Skip to main content

Applications of Atomic Force Microscope (AFM) in the Field of Nanomaterials and Nanocomposites

  • Chapter
Functional Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Nanotechnology implies the capability to build up tailored nanostructures and devices for given functions by control at the atomic and molecular levels. Development of novel nanofabrication methods with effective control of structure, morphology and patterning at the nanometer-scale level is of principal importance for nanosciencc and nanotechnology, advanced materials research, as well as for design of new functional nanostructures with predetermined and unique properties.1 The study of such nanostructures can bridge the gap of knowledge between individual atoms and molecules where quantum mechanics laws are applied and vast volume phase in which most properties result from collective behavior of billion atoms. In the vast field of nanoscience and nanotechnology, this chapter focuses on an important aspect i.e. application of atomic force microscopy (AFM) in the field of nanoparticles/nanomaterials, and nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.B. Khomutov, V.V. Kislov, R.V. Gainutdinov, S.P. Gubin. A.Y. Obydenov. S.A. Pavlov, A.N. Sergeev-Cherenkov, E.S. Soldatov, A.L. Toistikhina and A.S. Trifonov, The design, fabrication and characterization of controUed-morphology nanomaterials and functional planar molecular nanocluster-based nanostructures. Surf. Sci. 532, 287–293 (2003).

    Article  Google Scholar 

  2. T. Cagin, J. Che, Y. Qi, Y. Zhou. E. Demiralp, G. Gao and W. A. Goddard, Computational materials chemistry at the nanoscale, J. Nanopart. Res. 1(1), 51–69 (1999).

    Article  Google Scholar 

  3. M.J. Pitkethly, Nanomaterials: the driving force, Nanotoday Dec,20–29 (2004).

    Google Scholar 

  4. Z.L. Wang, Nanostructures of zinc oxide, Mater. Today 7(6), 26–33 (2004).

    Article  Google Scholar 

  5. A.C. Grimsdale and K. Mullen, The chemistry of organic nanomaterials, Angew. Chem. Int. Ed. 44 (35). 5592–5629 (2005).

    Article  Google Scholar 

  6. H. Chander, Development of nanophosphors: A review,Mater. Sci. Eng. R. 49(5), 113–155 (2005).

    Article  Google Scholar 

  7. N. Savage and M.S. Diallo. Nanomaterials and water purification: Opportunities and challenges, J. Nanopart. Res. 7(4–5), 331–342 (2005).

    Article  Google Scholar 

  8. G.Q. Lu, Preface: nanomaterials in catalysis. Specially invited papers and selected papers from the workshop on nanostructured materials and catalysis from the Chemeca 2000 Conference, Perth, Australia. 9–12 July 2000. Catal Today 68(1–3), l–l (2001).

    Google Scholar 

  9. P.J. Sebastian, Nanomaterials for solar energy conversion. Sol Energy Mater. Sol Cells 70(3), 243–244(2001).

    Google Scholar 

  10. Y. Ho and E. Fukusaki, DNA as a “nanomaterial,” J. Mol. Cataly. B. Enzym. 28(4–6), 155–166 (2004).

    Google Scholar 

  11. R.A. Freitas, Current status of nanomedicine and medical nanorobotics, J. Comput. Theor. Nanosci. 2(1), 1–25 (2005).

    Google Scholar 

  12. E.S. Kawasaki and A. Player, Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedi. Nanoteehn., Biol. Med. 1(2), 101–109 (2005).

    Article  Google Scholar 

  13. V. Balzani, Nanoscience and nanotechnology: A personal view of a chemist.Small 1(3). 278–283 (2005).

    Article  Google Scholar 

  14. G.M. Whitesides, Nanoscience, nanotechnology. and chemistry. Small 1(2). 172–179 (2005).

    Article  Google Scholar 

  15. M.F. Hochella, There’s plenty of room at the bottom: nanoscience in geochemistry, Geoehimi. Cosmochimi. Acta 66(5), 735–743 (2002).

    Google Scholar 

  16. L.A. Bauer, N.S. Birenbaum and G.J. Meyer, Biological applications of high aspect ratio nanoparticles, J. Mater. Chem. 14(4). 517–526 (2004).

    Article  Google Scholar 

  17. D.R. Walt, Nanomaterials—Top-to-bottom functional design, Nat. Mater. 1(1), 17–18 (2002).

    Article  Google Scholar 

  18. N.S. Xu, S.Z. Deng and J. Chen. Nanomaterials for field electron emission: preparation, characterization and application. Ultramicroscopy 95(1–4), 19–28 (2003).

    Article  Google Scholar 

  19. E.F. Sheka and V.D. Khavryutchenko, Nanomaterials: reality and computational modelling. Nanostruct. Mater. 6(5–8), 803–806 (1995).

    Google Scholar 

  20. C.N.R. Rao, New developments in nanomaterials, J. Mater. Chem. 14(4), E4–E4 (2004).

    Article  Google Scholar 

  21. J. Mackerle, Nanomaterials. nanomechanics and finite elements: a bibliography (1994–2004), Model. Sim. Maler. Sci. Eng. 13(1), 123–158 (2005).

    Article  Google Scholar 

  22. A.K. Cheetham and P.S.H. Grubstein, Nanomaterials and venure capital, Nanotoday Dec, 16–19 (2003).

    Google Scholar 

  23. H. Natter and R. Hempelmann. Tailor-made nanomaterials designed by electrochemical methods. Electwchimi. Acta 49(1), 51–61 (2003).

    Google Scholar 

  24. V.L. Colvin. The potential environmental impact of engineered nanomaterials.Nat. Biotech. 21(10), 1166–1170(2003).

    Article  Google Scholar 

  25. Z. Varga, G. Filipcsei, A. Szilagyi and M. Zrinyi, Electric and magnetic field-structured smart composites. Macromole. Symp. 227, 123–133 (2005).

