Skip to main content

Origin of Mechanotransduction

Stretch-Activated Ion Channels

  • Chapter
Cardiac Mechanotransduction

Abstract

Stretch-activated ion channels (SAC) serve as cardiac mechanotransducers. Mechanical stretch of intact tissue, isolated myocytes, or membrane patches rapidly elicits the opening of poorly selective cation, K+, and Cl− SAC. Several voltage- and ligand-gated channels also are mechanosensitive. SAC alter cardiac electrical activity and, with prolonged stretch, cause an intracellular accumulation of Ca2+ and Na+ that can serve to trigger multiple signaling cascades and ultimately may contribute to remodeling of the heart in response to hemodynamic stress. This chapter reviews the transmission of mechanical forces, the biophysical characteristics of cardiac SAC, and how SAC activity may be coupled to signaling cascades and thereby initiates the complex response of the heart to stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tavi P, Laine M, Weckström M et al. Cardiac mechanotransduction: From sensing to disease and treatment. Trends Pharmacol Sci 2001;22:254–260.

    PubMed  CAS  Google Scholar 

  2. Kohl P, Ravens U (Guest eds). Focussed Issue: Mechano-Electrical Feedback and Cardiac Arrhythmias. Prog Biophys Mol Biol 2003;82:1–266.

    Google Scholar 

  3. Franz MR. Mechano-electrical feedback in ventricular myocardium. Cardiovasc Res 1996;32:15–24.

    PubMed  CAS  Google Scholar 

  4. Sigurdson W, Ruknudin A, Sachs F. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: Role of stretch-activated ion channels. Am J Physiol Heart Circ Physiol 1992;262:H1110–H1115.

    CAS  Google Scholar 

  5. Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 1997;59:551–571.

    PubMed  CAS  Google Scholar 

  6. Kudoh S, Akazawa H, Takano H et al. Stretch-modulation of second messengers: Effects on cardiomyocyte ion transport. Prog Biophys Mol Biol 2003;82:57–66.

    PubMed  CAS  Google Scholar 

  7. Vandenberg JI, Rees SA, Wright AR et al. Cell swelling and ion transport pathways in cardiac myocytes. Cardiovasc Res 1996;32:85–97.

    PubMed  CAS  Google Scholar 

  8. Wright AR, Rees SA. Cardiac cell volume: Crystal clear or murky waters? A comparison with other cell types. Pharmacol Ther 1998;80:89–121.

    PubMed  CAS  Google Scholar 

  9. Baumgarten CM, Clemo HF. Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophys Mol Biol 2003;82:25–42.

    PubMed  CAS  Google Scholar 

  10. Berthier C, Blaineau S. Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review. Biol Cell 1997;89:413–434.

    PubMed  CAS  Google Scholar 

  11. Clark KA, McElhinny AS, Beckerle MC et al. Striated muscle cytoarchitecture: An intricate web of form and function. Annu Rev Cell Dev Biol 2002;18:637–706.

    PubMed  CAS  Google Scholar 

  12. Burridge K, Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996;12:463–518.

    PubMed  CAS  Google Scholar 

  13. Defilippi P, Gismondi A, Santoni A et al. Signal transduction by integrins. Austin, TX: Landes Bioscience, 1997.

    Google Scholar 

  14. Borg TK, Goldsmith EC, Price R et al. Specialization at the Z line of cardiac myocytes. Cardiovasc Res 2000;46:277–285.

    PubMed  CAS  Google Scholar 

  15. Dalen H, Saetersdal T, Roli J et al. Effect of collagenase on surface expression of immunoreactive fibronectin and laminin in freshly isolated cardiac myocytes. J Mol Cell Cardiol 1998;30:947–955.

    PubMed  CAS  Google Scholar 

  16. Piper HM, Probst I, Schwartz P et al. Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol 1982;14:397–412.

    PubMed  CAS  Google Scholar 

  17. Sukharev SI, Blount P, Martinac B et al. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 1994;368:265–268.

    PubMed  CAS  Google Scholar 

  18. Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol Rev 2001;81:685–740.

