Skip to main content

The Mechanosensory Heart

A Multidisciplinary Approach

  • Chapter

Abstract

The cardiac muscle has an intrinsic ability to sense its filling state and react to its changes, independently of cardiac innervation that may partially serve the same functions. This ability, interesting by itself, has also a medical significance because it is associated with disturbances that may develop if a sustained loading of the myocytes will change their function. This may lead to adaptational growth of the cardiac muscle, but also to serious diseases like myocardial left ventricular hypertrophy and heart failure. In this book, and in this introductory chapter, we will focus on the nature of the sensory mechanisms of the cardiac myocytes, based on the mechanism that can be called mechanotransduction. We will look at the ability of cardiac cells to sense the filling state of the heart as a process where a mechanical stimulus is transformed into a change in the cells functions, be it in membrane voltage, contraction force, ion balance, exocytosis or in gene expression. One possibility to do this is to divide the sensation process into limited series of more or less accurately timed events, from coding of the mechanical stimuli to both signalling via second messengers and to decoding of the information into changes in heart function, as proposed earlier. As in other physiological functions, also mechanotransduction is controlled by feedback. In the heart it consists of exocytosis of vasoactive peptides and growth of the heart muscle, both tending to decrease the initial (volume) load, and of the coactivation of regulatory pathways in the nervous system. Under some circumstances the physiological regulatory loops may become maladaptive, leading to development of pathological hypertrophy and heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tavi P, Laine M, Weckström M et al. Cardiac mechanotransduction: From sensing to disease and treatment. Trends Pharmacol Sci 2001; 22:254–60.

    Article  PubMed  CAS  Google Scholar 

  2. Baines AD, DeBold AJ, Sonnenberg H. Natriuretic effect of atrial extract on isolated perfused rat kidney. Can J Physiol Pharmacol 1983; 61:1462–6.

    PubMed  CAS  Google Scholar 

  3. French AS. Mechanotransduction. Annu Rev Physiol 1992; 54:135–152.

    Article  PubMed  CAS  Google Scholar 

  4. Hamill O, McBride D. Molecular clues to mechanosensitivity. Biophys J 1993; 65:17–8.

    PubMed  CAS  Google Scholar 

  5. Ingber DE. Tensegrity: The architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997; 59:575–99.

    Article  PubMed  CAS  Google Scholar 

  6. Hamill OP, Martinac B. Molecular basis of mechanotransduction in living cells. Physiological Reviews 2001; 81:685–740.

    PubMed  CAS  Google Scholar 

  7. Kloda A, Martinac B. Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. Archaea 2002; 1:35–44.

    Article  PubMed  CAS  Google Scholar 

  8. Zimmer HG. Modifications of the isolated frog heart preparation in Carl Ludwig’s Leipzig Physiological Institute: Relevance for cardiovascular research. Can J Cardiol 2000; 16:61–69.

    PubMed  CAS  Google Scholar 

  9. Starling EH. The LINACRE lecture on the law of the heart, at Cambridge, 1915. London: Longmans, Green and Co., 1918.

    Google Scholar 

  10. Ruskoaho H. Atrial natriuretic peptide: Synthesis, release, and metabolism. Pharmacol Rev 1992; 44:479–602.

    PubMed  CAS  Google Scholar 

  11. Pikkarainen S, Tokola H, Ruskoaho H. Mechanotransduction of the endocrine heart paracrine and intracellular regulation of B-type natriuretic peptide synthesis. In: Weckström M, Tavi P, eds. Cardiac Mechanotransduction. Georgetown: Landes Bioscience/Eurekah.com; New York: Springer Science+Business Media, 2006:9.

    Google Scholar 

  12. Omens JH, McCulloch AD, Lorenzen-Schmidt I. Mechanotransduction in cardiac remodeling and heart failure. In: Weckström M, Tavi P, eds. Cardiac mechanotransduction. Georgetown: Landes Bioscience/Eurekah.com; New York: Springer Science+Business Media, 2006:5.

    Google Scholar 

  13. Lab MJ. Lab mechanoelectric transduction/feedback: physiology and pathophysiology. In: Weckström M, Tavi P, eds. Cardiac Mechanotransduction. Georgetown: Landes Bioscience/Eurekah.com; New York: Springer Science+Business Media, 2006:4.

    Google Scholar 

  14. Penefsky ZJ, Hoffman BF. Effect of stretch on mechanical and electrical properties of cardiac muscle. Am J Physiol 1963; 204:433–438.

    Google Scholar 

  15. Lab MJ. Mechanically dependent changes in action potentials recorded from the intact frog ventricle. Circ Res 1978; 42:519–528.