    Article  Google Scholar 

  26. K. Schiffmann. Microwear experiments on metal-containing amorphous hydrocarbon hard coatings by AFM: Wear mechanisms and models for the load and time dependence. Wear216 (1), 27–34 (1998).

    Article  Google Scholar 

  27. C. Aymonier, U. Schlotterbeck, L. Antonietti, P. Zacharias, R. Thomann, J.C. Tiller and S. Mecking. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties, Chem. Commun. (24).3018–3019 (2002).

    Article  Google Scholar 

  28. R.S. Rajeev. S.K. De, A.K. Bhowmick, G.J.P. Kao and S. Bandyopadhyay, Atomic force microscopy studies of short melamine fiber reinforced BPDM rubber. J. Mater. Sci. 36(11). 2621–2632(2001).

    Article  Google Scholar 

  29. A. Dasari, Z.Z. Yu and Y.W. Mai, Effect of blending sequence on microstructure of ternary nanocomposites, Polymer 46(6), 5986–5991 (2005).

    Article  Google Scholar 

  30. X.C. Chen, B. You, S.X. Zhou and L.M. Wu. Surface and interface characterization of polyesterbased polyurethane/nano-silica composites, Surf. Interface Anal. 35 (4), 369–374 (2003).

    Article  Google Scholar 

  31. J. Jakubowicz, Application of AFM to study functional nanomaterials prepared by mechanical alloying, J. Mater. Sci. 39(16–17),5379–5383 (2004).

    Article  Google Scholar 

  32. L. Kovarova, A. Kalendova, J.F. Gerard. J. Malac, J. Simonik and Z. Weiss. Structure analysis of PVC nanocomposites, Macromol. Symp. 221 (1), 105–114 (2005).

    Article  Google Scholar 

  33. N. Ohmae, J.M. Martin and S. Mori, Micro andNanotribology (ASME Press, New York, 2005).

    Google Scholar 

  34. R. Sengupta, A. Bandyopadhyay. S. Sabharwal, T.K. Chaki and A.K. Bhowmick, Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique: synthesis, characterization and properties, Polymer 46(10), 3343–3354 (2005).

    Article  Google Scholar 

  35. R.S. Rajeev, S.K. De. A.K. Bhowmick, B. Gong and S. Bandyopadhyay, in: Atomic Force Microscopy in Adhesion Studies, edited by J. Drelich and K.L. Miltal (VSR Boston. 2005), pp. 657–678.

    Google Scholar 

  36. G. Binnig and H. Rohrer, Scanning tunneling microscopy, Helv. Phys. Acta 55(6), 726–735 ( 1982).

    Google Scholar 

  37. G. Binnig, CF. Quate and C. Gerber, Atomic force microscope, Phys. Rev. Lett. 56(9). 930–933 (1986).

    Article  Google Scholar 

  38. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez and H.E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276(5315), 1109–1112 (1997).

    Article  Google Scholar 

  39. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung and CM. Lieber, Covalentiy functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394(6688), 52–55 (1998).

    Article  Google Scholar 

  40. R.D. Piner. T.T. Xu. FT. Fisher, Y. Qiao and R.S. Ruoff. Atomic Force microscopy study of clay nanoplatelets and their impurities, Langmuir 19(19), 7995–8001 (2003).

    Article  Google Scholar 

  41. J.L. Hutter and J. Bechhoefer, Calibration of atomic-force microscope tips, Rev. Sci. Instrum. 64(7), 1868–1873(1993).

    Article  Google Scholar 

  42. G.U. Lee, D.A. Kidwell and R.J. Colton, Sensing discrete streptavidin biotin interactions with atomic-force microscopy, Langmuir 10(2), 354–357 (1994).

    Article  Google Scholar 

  43. M.E. Greene, C.R. Kinser, D.E. Kramer, L.S.C. Pingree and M.C Hersam. Application of scanning probe microscopy to the characterization and fabrication of hybrid nanomaterials, Microsc. Res. Tech. 64(5–6), 415–434 (2004).

    Article  Google Scholar 

  44. M.M. Miranda and M. Innocenti, AFM and micro-Raman investigation on filters coated with silver colloidal nanoparticles, Appl. Surf. Sci, 226, 125–130(2004).

    Article  Google Scholar 

  45. S. Cuenot, C. Fretigny, S. Demoustier-Champagne and B. Nysten. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Phy. Rev. B 69( 16) (2004).

    Google Scholar 

  46. H.G. Hansma, J. Vesenka, C. Siegerist. G. Keldennan, H. Morrett, R.L. Sinsheimer, V. Elings. C. Bustamante and P.K. Hansma, Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256(5060), 1180–1184 (1992).

    Article  Google Scholar 

  47. Z. Wang, AFM study of gold nanowire array electrodeposited within anodic aluminum oxide template, Appl. Phys. A 74, 563–565 (2002).

    Article  Google Scholar 

  48. P. Staszczuk, World of nanostructures: Nanotechnology, surface properties of chosen nanomaterials. Determined by adsorption, Q-TG. AFM and SEM methods, J. Therm. Analy. Calori. 79(3), 545–554 (2005).

    Article  Google Scholar 

  49. M.Q. Li, Scanning probe microscopy (STM/AFM) and applications in biology, Appl. Phys. Mater. Sci. Proc. 68(2), 255–258 (1999).

    Article  Google Scholar 

  50. K.H. Chung, Y.H. Lee and D.E. Kim, Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip, Ultramicroscopy 102(2). 161–171 (2005).

    Article  Google Scholar 

  51. P.K. Chu, R.G. Brigham and S.M. Baumann. Atomic-force microscopy (Afin) statistical process: control for microelectronics applications. Mater. Chem, Phys. 41(1), 61–65 (1995).

    Article  Google Scholar 

  52. S. Kasas, N.H. Thomson, B.L. Smith, P.K. Hansma, J. Mikiossy and H.G. Hansma, Biological applications of the AFM: from single molecules to organs. Intl. J. fmag. Syst. Tech. 8(2), 151–161 (1997).