    PubMed  CAS  Google Scholar 

  19. Liu JD, Schrank B, Waterston RH. Interaction between a putative mechanosensory membrane channel and a collagen. Science 1996;273:361–364.

    PubMed  CAS  Google Scholar 

  20. Denker SP, Barber DL. Ion transport proteins anchor and regulate the cytoskeleton. Curr Opin Cell Biol 2002;14:214–220.

    PubMed  CAS  Google Scholar 

  21. Danowski BA, Imanaka-Yoshida K, Sanger JM et al. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol 1992;118:1411–1420.

    PubMed  CAS  Google Scholar 

  22. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993;260:1124–1127.

    PubMed  CAS  Google Scholar 

  23. Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001;88:1112–1119.

    PubMed  CAS  Google Scholar 

  24. Parsons JT. Focal adhesion kinase: The first ten years. J Cell Sci 2003;116:1409–1416.

    PubMed  CAS  Google Scholar 

  25. Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 2000;150:1209–1214.

    PubMed  CAS  Google Scholar 

  26. Straub V, Campbell KP. Muscular dystrophies and the dystrophin-glycoprotein complex. Curr Opin Neurol 1997;10:168–175.

    PubMed  CAS  Google Scholar 

  27. Franco-Obregon Jr A, Lansman JB. Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol (Lond) 1994;481:299–309.

    PubMed  CAS  Google Scholar 

  28. Franco-Obregon A, Lansman JB. Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J Physiol 2002;539:391–407.

    PubMed  CAS  Google Scholar 

  29. Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol (Lond) 1984;352:685–701.

    PubMed  CAS  Google Scholar 

  30. Guharay F, Sachs F. Mechanotransducer ion channels in chick skeletal muscle: The effects of extracellular pH. J Physiol (Lond) 1985;363:119–134.

    PubMed  CAS  Google Scholar 

  31. Sachs F. Mechanical transduction in biological systems. Crit Rev Biomed Eng 1988;16:141–169.

    PubMed  CAS  Google Scholar 

  32. Sokabe M, Sachs F, Jing ZQ. Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 1991;59:722–728.

    PubMed  CAS  Google Scholar 

  33. Ruknudin A, Sachs F, Bustamante JO. Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol Heart Circ Physiol 1993;264:H960–H972.

    CAS  Google Scholar 

  34. Sato R, Koumi S. Characterization of the stretch-activated chloride channel in isolated human atrial myocytes. J Membr Biol 1998;163:67–76.

    PubMed  CAS  Google Scholar 

  35. Kawakubo T, Naruse K, Matsubara T et al. Characterization of a newly found stretch-activated KCa,ATP channel in cultured chick ventricular myocytes. Am J Physiol Heart Circ Physiol 1999;276:H1827–H1838.

    CAS  Google Scholar 

  36. Levin KR, Page E. Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res 1980;46:244–255.

    PubMed  CAS  Google Scholar 

  37. Anderson RG. The caveolae membrane system. Annu Rev Biochem 1998;67:199–225.

    PubMed  CAS  Google Scholar 

  38. Kordylewski L, Goings GE, Page E. Rat atrial myocyte plasmalemmal caveolae in situ. Reversible experimental increases in caveolar size and in surface density of caveolar necks. Circ Res 1993;73:135–146.

    PubMed  CAS  Google Scholar 

  39. Kohl P, Cooper PJ, Holloway H. Effects of acute ventricular volume manipulation on in situ cardiomyocyte cell membrane configuration. Prog Biophys Mol Biol 2003;82:221–227.

    PubMed  Google Scholar 

  40. Brezden BL, Gardner DR, Morris CE. A potassium-selective channel in isolated Lymnaea stagnalis heart muscle cells. J Exp Biol 1986;123:175–189.

    Google Scholar 

  41. Sigurdson WJ, Morris CE, Brezden BL et al. Stretch activation of a potassium channel in molluscan heart cells. J Exp Biol 1987;127:191–210.