    PubMed  CAS  Google Scholar 

  16. Parmley WW, Chuck L. Length-dependent changes in myocardial contractile state. Am J Physiol 1973; 224:1195–1199.

    PubMed  CAS  Google Scholar 

  17. Allen DG, Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 1982; 327:79–94.

    PubMed  CAS  Google Scholar 

  18. Allen DG, Nichols CG, Smith GL. The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol 1988; 406:359–370.

    PubMed  CAS  Google Scholar 

  19. Hagiwara N, Masuda H, Shoda M et al. Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol 1992; 456:285–302.

    PubMed  CAS  Google Scholar 

  20. Horner SM, Murphy CF, Coen B et al. Contribution to heart rate variability by mechanoelectric feedback. Stretch of the sinoatrial node reduces heart rate variability. Circulation 1996; 94:1762–7.

    PubMed  CAS  Google Scholar 

  21. Arai A, Kodama I, Toyama J. Roles of Cl channels and Ca2+ mobilization in stretch-induced increase of SA node pacemaker activity. Am J Physiol 1996; 270:H 1726–35.

    CAS  Google Scholar 

  22. Cooper PJ, Lei M, Cheng LX et al. Selected contribution: Axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol 2000; 89:2099–104.

    PubMed  CAS  Google Scholar 

  23. Hakumäki MO. Seventy years of the Bainbridge reflex. Acta Physiol Scand 1987; 130:177–85.

    Article  PubMed  Google Scholar 

  24. Gauer OH, Henry JP, Behn C. The regulation of extracellular fluid volume. Annu Rev Physiol 1970; 32:547–595.

    Article  PubMed  CAS  Google Scholar 

  25. Baumgarten CM. Origin of mechanotransduction: Stretch-activated ion channels. In: Weckström M, Tavi P, eds. Cardiac Mechanotransduction. Georgetown: Landes Bioscience / Eurekah.com; New York: Springer Science+Business Media, 2006:2.

    Google Scholar 

  26. Calaghan SC, Ed White E. The role of the sarcomere and cytoskeleton in cardiac mechanotransduction. In: Weckström M, Tavi P, eds. Cardiac mechanotransduction. Georgetown: Landes Bioscience / Eurekah.com; New York: Springer Science+Business Media, 2006:3.

    Google Scholar 

  27. Hasegawa H, Takano H, Zou Y et al. Second messenger systems involved in heart mechano-transduction. In: Weckström M, Tavi P, eds. Cardiac mechanotransduction. Georgetown: Landes Bioscience/Eurekah.com; New York: Springer Science+Business Media, 2006:6.

    Google Scholar 

  28. Schlüter K-D, Piper HM, Wenzel S. The role of adrenoceptors in mechanotransduction. In: Weckström M, Tavi P, eds. Cardiac mechanotransduction. Georgetown: Landes Bioscience/Eurekah.com; New York: Springer Science+Business Media, 2006:7.

    Google Scholar 

  29. Sugden PH. Intracellular signaling through protein kinases in cardiac mechanotransduction. In: Weckström M, Tavi P, eds. Cardiac mechanotransduction. Georgetown: Landes Bioscience/Eurekah.com; New York: Springer Science+Business Media, 2006:8.

    Google Scholar 

  30. Maroto R, Raso A, Wood TG et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 2005; 7:105–7.

    Article  CAS  Google Scholar 

  31. Weng G, Bhalla US, Iyengar R. Complexity in biological signaling systems. Science 1999; 284:92–6.

    Article  PubMed  CAS  Google Scholar 

  32. Fagard R. Athlete’s heart. Heart 2003; 89:1455–61.

    Article  PubMed  Google Scholar 

  33. Cantwell JD. The athlete’s heart syndrome. Int J Cardiol 1987; 17:1–6.

    Article  PubMed  CAS  Google Scholar 

  34. Morgan HE, Baker KM. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 1991; 83:13–25.

    PubMed  CAS  Google Scholar 

  35. Wikman-Coffelt J, Parmley WW, Mason DT. The cardiac hypertrophy process. Analyses of factors determining pathological vs. physiological development. Circ Res 1979; 45:697–707.

    PubMed  CAS  Google Scholar 

  36. Bers DM, Edward Perez-Reyes. Ca channels in cardiac myocytes: Structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 1999; 42:339–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Weckström, M., Tavi, P. (2007). The Mechanosensory Heart. In: Cardiac Mechanotransduction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48868-4_1

Download citation

Publish with us

Policies and ethics