    Article  Google Scholar 

  53. L. Kordylewski. D. Saner and R. Lai, Atomic-force microscopy of freeze-fracture replicas of rat atrial tissue, J. Micros. Oxford 173, 173–181 (1994).

    Google Scholar 

  54. G. Meyer and N.M. Amer, Simultaneous measurement of lateral and normal forces with an optical-team-deflection atomic force microscope, Appl. Phys. Lett. 57(20), 2089–2091 (1990).

    Article  Google Scholar 

  55. S. Burnside, S. Winkel, K. Brooks, V. Shklover, M. Gratzel, A. Hinsch, R. Kinderman, C. Bradbury. A. Hagfeldt and H. Pettersson, Deposition and characterization of screen-printed porous multi-layer thick film structures from semiconducting and conducting nanomaterials for use in photovoltaic devices, J. Mater. Sci. Mater. Electron. 11(4), 355–362 (2000).

    Article  Google Scholar 

  56. A. Diaspro and M. Aguilar, Proposal for a New Optical-Device to Sense Afm Forces. Ultramicroscopy 42, 1668–1670 (1992).

    Article  Google Scholar 

  57. G.L. Caer and P. Delcroix, Characterization of nanostructured materials by Mössbauer spectrometry, Nanostruct. Mater. 7 (1–2), 127–135 (1996).

    Google Scholar 

  58. H. Hahn, Unique features and properties of nanostructured materials. Adv. Eng. Mater. 5(5), 277–284 (2003).

    Article  Google Scholar 

  59. S. Jakobs, A. Duparre and H. Truckenbrodt, AFM and light-scattering measurements of optical thin films for applications in the UV spectral region. Int. J. Machine Tools Manufact. 38(5–6), 733–739(1998).

    Article  Google Scholar 

  60. H.W. Liu and B. Bhushan, Nano-tribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 97(1–4), 321–340 (2003).

    Article  Google Scholar 

  61. M. Villarroya, F. Perez-Murano. C. Martin, Z. Davis, A. Boisen, J. Esteve, E. Figueras, J. Montserrat and N. Barniol, AFM lithography for the definition of nanometer-scale gaps: application to the fabrication of a cantilever-based sensor with electrochemical current detection. Nanotechnology 15 (7), 771–776(2004).

    Article  Google Scholar 

  62. J.I. Paredes, A. Martinez-Alonso and J.M.D. Tascon, Detecting surface oxygen groups on carbon nanofibers by phase contrast imaging in tapping mode AFM. Ixmgmuir 19(18), 7665–7668 (2003).

    Google Scholar 

  63. T. Ono. C.C. Fan and M. Esashi. Micro-instrumentation for characterizing thermoelectric properties of nanomaterials, J. Micromech. Microeng. 15(1), 1–5 (2005).

    Article  Google Scholar 

  64. R. Mahlberg. Application of AFM on the adhesion studies of oxygen-plasma-terated polypropylene and lignoceliulosics, Langmuir 15, 2985–2992 (1999).

    Article  Google Scholar 

  65. A. Razpet, G. Possnert, A. Johansson. A. Hallen and K. Hjort, Ion transmission and characterization of ordered nanoporous alumina. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 222(3–4), 593–600 (2004).

    Article  Google Scholar 

  66. X.C. Sun, Microstructure characterization and magnetic properties of nanomaterials. Mole. Phys. 100 (19), 3059–3063 (2002).

    Article  Google Scholar 

  67. D. Roy and J. Fendler. Reflection and absorption techniques for optical characterization of chemically assembled nanomaterials. Adv. Mater. 16(6), 479–508 (2004).

    Article  Google Scholar 

  68. B.T. Su, X.H. Liu, X.X. Peng, T. Xiao and Z.X. Su, Preparation and characterization of the Ti02/polymer complex nanomaterial. Mater. Sci. Engin. Struct. Mater. Prop. Microstruct, Proc. 349 (1–2),59–62 (2003).

    Google Scholar 

  69. Z.L. Wang, New developments in transmission electron microscopy for nanotechnology, Adv. Mater. 15(18), 1497–1514 (2003).

    Article  Google Scholar 

  70. M. Tosa, Measurement of atomic forces between surface atoms using an ultra-clean AFM incorporated in an XHV integrated system, Adv. Colt. Interf. Sci. 71–2, 233–241 (1997).

    Google Scholar 

  71. D.P. Yu, Y.J. Xing, M. Tence, H.Y. Pan and Y. Leprinee-Wang. Microstructural and compositional characterization of a new silicon carbide nanocables using scanning transmission electron microscopy, Phys.-Low-Dimens. Syst. Nanostruct. 15(1), 1–5 (2002).

    Article  Google Scholar 

  72. CD. Yuan, Environmental nanomaterials: Occurrence, syntheses, characterization, health effect, and potential applications, J. Envi. Sci. Health Part a-Toxic/Hazardous Substances & Environmental Engineering 39(10), 2545–2548 (2004).

    Article  Google Scholar 

  73. D. Vogel, A. Gollhardt and B. Michel, Micro-and nanomaterials characterization by image correlation methods, Sern-. Actuators A-Phys. 99(1–2), 165–171 (2002).

    Article  Google Scholar 

  74. F. Lopour, R. Kalousek. D. Skoda, J. Spousta. F. Matejka and T. Sikola, Application of AFM in microscopy and fabrication of micro/nanostructures. Surf. Interface Anal. 34(1), 352–355 (2002).

    Article  Google Scholar 

  75. S.E. Harvey, RG. Marsh and W.W. Gerberich, Atomic-force microscopy and modeling of fatiguecrack initiation in metals, Acta Metall. Mater. 42(10), 3493–3502 (1994).

    Article  Google Scholar 

  76. P. Boughlon, S. Bandyopadhyay, C. Gregory, S. Patrick and H. Sinclair, Recent developments in water-based coatings for the transport industry. Surf. Coatings Aus. 37(9), 20–25 (2000).