    Google Scholar 

  42. Hu H, Sachs F. Mechanically activated currents in chick heart cells. J Membr Biol 1996;154:205–216.

    PubMed  CAS  Google Scholar 

  43. Kim D. A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. J Gen Physiol 1992;100:1021–1040.

    PubMed  CAS  Google Scholar 

  44. Niu W, Sachs F. Dynamic properties of stretch-activated K+ channels in adult rat atrial myocytes. Prog Biophys Mol Biol 2003;82:121–135.

    PubMed  CAS  Google Scholar 

  45. Terrenoire C, Lauritzen I, Lesage F et al. A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res 2001;89:336–342.

    PubMed  CAS  Google Scholar 

  46. Tan JH, Liu W, Saint DA. Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. J Membr Biol 2002;185:201–207.

    PubMed  CAS  Google Scholar 

  47. Lesage F, Lazdunski M. Molecular and functional properties of two-poredomain potassium channels. Am J Physiol Renal Physiol 2000;279:F793–F801.

    PubMed  CAS  Google Scholar 

  48. Patel AJ, Lazdunski M, Honore E. Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 2001;13:422–428.

    PubMed  CAS  Google Scholar 

  49. O’Connell AD, Morton MJ, Hunter M. Two-pore domain K+ channels-molecular sensors. Biochim Biophys Acta 2002;1566:152–161.

    PubMed  CAS  Google Scholar 

  50. Lesage F, Terrenoire C, Romey G et al. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 2000;275:28398–28405.

    PubMed  CAS  Google Scholar 

  51. Fink M, Duprat F, Lesage F et al. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J 1996;15:6854–6862.

    PubMed  CAS  Google Scholar 

  52. Maingret F, Patel AJ, Lesage F et al. Mechano-or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 1999;274:26691–26696.

    PubMed  CAS  Google Scholar 

  53. Craelius W, Chen V, El-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep 1988;8:407–414.

    PubMed  CAS  Google Scholar 

  54. Sadoshima J, Takahashi T, Jahn L et al. Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 1992;89:9905–9909.

    PubMed  CAS  Google Scholar 

  55. Kim D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ Res 1993;72:225–231.

    PubMed  CAS  Google Scholar 

  56. Zhang YH, Youm JB, Sung HK et al. Stretch-activated and background nonselective cation channels in rat atrial myocytes. J Physiol (Lond) 2000;523:607–619.

    PubMed  CAS  Google Scholar 

  57. Bustamante JO, Ruknudin A, Sachs F. Stretch-activated channels in heart cells: Relevance to cardiac hypertrophy. J Cardiovasc Pharmacol 1991;17(Suppl 2):S110–S113.

    PubMed  Google Scholar 

  58. Hoyer J, Distler A, Haase W et al. Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium. Proc Natl Acad Sci USA 1994;91:2367–2371.

    PubMed  CAS  Google Scholar 

  59. Vennekens R, Voets T, Bindels RJ et al. Current understanding of mammalian TRP homologues. Cell Calcium 2002;31:253–264.

    PubMed  CAS  Google Scholar 

  60. Mutai H, Heller S. Vertebrate and invertebrate TRPV-like mechanoreceptors. Cell Calcium 2003;33:471–478.

    PubMed  CAS  Google Scholar 

  61. Liedtke W, Choe Y, Marti-Renom MA et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 2000;103:525–535.

    PubMed  CAS  Google Scholar 

  62. Yang XC, Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 1989;243:1068–1071.

    PubMed  CAS  Google Scholar 

  63. Hu H, Sachs F. Stretch-activated ion channels in the heart. J Mol Cell Cardiol 1997; 29:1511–1523.

    PubMed  CAS  Google Scholar 

  64. Maingret F, Fosset M, Lesage F et al. TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 1999;274:1381–1387.

    PubMed  CAS  Google Scholar 

  65. Maingret F, Patel AJ, Lesage F et al. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 2000;275:10128–10133.

    PubMed  CAS  Google Scholar 

  66. Li GR, Baumgarten CM. Modulation of cardiac Na+ current by gadolinium, a blocker of stretch-induced arrhythmias. Am J Physiol Heart Circ Physiol 2001;280:H272–H279.

