;441:65–68.

    PubMed  CAS  Google Scholar 

  67. Calaghan SC, White E. Signalling pathways which underlie the slow inotropic response to myocardial stretch. J Physiol 2002;544P:23S.

    Google Scholar 

  68. Lab M, Allen D, Orchard CH. The effect of shortening on myoplasmic calcium concentration and on action potential in mammalian ventricular muscle. Circ Res 1984;55:825–829.

    PubMed  CAS  Google Scholar 

  69. Janvier NC, Boyett MR. The role of Na-Ca exchange current in the cardiac action potential. Cardiovasc Res 1996;32:69–84.

    PubMed  CAS  Google Scholar 

  70. Han C, Tavi P, Weckström M. Role of the sarcoplasmic reticulum in the modulation of rat cardiac action potential by stretch. Acta Physiol Scand 1999;167:111–117.

    PubMed  CAS  Google Scholar 

  71. Belus A, White E. Streptomycin and intracellular calcium modulate the response of single guinea pig ventricular myocytes to axial stretch. J Physiol 2003;546:501–509.

    PubMed  CAS  Google Scholar 

  72. Markhasin VS, Solovyova O, Katsnelson L et al. Mechano-electric interactions in heterogeneous myocardium: Development of fundamental experimental and theoretical models. Prog Biophys Mol Biol 2003;82:207–220.

    PubMed  CAS  Google Scholar 

  73. Watson PA. Function follows form: Generation of intracellular signals by cell deformation. FASEB J 1991;5:2013–2019.

    PubMed  CAS  Google Scholar 

  74. Janmey PA. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol Rev 1998;78:763–81.

    PubMed  CAS  Google Scholar 

  75. Forgacs G. On the possible role of cytoskeletal filamentous networks in intracellular signaling: An approach based on percolation. J Cell Sci 1995;108:2131–2143.

    PubMed  CAS  Google Scholar 

  76. Heidemann SR, Lamoureaux P, Buxbaum RE. Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol 2000;89:1663–1678.

    Google Scholar 

  77. Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 2003;116:1157–1173.

    PubMed  CAS  Google Scholar 

  78. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 2003;116:1397–1408.

    PubMed  CAS  Google Scholar 

  79. Schmidt-Schonbein GW, Kosawada T, Skalak T et al. Membrane model of endothelial cell leukocytes. A proposal for the origin of cortical stress. J Biomechan Eng 1995;117:171–178.

    Google Scholar 

  80. Ingber DE. Tensegrity: The architectural basis of cellular mechanotransduction. Ann Rev Physiol 1997;59:575–99.

    CAS  Google Scholar 

  81. Ingber DE. Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol 2000;89:1663–1678.

    PubMed  CAS  Google Scholar 

  82. Pelouch V, Dixon IMC, Golfman L et al. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 1994;129:101–120.

    Google Scholar 

  83. Borg TK, Goldsmith EC, Price R et al. Specialization at the Z line of cardiac myocytes. Cardiovasc Res 2000;46:277–285.

    PubMed  CAS  Google Scholar 

  84. MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 2000;46:257–263.

    PubMed  CAS  Google Scholar 

  85. Weber KT, Janicki JS, Shroff SG et al. Collagen remodelling of the pressure-overloaded, hypertro-phied nonhuman primate myocardium. Circ Res 1988;62:757–765.

    PubMed  CAS  Google Scholar 

  86. Samuel J-L, Corda S, Chassagne C et al. The extracellular matrix and the cytoskeleton in heart hypertrophy and failure. Heart Failure Rev 2000;5:239–250.

    Google Scholar 

  87. Simpson DG, Reaves TA, Shih D et al. Cardiac Integrins: The ties that bind. Cardiovasc Pathol 1998;7:135–143.

    CAS  Google Scholar 

  88. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999;285:1028–1032.

    PubMed  CAS  Google Scholar 

  89. Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001;88:1112–1119.

    PubMed  CAS  Google Scholar 

  90. Ruwhof C, van der Laarse A. Mechanical stress-induced cardiac hypertrophy: Mechanisms and signal transduction pathways. Cardiovasc Res 2000; 47:23–37.

    PubMed  CAS  Google Scholar 

  91. Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol 1991; 3:841–848.