    Google Scholar 

  77. S. Ghosh, D. Khastagir. A.K. Bhowmick, S. Bandyopadhyay, G.J.P. Kao and L. Kok, Atomic force microscopy studies of molded thin films of segmented polyamides. J. Mater. Sci. Lett. 19 (23), 2161–2165 (2000).

    Article  Google Scholar 

  78. R.S. Rajeev, S.K. De, A.K. Bhowmick, B. Gong and S. Bandyopadhyay. Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermal studies of the new meiamine fiber. J. Adhe. Sci. Technol. 16(14). 1957–1978 (2002).

    Article  Google Scholar 

  79. A. Ghosh, R.A.K. Bhattacharya, A.K. Bhowmick, S.K. De, B. Wolpensinger and S. Bandypadhyay. Atomic force microscopic studies on microheterogeneity of blends of silicone rubber and tetrafiuoroethylene/propylene/vinyiidene fluoride terpolymer. Rubber Chem. Technol. 76(1). 220–238 (2003).

    Google Scholar 

  80. A. Ghosh, R.S. Rajeev, S.K. De, W. Sharp and S. Bandyopadhyay. Atomic force microscopic studies on the silicone rubber/Auororubber blend containing ground rubber vulcanizate powder, J. Elast. Plast. 38(4), 119–132 (2006).

    Article  Google Scholar 

  81. R.S. Rajeev, A.K. Bhowmick, S.K. De and S. Bandyopadhyay, Atomic force and scanning electron microscopic studies of effect of crosslinking system on properties of maleated ethylenepropylene-diene monomer rubber composites filled with short meiamine fibers, J. Appl. Polymer Sci. 89(5), 1211–1229(2003).

    Article  Google Scholar 

  82. S. Anandhan. P.P. De. S.K. De, S. Bandyopadhyay and A.K. Bhowmick, Mapping of thermoplastic elastomeric nitrile rubber/poly(styrene-co-acrylonitrile) blends using tapping mode atomic force microscopy and transmission electron microscopy, J. Mater. Sci. 38(13). 2793–2801 (2003).

    Article  Google Scholar 

  83. A.M. Shanmugharaj, S. Ray, S. Bandyopadhyay and A.K. Bhowmick, Surface morphology of styrene-butadiene rubber vulcanizate filled with novel electron beam modified dual phase filler by atomic force microscopy, J. Adh. Sci. Tech. 17(9), 1167–1186 (2003).

    Article  Google Scholar 

  84. S. Ray. A.K. Bhowmick and S. Bandyopadhyay, Atomic force microscopy studies on morphology and distribution of surface modified silica and clay fillers in an ethylene-octene copolymer rubber. Rubber Chem. Technol. 76(5), 1091–1105 (2003).

    Google Scholar 

  85. S. Gupta. P. Brouwer, S. Bandyopadhyay, S. Patil, R. Briggs, J. Jain and S. Seal, TEM/AFM investigation of size and surface properties of nanocrystalline ceria, J. Nanosci. Nanotech. 5(7), 1101–1107 (2005).

    Article  Google Scholar 

  86. B. Bhushan, Handbook of Micro/nanotribology (CRC Press. Boca Raton. 1999).

    Google Scholar 

  87. J.A. Gallegojuarez, Piezoelectric ceramics and ultrasonic transducers, J. Phys. Sci. Instrum. 22 (10), 804–816(1989).

    Article  Google Scholar 

  88. R. Howland and L. Benatar, A practical guide to scanning probe microscopy. Park Sceintific Instruments. Sunnyvale, 1996.

    Google Scholar 

  89. M.R. VanLandingham. J.S. Villarrubia, W.F. Guthrie and CF. Meyers. Nanoindentation of polymers: An overview, Macromol. Symp. 167, 15–43 (2001).

    Article  Google Scholar 

  90. S.M. Hues, R.J. Colton. E. Meyer and H.J. Guntherodt, Scanning probe microscopy of thin films, MRS Bull. 18(1),41–49(1993).

    Google Scholar 

  91. D.J. Keller and C.C. Chou, Imaging steep, high structures by scanning force microscopy with electron-beam deposited tips, Surf. Sci. 268(1–3), 333–339 (1992).

    Article  Google Scholar 

  92. J.H. Hon and P.K. Hansma, Atomic force microscopy for high-resolution imaging in cell biology. Trends Ceil Biol. 2, 208–213 (1992).

    Article  Google Scholar 

  93. A.L. Weisenhorn, P.K. Hansma, T.R. Albrecht and CF. Quale, Forces in atomic force microscopy in air and water, Appl. Phys. Lett 54(26), 2651–2653 (1989).

    Article  Google Scholar 

  94. N. Burnham and A.A. Kulik, in: Handbook of Micro/nanotribology. edited by B. Bhushan (CRC Press, Boca Raton. 1999), pp. 247–272.

    Google Scholar 

  95. G. Binnig and H. Rohrer, Scanning tunneling microscopy: from birth to adolescence. Rev. Mod. Phys. 59(3), 615–625 (1987).

    Article  Google Scholar 

  96. R. Young, J. Ward and F. Scire. Topografiner: instrument for measuring surface microtopography. Rev. Sci. Instrum. 43(7). 999 (1972).

    Article  Google Scholar 

  97. G. Binning, H. Rohrer, C. Gerber and E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49(1), 57–61 (1982).

    Article  Google Scholar 

  98. Y Martin, C.C. Williams and H.K. Wickramasinghe, Atomic force microscope force mapping and profding on a sub 100-a Scale, J. Appl. Phys. 61(10), 4723–4729 (1987).

    Article  Google Scholar 

  99. G. Meyer and N.M. Amer, Novel optical approach to atomic force microscopy, Appl. Phys. Lett. 53 (12). 1045–1047(1988).