    PubMed  CAS  Google Scholar 

  67. Lacampagne A, Gannier F, Argibay J et al. The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta 1994;1191:205–208.

    PubMed  CAS  Google Scholar 

  68. Pascarel C, Hongo K, Cazorla O et al. Different effects of gadolinium on IKr, IKs and IKl in guinea-pig isolated ventricular myocytes. Br J Pharmacol 1998;124:356–360.

    PubMed  CAS  Google Scholar 

  69. Zhang YH, Hancox JC. Gadolinium inhibits Na+-Ca2+ exchanger current in guinea-pig isolated ventricular myocytes. Br J Pharmacol 2000;130:485–488.

    PubMed  CAS  Google Scholar 

  70. Caldwell RA, Clemo HF, Baumgarten CM. Using gadolinium to identify stretch-activated channels: Technical considerations. Am J Physiol Cell Physiol 1998;275:C619–C621.

    CAS  Google Scholar 

  71. Hamill OP, McBride Jr DW. The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 1996;48:231–252.

    PubMed  CAS  Google Scholar 

  72. Gannier F, White E, Lacampagne A et al. Streptomycin reverses a large stretch induced increases in [Ca2+]i in isolated guinea pig ventricular myocytes. Cardiovasc Res 1994;28:1193–1198.

    PubMed  CAS  Google Scholar 

  73. Belus A, White E. Streptomycin and intracellular calcium modulate the response of single guinea-pig ventricular myocytes to axial stretch. J Physiol (Lond) 2003;546:501–509.

    PubMed  CAS  Google Scholar 

  74. Belus A, White E. Effects of streptomycin sulphate on ICa-L, IKr and IKs in guinea-pig ventricular myocytes. Eur J Pharmacol 2002;445:171–178.

    PubMed  CAS  Google Scholar 

  75. Pérez-Miles F, Lucas SM, da Silva Jr PI et al. Systematic revision and cladistic analysis of Theraphosinae (Araneae: Theraphosidae). Mygalomorph 1996;1:33–68.

    Google Scholar 

  76. Chen Y, Simasko SM, Niggel J et al. Ca2+ uptake in GH3 cells during hypotonic swelling: The sensory role of stretch-activated ion channels. Am J Physiol Cell Physiol 1996;270:C1790–C1798.

    CAS  Google Scholar 

  77. Suchyna TM, Johnson JH, Hamer K et al. Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 2000;115:583–598.

    PubMed  CAS  Google Scholar 

  78. Bode F, Sachs F, Franz MR. Tarantula peptide inhibits atrial fibrillation. Nature 2001;409:35–36.

    PubMed  CAS  Google Scholar 

  79. Christensen M, Strange K. Developmental regulation of a novel outwardly rectifying mechanosensitive anion channel in Caenorhabditis elegans. J Biol Chem 2001;276:45024–45030.

    PubMed  CAS  Google Scholar 

  80. Van Wagoner DR. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 1993;72:973–983.

    PubMed  Google Scholar 

  81. Van Wagoner DR, Lamorgese M. Ischemia potentiates the mechanosensitive modulation of atrial ATP-sensitive potassium channels. Ann NY Acad Sci 1994;723:392–395.

    PubMed  Google Scholar 

  82. Pleumsamran A, Kim D. Membrane stretch augments the cardiac muscarinic K+ channel activity. J Membr Biol 1995;148:287–297.

    PubMed  CAS  Google Scholar 

  83. Zile MR, Cowles MK, Buckley JM et al. Gel stretch method: A new method to measure constitutive properties of cardiac muscle cells. Am J Physiol Heart Circ Physiol 1998;274:H2188–H2202.