    PubMed  CAS  Google Scholar 

  92. Danowski BA, Imanaka-Yoshida K, Sanger JM et al. Costomeres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol 1992; 118:1411–1120.

    PubMed  CAS  Google Scholar 

  93. Schlaepfer DD, Hanks SK, Hunter T et al. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994; 372:786–791.

    PubMed  CAS  Google Scholar 

  94. Cybulsky AV, Bonventre JV, Quigg RJ et al. Extracellular matrix regulates proliferation and phos-pholipid turnover in glomerular epithelial cells. Am J Physiol 1990; 259:F326–F337.

    PubMed  CAS  Google Scholar 

  95. Ingber DE, Prusty D, Frangioni JV et al. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J Cell Biol 1990; 110:1803–1811.

    PubMed  CAS  Google Scholar 

  96. Franchini KG, Torsoni AS, Soares PH et al. Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart. Circ Res 2000; 87:558–565.

    PubMed  CAS  Google Scholar 

  97. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nudeur structure. Proc Nat Acad Sci USA 1997; 94:849–854.

    PubMed  CAS  Google Scholar 

  98. Wang YG, Samarel AM, Lipsius SL. Laminin binding to β1-integrins selectively alters β1-and β2-adrenoceptor signalling in cat atrial myocytes. J Physiol 2000; 527:3–9.

    PubMed  CAS  Google Scholar 

  99. Sharp WW, Simpson DG, Borg TK et al. Mechanical forces regulate focal adhesion and costomere assembly in cardiac myocytes. Am J Physiol 1997; 273:H546–H556.

    PubMed  CAS  Google Scholar 

  100. Ahn AH, Kunkel LM. The structural and functional diversity of dystrophin. Nat Genet 1993; 3:283–291.

    PubMed  CAS  Google Scholar 

  101. Ohlendieck K. Towards an understanding of the dystrophin-glycoprotein complex: Linkage between the extracellular matrix and the membrane cytoskeleton in muscle fibers. Eur J Cell Biol 1996; 69:1–10.

    PubMed  CAS  Google Scholar 

  102. Kaprielian RR, Severs NJ. Dystrophin and the cardiomyocyte membrane cytoskeleton in the healthy and failing heart. Heart Failure Rev 2000; 5:221–238.

    CAS  Google Scholar 

  103. Kostin S, Heling A, Hein S et al. The protein composition of the normal and diseased cardiac myocyte. Heart Failure Rev 1998; 2:245–260.

    CAS  Google Scholar 

  104. Kaprielian RR, Stevenson S, Rothery SM et al. Distinct patterns of dystrophin organization in myocyte sarcolemma and transverse tubules of normal and diseased human myocardium. Circulation 2000; 101:2586–2594.

    PubMed  CAS  Google Scholar 

  105. Hoffman EP, Kunkel LM. Dystrophin abnormalities in Duchenne/Becker muscular dystrophy. Neuron 1989; 2:1019–1029.

    PubMed  CAS  Google Scholar 

  106. McNally E, Allikian M, Wheeler MT et al. Cytoskeletal defects in cardiomyopathy. J Mol Cell Cardiol 2003; 35:231–241.

    PubMed  CAS  Google Scholar 

  107. Fowler VM. Regulation of actin filament length in erythrocytes and striated muscle. Curr Opin Cell Biol 1996; 8:86–96.

    PubMed  CAS  Google Scholar 

  108. Sadoshima J, Takahashi T, Jahn L et al. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 1992; 89:9905–9909.

    PubMed  CAS  Google Scholar 

  109. Wang N, Butler JP, Ingber D. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993; 260:1124–1127.

    PubMed  CAS  Google Scholar 

  110. Capetanaki Y. Desmin cytoskeleton in healthy and failing heart. Heart Failure Rev 2000; 5:203–220.

    CAS  Google Scholar 

  111. Yang X, Salas PJI, Pham TV et al. Cytoskeletal actin microfilaments and the transient outward potassium current in hypertrophied rat ventriculocytes. J Physiol 2002; 541:411–421.

    PubMed  CAS  Google Scholar 

  112. Otey CA, Kalnoski MH, Bulinski JC. Immunolocalization of muscle and nonmuscle isoforms of actin in myogenic cells and adult skeletal muscle. Cell Motil Cytoskeleton 1988; 9:337–348.

    PubMed  CAS  Google Scholar 

  113. Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 2000; 150:1209–1214.