    Article  Google Scholar 

  100. O. Marti, in: Handbook of Micro/Nanotribology. edited by B. Bhushan (CRC Press. Boca Raton, 1999), pp. 81–144.

    Google Scholar 

  101. R.W. Carpick and M. Salmeron, Scratching the surface: fundamental investigations of tribology with atomic force microscopy, Chem. Rev. 97(4), 1163–1194 (1997).

    Article  Google Scholar 

  102. E. Gnecco, R. Bennewitz, T. Gyalog and E. Meyer, Friction experiments on the nanometer scale, J. Phys. Condens. Mat. 13(31), R619–R642 (2001).

    Article  Google Scholar 

  103. GJ. Leggett. Friction force microscopy of self-assembled monolayers: probing molecular organization at the nanometer scale, Anal. Chun. Acta 479(1), 17–38 (2003).

    Article  Google Scholar 

  104. A. Noy, D.V. Vezenov and CM. Lieber. Chemical force microscopy. Ann. Rev. Mater. Sci. 27, 381–421 (1997).

    Article  Google Scholar 

  105. H. Takano, J.R. Kenseth, S.S. Wong, J.C O’Brien and M.D. Porter. Chemical and biochemical analysis using scanning force microscopy, Client. Rev. 99(10), 2845 (1999).

    Article  Google Scholar 

  106. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea and R.E. Waikup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl Surf. Sci. 141(3–4), 201–209 (1999).

    Article  Google Scholar 

  107. M. Wendel. S. Kuhn, H. Lorenz, J.R Kotthaus and M. Holland, Nanolithography with an atomicforce microscope for integrated fabrication of quantum electronic devices. Appl. Phys. Lett. 65 (14), 1775–1777(1994).

    Article  Google Scholar 

  108. K. Wilder, C.F. Quate, D. Adderton, R. Bernstein and V. Elings, Noncontact nanolithography using the atomic force microscope, Appl. Phys. Lett. 73(17), 2527–2529 (1998).

    Article  Google Scholar 

  109. B. Bhushan, Nanoscale tribophysics and tribomechanics. Wear 225-229(Part 1), 465–492 (1999).

    Article  Google Scholar 

  110. L.P. Sung, S. Scierka. M. Baghai-Anaraki and D.L. Ho, Characterization of metal-oxide nanoparticles: synthesis and dispersion in polymeric coatings, in: MRS Symposium I: Nanomaterialsfor Structural Applications, edited by C. Bcrndt, T.E. Fischer. I. Ovid’ko, G. Skandan and T. Tsakalakos, Materials Research Society 740, pp. 15.4.1–15.4.6 (2003).

    Google Scholar 

  111. W.Y. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon. G. Lelong, L. Lâchai and K.A. Richardson, Physical and optical properties of sol-gel nano-silver doped silica film on glass substrate as a function of heat-treatment temperature, J. Appl, Phys. 93(12), 9553–9561 (2003).

    Article  Google Scholar 

  112. S. Shukla and S. Seal, Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy, Nanostruct. Mater. 11(8), 1181–1193 (1999).

    Article  Google Scholar 

  113. S. Shukla, S. Patil, S.C Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish and S. Seal, Synthesis and characterization of sol-gel derived nanocrystalline tin oxide thin film as hydrogen sensor. Sens. Actuators B-Chetn. 96(1–2), 343–353 (2003).

    Article  Google Scholar 

  114. L. Boras and P. Galenholm, Surface composition and morphology of CTMP libers, Holzforschung 53(2), 188–194(1999).

    Article  Google Scholar 

  115. M.R. Mucalo, C.R. Bullen, M. Manley-Harris and T.M. Mclntire, Arabinogalactan from the Western larch tree: A new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J. Mater. Sei. 37(3), 493–504 (2002).

    Article  Google Scholar 

  116. J.M. Bennett, and L. Mattsson. Introduction to surface roughness and scattering, Opt. Soc. America, Washington (1993).

    Google Scholar 

  117. D.L. Ma, Y.A. Akpalu, Y. Li, R.W. Siegel and L.S. Schadler, Effect of titania nanoparticles on the morphology of low-density polyethylene, J. Polym. Sei. Part B-Polym. Phys. 43(5), 488–497 (2005).

    Article  Google Scholar 

  118. W.P. Liu, S.V. Hoa and M. Pugh, Morphology and performance of epoxy nanacomposites modified with organoclay and rubber, Polym. Eng. Sei. 44(6), 1178–1186 (2004).

    Article  Google Scholar 

  119. W.S. Chow, Z.A.M. Ishak and J. Karger-Kocsis, Atomic force microscopy study on blend morphology and clay dispersion in polyamide-6/polypropyIene/organoclay systems, J. Poly. Sei. Part B-Poly. Phys. 43(10), 1198–1204 (2005).

    Article  Google Scholar 

  120. B.K. Satapathy, R. Weidisch, P. Potschke and A. Janke, Crack toughness behaviour of multiwalled carbon nanotube (MWNT)/poIycarbonate nanocomposites. Macromol. Rapid Commun. 26(15), 1246–1252(2005).

    Article  Google Scholar 

  121. F. Dietsche, Y. Thomann, R. Thomann and R. Mulhaupt, Translucent acrylic nanocomposites containing anisotropic laminated nanoparticles derived from intercalated layered silicates, J. Appl. Polym. Sei, 75(3), 396–405 (2000).

    Article  Google Scholar 

  122. A. Bafna, G. Beaucage, F. Mirabella and S. Mehta, 3D Hierarchical orientation in polymer-clay nanocomposite films, Polymer 44(4), 1103–1115 (2003).

    Article  Google Scholar 

  123. C. Saujanya and S. Radhakrishnan, Structure development and crystallization behaviour of PP/nanoparticuiate composite. Polymer 42(16), 6723–6731 (2001).

    Article  Google Scholar 

  124. S. Renker, S. Mahajan, D.T Babski, l. Schnell, A. Jain, J. Gutmann, YM. Zhang, S.M. Gruner, H.W. Spiess and U. Wiesner, Nanostructure and shape control in polymer-ceramic hybrids from poly(ethylene oxide)-block-poly(hexyl methacrylate) and aluminosilicates derived from them, Macromol. Chem. Phys. 205(8), 1021–1030(2004).