    CAS  Google Scholar 

  84. Cazorla O, Pascarel C, Brette F et al. Modulation of ions channels and membrane receptors activities by mechanical interventions in cardiomyocytes: Possible mechanisms for mechanosensitivity. Prog Biophys Molec Biol 1999;71:29–58.

    CAS  Google Scholar 

  85. Sasaki N, Mitsuiye T, Noma A. Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn J Physiol 1992;42:957–970.

    PubMed  CAS  Google Scholar 

  86. Zeng T, Bett GC, Sachs F. Stretch-activated whole cell currents in adult rat cardiac myocytes. Am J Physiol Heart Circ Physiol 2000;278:H548–H557.

    PubMed  CAS  Google Scholar 

  87. Le Guennec JY, Peineau N, Argibay JA et al. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: Length dependence of passive and active tension. J Mol Cell Cardiol 1990;22:1083–1093.

    PubMed  Google Scholar 

  88. Cooper PJ, Lei M, Cheng LX et al. Selected contribution: Axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol 2000;89:2099–2104.

    PubMed  CAS  Google Scholar 

  89. Kamkin A, Kiseleva I, Isenberg G. Stretch-activated currents in ventricular myocytes: Amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc Res 2000;48:409–420.

    PubMed  CAS  Google Scholar 

  90. Kamkin A, Kiseleva I, Wagner KD et al. Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflugers Arch 2003;446:339–346.

    PubMed  CAS  Google Scholar 

  91. Bett GC, Sachs F. Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. J Membr Biol 2000;173:255–263.

    PubMed  CAS  Google Scholar 

  92. Bett GC, Sachs F. Activation and inactivation of mechanosensitive currents in the chick heart. J Membr Biol 2000;173:237–254.

    PubMed  CAS  Google Scholar 

  93. Browe DM, Baumgarten CM. Stretch of β1 integrin activates an outwardly-rectifying chloride current via FAK and Src in rabbit ventricular myocytes. J Gen Physiol 2003;122:689–702.

    PubMed  CAS  Google Scholar 

  94. Tseng GN. Cell swelling increases membrane conductance of canine cardiac cells: Evidence for a volume-sensitive Cl channel. Am J Physiol Cell Physiol 1992;262:C1056–C1068.

    CAS  Google Scholar 

  95. Kamkin A, Kiseleva I, Isenberg G. Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflugers Arch 2003;446:220–231.

    PubMed  CAS  Google Scholar 

  96. Kamkin A, Kiseleva I, Isenberg G et al. Cardiac fibroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol 2003;82:111–120.

    PubMed  CAS  Google Scholar 

  97. Isenberg G, Kazanski V, Kondratev D et al. Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol 2003;82:43–56.

    PubMed  CAS  Google Scholar 

  98. Browe DM, Baumgarten CM. Angiotensin II (AT1) receptors and NADPH oxides regulate Cl− SAC elicited by β1 integrin stretch in rabbit ventricular myocytes. J Gen Physiol 2004;124:273–287.

    PubMed  CAS  Google Scholar 

  99. Ingber DE. Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997;59:575–599.

    PubMed  CAS  Google Scholar 

  100. Glogauer M, Ferrier J, McCulloch CAG. Magnetic fields applied to collagen-coated ferric oxide beads induce stretch-activated Ca2+ flux in fibroblasts. Am J Physiol Cell Physiol 1995;269:C1093–C1104.

    CAS  Google Scholar 

  101. Niggel J, Sigurdson W, Sachs F. Mechanically induced calcium movements in astrocytes, bovine aortic endothelial cells and C6 glioma cells. J Membr Biol 2000;174:121–134.

    PubMed  CAS  Google Scholar 

  102. Sheetz MP, Singer SJ. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 1974;71:4457–4461.

    PubMed  CAS  Google Scholar 

  103. Post JA, Ji S, Leonards KS et al. Effects of charged amphiphiles on cardiac cell contractility are mediated via effects on Ca2+ current. Am J Physiol Heart Circ Physiol 1991;260:H759–H769.