    PubMed  CAS  Google Scholar 

  114. Hilgemann DW. Cytoplasmic ATP-dependent regulation of ion transporters and channels: Mechanisms and messengers. Ann Rev Physiol 1997; 59:193–220.

    CAS  Google Scholar 

  115. Cantiello HF. Role of actin filament organization in cell volume and ion channel regulation. J Exp Zool 1997; 279:425–435.

    PubMed  CAS  Google Scholar 

  116. Guharay F, Sachs F. Stretch-activated single ion-channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 1984; 352:685–701.

    PubMed  CAS  Google Scholar 

  117. Kim D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ Res 1993; 72:225–231.

    PubMed  CAS  Google Scholar 

  118. Fuchs E, Cleveland DW. A structural scaffolding of intermediate filaments in health and disease. Science 1998; 279:514–519.

    PubMed  CAS  Google Scholar 

  119. Milner DJ, Taffet GE, Wang X et al. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J Mol Cell Cardiol 1999; 31:2063–2076.

    PubMed  CAS  Google Scholar 

  120. Balogh J, Merisckay M, Li Z et al. Hearts from mice lacking desmin have a myopathy with impaired active force generation and unaltered wall compliance. Cardiovasc Res 2002; 53:439–450.

    PubMed  CAS  Google Scholar 

  121. Bloom S, Lockard VG, Bloom M. Intermediate filament-mediated stretch-induced changes in chromatin: A hypothesis for growth initiation in cardiac myocytes. J Mol Cell Cardiol 1996; 28:2123–2127.

    PubMed  CAS  Google Scholar 

  122. Hill TL. Kirschner MW. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int Rev Cytol 1982; 78:1–125.

    PubMed  CAS  Google Scholar 

  123. Joshi HC, Chu D, Buxbaum RE et al. Tension and compression in the cytoskeleton of PC 12 neurites. J Cell Biol 1985; 101:697–705.

    PubMed  CAS  Google Scholar 

  124. Cooper G. Cardiocyte cytoskeleton in hypertrophied myocardium. Heart Failure Rev 2000; 5:87–201.

    CAS  Google Scholar 

  125. Tagawa H, Wang N, Narishige T et al. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res 1997; 80:281–289.

    PubMed  CAS  Google Scholar 

  126. Yamamoto S, Tsutsui H, Takahashi M et al. Role of microtubules in the viscoelastic properties of isolated cardiac muscle. J Mol Cell Cardiol 1998; 30:1841–1853.

    PubMed  CAS  Google Scholar 

  127. Tsutsui H, Ishihara K, Cooper G. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 1993; 260:682–687.

    PubMed  CAS  Google Scholar 

  128. Tsutsui H, Tagawa H, Kent RL et al. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation 1994; 90:533–555.

    PubMed  CAS  Google Scholar 

  129. Howarth FC, Calaghan SC, Boyett MR et al. Effect of the microtubule polymerising agent on contraction, Ca2+ transient and L-type Ca2+ current in rat ventricular myocytes. J Physiol 1999; 516:409–419.

    PubMed  CAS  Google Scholar 

  130. Schaper J, Froede R, Hein S et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991; 83:504–514.

    PubMed  CAS  Google Scholar 

  131. Heling A, Zimmermann R, Kostin S et al. Increased expression of cytoskeletal, linkage, and extra-cellular proteins in failing human myocardium. Circ Res 2000; 86:846–853.

    PubMed  CAS  Google Scholar 

  132. Kostin S, Hein S, Arnon E et al. The cytoskeleton and related proteins in the human failing heart. Heart Failure Rev 2000; 5:271–280.

    CAS  Google Scholar 

  133. Zile MR, Green GR, Schuyler GT et al. Cardiomyocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy. J Am Coll Cardiol 2001; 37:1080–1084.

    PubMed  CAS  Google Scholar 

  134. Bers DM. Myofilaments: The end effector of E-C coupling. In: Bers DM, ed. Excitation-Contraction Coupling and Cardiac Contractile Force. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2001:19–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Calaghan, S.C., White, E. (2007). The Role of the Sarcomere and Cytoskeleton in Cardiac Mechanotransduction. In: Cardiac Mechanotransduction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48868-4_3

Download citation

Publish with us

Policies and ethics