    Article  Google Scholar 

  125. M. Templin, A. Franck, A. DuChesne, H. Leist, YM. Zhang, R. Ulrich, V. Schadler and U. Wiesner, Organically modified aluminosilicate mesostructures from block copolymer phases. Science 278(5344), 1795–1798 (1997).

    Article  Google Scholar 

  126. H. Matsumura and W.G. Glasser. Cellulosic nanocomposites. II. studies by atomic force microscopy, J. Appl. Polym. Sei. 78(13), 2254–2261 (2000).

    Article  Google Scholar 

  127. C. Velasco-Santos, A.L. Martinez-Hernandez, M. Lozada-Cassou, A. Alvarez-Castillo and V.M. Castano, Chemical functionalization of carbon nanotubes through an organosilane, Nanoteeh. 13(4), 495–498 (2002).

    Article  Google Scholar 

  128. H. Bubert, S. Halber, W. Brandi, G. Marginean, M. Heintze and V. Bruser, Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diamond Relat. Mater. 12(3–7), 811–815 (2003).

    Article  Google Scholar 

  129. T. McNally, P. Potschke, P. Halley, M. Murphy, D. Martin, S.E.J. Bell, G.P. Brennan, D. Bein, P. Lemoine and J.P. Quinn. Polyethylene multiwalled carbon nanotube composites. Polymer 46( 19). 8222–8232 (2005).

    Article  Google Scholar 

  130. W.W. Scott and B. Bhushan. Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films. Ultramicroscopy 97(1–4), 151–169 (2003).

    Article  Google Scholar 

  131. B. Yalcin and A. Cakmak. The role of plasticizer on the exfoliation and dispersion and fracture behavior of clay particles in PVC matrix: a comprehensive morphological study. Polymer 45(19), 6623–6638 (2004).

    Article  Google Scholar 

  132. S. Sadhu and A. Bhowmick, Morphology study of rubber based nanocomposites by transmission electron microscopy and atomic force microscopy, J. Mater. Sei. 40(7), 1633–1642 (2005).

    Article  Google Scholar 

  133. M. Kociak, A.Y. Kasumov, S. Gueron, B. Reulet, Khodos, II, Y.B. Gorbatov, V.T. Volkov, L. Vaccarini and H. Bouchiat. Superconductivity in ropes of single-walled carbon nanotubes, Phys. Rev. Lett. 86(11), 2416–2419 (2001).

    Article  Google Scholar 

  134. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert and R.E. Smalley. Unraveling nanotubes: field-emission from an atomic wire. Science 269(5230), 1550–1553 (1995).

    Article  Google Scholar 

  135. S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs and C. Dekker. Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624), 474–477 (1997).

    Article  Google Scholar 

  136. A.C. Dillon, K.M. Jones, TA. Bekkedahl, CH. Kiang, D.S. Bethune and M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623), 377–379 (1997).

    Article  Google Scholar 

  137. S. Berber, YK. Kwon and D. Tomanek. Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613–4616 (2000).

    Article  Google Scholar 

  138. O. Lourie, D.M. Cox and H.D. Wagner, Buckling and collapse of embedded carbon nanotubes, Phys. Rev. Lett. 81(8), 1638–1641 (1998).

    Article  Google Scholar 

  139. J. Li, Y.J. Lu, Q. Ye, M. Cinke, J. Han and M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection, Nam Lett. 3(7), 929–933 (2003).

    Article  Google Scholar 

  140. M. Shim, N.W.S. Kam, R.J. Chen, YM. Li and H.J. Dai, Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nana Utt. 2(4), 285–288 (2002).

    Google Scholar 

  141. Z. Wang, Z.Y Liang, B. Wang, C. Zhang and L. Kramer, Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites, Composites PartA 35(10), 1225–1232 (2004).

    Article  Google Scholar 

  142. YL. Liu, C.Y. Hsu, W.L. Wei and R.J. Jeng, Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer 44(18), 5159–5167 (2003).

    Article  Google Scholar 

  143. B. Anczykowski, D. Kruger, K.L. Babcock and H. Fuchs. Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66(3–4), 251–259(1996).

    Article  Google Scholar 

  144. J. Tamayo and R. Garcia, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir 12(18), 4430–4435 (1996).

    Article  Google Scholar 

  145. R. Garcia, J. Tamayo, M. Calleja and F. Garcia, Phase contrast in tapping-mode scanning force microscopy, Appl. Phys. A 66, S309–S312 (1998).

    Article  Google Scholar 

  146. J. Tamayo and R. Garcia, Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 71(16), 2394–2396 (1997).

    Article  Google Scholar 

  147. P.J. James, M. Antognozzi, J. Tamayo, T.J. McMaster, J.M. Newton and M.J. Miles, Interpretation of contrast in tapping mode AFM and shear force microscopy. A study of nafion, Langmuir 17(2), 349–360(2001).

    Article  Google Scholar 

  148. B. Basnar, G. Friedbacher, H. Brunner, T. Valiant, U. Mayer and H. Hoffmann, Analytical evaluation of tapping mode atomic force microscopy for chemical imaging of surfaces, Appl. Surf. Sei. 171(3–4), 213–225 (2001).

    Article  Google Scholar 

  149. E.Z. Luo, J.X. Ma, J.B. Xu, LH. Wilson, A.B. Pakhomov and X. Yan, Probing the conducting paths in a metal-insulator composite by conducting atomic force microscopy, J. Phys. D-Appl. Phys. 29(12), 3169–3172 (1996).

    Article  Google Scholar 

  150. S.A. Zavyalov, A.N. Pivkina and J. Schoonman, Formation and characterization of metal-polymer nanostructured composites. Solid State. Ionics 147(3–4), 415–419 (2002).