    CAS  Google Scholar 

  104. Corr PB, McHowat J, Yan G et al. Lipid-derived amphiphiles and their contribution to arrhythmogenesis during myocardial ischemia. In: Sperelakis N, ed. Physiology and Pathophysiology of the Heart. Boston, MA: Kluwer Academic Publishers, 1995:527–545.

    Google Scholar 

  105. Hu H, Sachs F. Single-channel and whole-cell studies of mechanosensitive currents in chick heart. Biophys J 1996;70:A347.

    Google Scholar 

  106. White E. The lack of effect of increasing cell length on L-type clcium current in isolated ferret ventricular myocytes. J Physiol (Lond) 1995;483:P13.

    Google Scholar 

  107. Hongo K, White E, Le Guennec JY et al. Changes in [Ca2+]i, [Na+]i and Ca2+ current in isolated rat ventricular myocytes following an increase in cell length. J Physiol (Lond) 1996;491:609–619.

    PubMed  CAS  Google Scholar 

  108. Zabel M, Koller BS, Sachs F et al. Stretch-induced voltage changes in the isolated beating heart: Importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc Res 1996;32:120–130.

    PubMed  CAS  Google Scholar 

  109. Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Prog Biophys Molec Biol 1999;71:91–138.

    CAS  Google Scholar 

  110. Gannier F, White E, Garnier D et al. A possible mechanism for large stretch-induced increase in [Ca2+], in isolated guinea-pig ventricular myocytes. Cardiovasc Res 1996;32:158–167.

    PubMed  CAS  Google Scholar 

  111. Tavi P, Han C, Weckstrőm M. Mechanisms of stretch-induced changes in [Ca2+]i in rat atrial myocytes: Role of increased troponin C affinity and stretch-activated ion channels. Circ Res 1998;83:1165–1177.

    PubMed  CAS  Google Scholar 

  112. Kohl P, Day K, Noble D. Cellular mechanisms of cardiac mechano-electric feedback in a mathematical model. Can J Cardiol 1998;14:111–119.

    PubMed  CAS  Google Scholar 

  113. Knudsen Z, Holden AV, Brindley J. Qualitative modeling of mechanoelectrical feedback in a ventricular cell. Bull Math Biol 1997;59:1155–1181.

    PubMed  CAS  Google Scholar 

  114. Markhasin VS, Solovyova O, Katsnelson LB et al. Mechano-electric interactions in heterogeneous myocardium: Development of fundamental experimental and theoretical models. Prog Biophys Mol Biol 2003;82:207–220.

    PubMed  CAS  Google Scholar 

  115. Wagner MB, Kumar R, Joyner RW et al. Induced automaticity in isolated rat atrial cells by incorporation of a stretch-activaed conductance. Pflugers Arch 2004;447:819–829.

    PubMed  CAS  Google Scholar 

  116. Hoffman BF, Cranefield PF. Electrophysiology of the Heart. New York: McGraw-Hill, 1960:117,197–198.

    Google Scholar 

  117. Hansen DE, Borganelli M, Stacy Jr GP et al. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiar-rhythmic action. Circ Res 1991;69:820–831.

    PubMed  CAS  Google Scholar 

  118. Stacy Jr GP, Jobe RL, Taylor LK et al. Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. Am J Physiol Heart Circ Physiol 1992;263:H613–H621.

    Google Scholar 

  119. Tavi P, Laine M, Weckström M. Effect of gadolinium on stretch-induced changes in contraction and intracellularly recorded action-and afterpotentials of rat isolated atrium. Br J Pharmacol 1996;118:407–413.

    PubMed  CAS  Google Scholar 

  120. Bode F, Katchman A, Woosley RL et al. Gadolinium decreases stretch-induced vulnerability to atrial fibrillation. Circulat 2000;101:2200–2205.

    CAS  Google Scholar 

  121. Takagi S, Miyazaki T, Moritani K et al. Gadolinium suppresses stretch-induced increases in the differences in epicardial and endocardial monophasic action potential durations and ventricular arrhythmias in dogs. Jpn Circ J 1999;63:296–302.