    Article  Google Scholar 

  151. M. Knite, V. Teteris, B. Polyakov and D. Erts, Electric and elastic properties of conductive polymeric nanocomposites on macro-and nanoscales. Mater. Sei. Eng. C 19(1–2), 15–19 (2002).

    Article  Google Scholar 

  152. R.P. Lu, K.L. Kavanagh, S.J. Dixon-Warren, A. Kuhl, A.J.S. Thorpe, E. Griswold, G. Hillier, I. Calder, R. Ares and R. Streater, Calibrated scanning spreading resistance microscopy profiling of carriers in II1-V structures, J. Vac. Sei. Tech. B 19(4), 1662–1670 (2001).

    Article  Google Scholar 

  153. P. De Wolf, T. Clarysse, W. Vandervorst, L. Hellemans, P. Niedermann and W. Hanni, Cross-sectional nano-spreading resistance profiling, J. Vac. Sci. Technol. B 16(1), 355–361 (1998).

    Article  Google Scholar 

  154. P. Dewolf, J. Snauwaert, T. Clarysse, W. Vandervorst and L. Hellemans. Characlerizalion of a point-contact on silicon using force microscopy-supported resistance measurements. Appl. Phys. Lett. 66(12), 1530–1532 (1995).

    Article  Google Scholar 

  155. C. Shafai, D.J. Thomson, M. Simardnoraiandin, G. Mattiussi and P.J. Scanlon, Delineation of semiconductor doping by scanning resistance microscopy. Appl. Phys. Lett. 64(3). 342–344 (1994).

    Article  Google Scholar 

  156. R.P. Lu, K.L. Kavanagh, S.J. Dixon-Warren, A.J. SpringThorpe, R. Streaterand I. Calder. Scanning s preading resistance microscopy current transport studies on doped III-V semiconductors, J. Vac. Sei. Technol. B 20(4), 1682–1689 (2002).

    Article  Google Scholar 

  157. P. Eyben, M. Xu, N. Duhayon, T. Clarysse, S. Callewaert and W. Vandervorst, Scanning spreading resistance microscopy and spectroscopy for routine and quantitative two-dimensional carrier profiling. J. Vac. Sei. Technol. B 20(1), 471–478 (2002).

    Article  Google Scholar 

  158. D. Ban, E.H. Sargent, S.J. Dixon-Warren, T. Grevait, G. Knight, G. Pakulski, A.J. SpringThorpe, R. Streater and J.K. White, Two-dimensional profiling of carriers in a buried heterostructure multi-quantum-well laser: calibrated scanning spreading resistance microscopy and scanning capacitance microscopy. J. Vac Sei. Technol. B 20(5), 2126–2132 (2002).

    Article  Google Scholar 

  159. D. Ban, E.H. Sargent, S. Dixon-Warren, I. Calder, A.J. SpringThorpe, R. Dworschak, G. Este and J.K. White. Direct imaging of the depletion region of an InP p-n junction under bias using scanning voltage microscopy, Appl. Phys. Un. 81(26), 5057–5059 (2002).

    Google Scholar 

  160. A. Alexeev, J. Loos and M.M. Koetse, Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy (C-AFM), Ultarmicroscopy 106(3), 191–199(2006).

    Article  Google Scholar 

  161. G. Leatherman, E.N. Durantini, D. Gust, TA. Moore, A.L. Moore, S. Stone, Z. Zhou, P. Rez, Y.Z. Liu and S.M. Lindsay. Carotene as a molecular wire: Conducting atomic force microscopy, J. Phys. Chem, B 103(20). 4006–4010 (1999).

    Article  Google Scholar 

  162. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.E. Sankey, A.L. Moore, T.A. Moore, D. Gust, L.A. Nagahara and S.M. Lindsay, Changes in the electronic properties of a molecule when it is wired into a circuit, J. Phys. Chem. B 106(34), 8609–8614 (2002).

    Article  Google Scholar 

  163. T.W. Kelley and CD. Frisbie. Point contact current-voltage measurements on individual organic semiconductor grains by conducting probe atomic force microscopy, J. Vac, Sei. Technol. B 18(2), 632–635 (2000).

    Article  Google Scholar 

  164. H. Sugimura, K. Okiguchi, N. Nakagiri and M. Miyashita, Nanoscale patterning of an organosilane monolayer on the basis of lip-induced electrochemistry in atomic force microscopy,.J. Vac Sei. Technol. B 14(6), 4140–4143 (1996).

    Article  Google Scholar 

  165. B. Bhushan, Micro/nanotribology using atomic force microscopy/friction force microscopy: state of the art. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology 212(J1), 1–18 (1998).

    Article  Google Scholar 

  166. B. Bhushan, Nanoscale tribophysics and tribomechanics. Wear 229,465–492 (1999).

    Article  Google Scholar 

  167. B. Bhushan. Tribology on the macroscale to nanoscale of microelectromechanical system materials: a review, Pmc Inst. Mech, Engrs. Part J. J. Engg. Tribal. 215(J1). 1–18 (2001).

    Article  Google Scholar 

  168. B. Bhushan, I.N. Israelachvili and U. Landman. Nanotribology: friction, wear and lubrication at the atomic scale, Nature 374(6523), 607–616 (1995).

    Article  Google Scholar 

  169. B. Bhushan and T. Kasai, A surface topography-independent friction measurement technique using torsional resonance mode in an AFM, Nanotechnol. 15(8), 923–935 (2004).

    Article  Google Scholar 

  170. B. Bhushan and V.N. Koinkar, Nanoindentation hardness measurements using atomic-force microscopy, Appl. Phys. Utt. 64(13), 1653–1655 (1994).

    Google Scholar 

  171. M. Nishibori and K. Kinosita, Ultra-microhardness of vacuum-deposited films. 1. Ultramicrohardness tester. Thin Solid Films 48(3), 325–331 (1978).

    Article  Google Scholar 

  172. J.B. Pethica, in: Ion Implantation in Metals, edited by V. Ashworth. W. Grant and R. Proctor (Pergamon Press, Oxford, 1982), p. 147.