    PubMed  CAS  Google Scholar 

  122. Clemo HF, Baumgarten CM. Cation stretch-activated channels cause spontaneous depolarizations in aortic regurgitation-induced heart failure. J Physiol (Lond) 2002;544P:24S.

    Google Scholar 

  123. Calaghan SC, Belus A, White E. Do stretch-induced changes in intracellular calcium modify the electrical activity of cardiac muscle? Prog Biophys Mol Biol 2003;82:81–95.

    PubMed  CAS  Google Scholar 

  124. Allen DG, Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 1982;327:79–94.

    PubMed  CAS  Google Scholar 

  125. Le Guennec JY, White E, Gannier F et al. Stretch-induced increase of resting intracellular calcium concentration in single guinea-pig ventricular myocytes. Exp Physiol 1991;76:975–978.

    PubMed  Google Scholar 

  126. Tavi P, Han C, Weckstrom M. Intracellular acidosis modulates the stretch-induced changes in E-C coupling of the rat atrium. Acta Physiol Scand 1999;167:203–213.

    PubMed  CAS  Google Scholar 

  127. Tatsukawa Y, Kiyosue T, Arita M. Mechanical stretch increases intracellular calcium concentration in cultured ventricular cells from neonatal rats. Heart Vessels 1997;12:128–135.

    PubMed  CAS  Google Scholar 

  128. Ruwhof C, van Wamel JT, Noordzij LA et al. Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 2001;29:73–83.

    PubMed  CAS  Google Scholar 

  129. Kentish JC, Wrzosek A. Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol (Lond) 1998;506:431–444.

    CAS  Google Scholar 

  130. Alvarez BV, Perez NG, Ennis IL et al. Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: A possible explanation of the Anrep effect. Circ Res 1999;85:716–722.

    PubMed  CAS  Google Scholar 

  131. Perez NG, de Hurtado MC, Cingolani HE. Reverse mode of the Na+-Ca2+ exchange after myocardial stretch: Underlying mechanism of the slow force response. Circ Res 2001;88:376–382.

    PubMed  CAS  Google Scholar 

  132. Sadoshima J, Xu Y, Slayter HS et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.

    PubMed  CAS  Google Scholar 

  133. Ito H, Hirata Y, Adachi S et al. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 1993;92:398–403.

    PubMed  CAS  Google Scholar 

  134. Yamazaki T, Komuro I, Kudoh S et al. Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res 1998;82:430–437.

    PubMed  CAS  Google Scholar 

  135. Sugden PH. An overview of endothelin signaling in the cardiac myocyte. J Mol Cell Cardiol 2003;35:871–886.

    PubMed  CAS  Google Scholar 

  136. Aiello EA, Villa-Abrille MC, Cingolani HE. Autocrine stimulation of cardiac Na+-Ca2+ exchanger currents by endogenous endothelin released by angiotensin II. Circ Res 2002;90:374–376.

    PubMed  CAS  Google Scholar 

  137. Maroto R, Raso A, Wood TG et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 2005;7:179–185.

    PubMed  CAS  Google Scholar 

  138. Wes PD, Chevesich J, Jeromin et al. A TRPC1, a human homolog of a Drosophilia store-operated channel. Proc Natl Acad Sci USA 1995;92:9652–9656.

    PubMed  CAS  Google Scholar 

  139. Zhu X, Chu PB, Peyton M et al. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 1995;373:193–198.

    PubMed  CAS  Google Scholar 

  140. Riccio A, Medhurst AD, Mattei C et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Molec Brain Res 2002;109:95–104.

    PubMed  CAS  Google Scholar 

  141. Browe DM, Baumgarten CM. EGFR kinase regulates volume-sensitive chloride current elicited by integrin stretch via PI-3K and NADPH oxidase in ventricular myocytes. J Gen Physiol 1006;127:237–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Baumgarten, C.M. (2007). Origin of Mechanotransduction. In: Cardiac Mechanotransduction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48868-4_2

Download citation

Publish with us

Policies and ethics