    Google Scholar 

  173. Y. Tsukamoto, H. Yamaguchi and M. Yanagisawa, Mechanical properties of thin films: measurements of ultramicroindentation hardness, young modulus and internal stress, Thin Solid Films 154(1–2). 171–181 (1987).

    Article  Google Scholar 

  174. W.C. Oliver, CJ. McHargue and S.J. Zinkle, Thin film characterization using a mechanical properties microprobe. Thin Solid Films 153, 185–196 (1987).

    Article  Google Scholar 

  175. W. Weiler, Hardness testing: a new method for economical and physically meaningful microhardness testing, Brit. J. NonDestruct. Test. 31(5), 253–258 (1989).

    Google Scholar 

  176. A.C. Fischer-Cripps, Study of analysis methods of depth-sensing indentation test data for spherical indenters. J. Mater. Res. 16(6), 1579–1584 (2001).

    Article  Google Scholar 

  177. MR. Vanlandingham, S.H. McKnight, G.R. Palmese, J.R. Elings, X. Huang, TA. Bogelti, R.F. Eduljee and J.W. Gillespie. Nanoscale indentation of polymer systems using the atomic force microscope, J. Adh. 64(1–4), 31–59 (1997).

    Article  Google Scholar 

  178. H. Shulha, A. Kovalev, N. Myshkin and V.V. Tsukruk, Some aspects of AFM nanomechanical probing of surface polymer films, Eur. Polym. J. 40(5), 949–956 (2004).

    Article  Google Scholar 

  179. R.M. Overney, Nanotribological Studies on Polymers, Trends Polym, Sei. 3(11), 359–364 (1995).

    Google Scholar 

  180. T. Kurokawa, J.R Gong and Y. Osada. Substrate effect on topographical, elastic, and friclional properties of hydrogels. Macromolecules 35(21), 8161–8166 (2002).

    Article  Google Scholar 

  181. P. Eaton, F.F. Estarlich, R.J. Ewen, T.G. Nevell, J.R. Smith and J. Tsibouklis, Combined nanoindentation and adhesion force mapping using the atomic force microscope: Investigations of a filled polysiloxane coating, Langmuir 18(25). 10011–10015 (2002).

    Article  Google Scholar 

  182. W.R. Bowen, R.W. Lovitt and C.J. Wright, Application of atomic force microscopy to the study of micromechanical properties of biological materials. Biotechnol. Lett. 22(11), 893–903 (2000).

    Article  Google Scholar 

  183. B.J. Briscoe, L. Fiori and E. Pelillo. Nano-indentation of polymeric surfaces, J. Phys. D 31(19). 2395–2405(1998).

    Article  Google Scholar 

  184. R. Rodriguez and I. Gutierrez, Correlation between nanoindentation and tensile properties Influence of the indentation size effect, Mater. Sei. Eng. A 361(1–2), 377–384 (2003).

    Article  Google Scholar 

  185. N.I. Tymiak, D.E. Kramer, D.F. Bahr, T.J. Wyrobek and W.W. Gerberich. Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49(6), 1021–1034 (2001).

    Article  Google Scholar 

  186. B. Bhushan, Nano-to microscale wear and mechanical characterization using scanning probe microscopy, Wear 251, 1105–1123 (2001).

    Article  Google Scholar 

  187. B. Bhushan and.I.A. Ruan, Atomic-scale friction measurements using friction force microscopy 2: application to magnetic media. J. Tribology Trans. ASME 116(2), 389–396 (1994).

    Article  Google Scholar 

  188. X. Zhao and B. Bhushan, Material removal mechanism of single-crystal silicon on nanoscale and at ultralow loads, Wear 23, 66–78 (1999).

    Google Scholar 

  189. A.V. Kulkarni and B. Bhushan. Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy, Mater. Lett. 29(4–6), 221–227 (1996).

    Article  Google Scholar 

  190. C. Plassard, E. Lesniewska, I. Pochard and A. Nonat. Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. Ultramicroscopy 100(3–4), 331–338 (2004).

    Article  Google Scholar 

  191. S. Gauffinet, E. Finot, R. Lesniewska and A. Nonat. Direct, observation of the growth of calcium silicate hydrate on alite and silica surfaces by atomic force microscopy. Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule a-Sciences De La Terre Et Des Planetes 327(4), 231–236(1998).

    Google Scholar 

  192. D. Viehland, J.F. Li, L.J. Yuan and Z.K. Xu, Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste: Short-range ordering, nanocrystallinity. and local compositional order, J. American Cera. Soc. 79(7), 1731-& (1996).

    Article  Google Scholar 

  193. Z. Xu and D. Viehland. Observation of a mesostructure in calcium silicate hydrate gels of portland cement, Phys. Rev. Lett. 77(5), 952–955 (1996).

    Article  Google Scholar 

  194. E.L. Florin, V.T. Moy and H.E. Gaub, Adhesion forces between individual ligand-receptor pairs. Science 264(5157), 415–417 (1994).

    Article  Google Scholar 

  195. U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.J. Guntherodt and G.N. Misevic. Binding Strength between cell-adhesion proteoglycans measured by atomic-force microscopy. Science 267(5201), 1173–1175 (1995).

    Article  Google Scholar 

  196. H. Mueller, H.J. Butt and E. Bamberg, Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope, Biophysic. J. 76(2), 1072–1079(1999).

    Article  Google Scholar 

  197. J.H. Kinney, M. Balooch, CM. Marshall and S.J. Marshall, A micromechanics model of the elastic properties of human dentine. Arch. Oral Biol. 44(10), 813–822 (1999).

    Article  Google Scholar 

  198. X. Li, H. Gao, W.A. Scrivens, D. Fei, X. Xu, M.A. Sutton, A.P. Reynolds and M.L. Myrick, Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites, Nanotechnology 15(11), 1416–1423 (2004).

    Article  Google Scholar 

  199. P.C.P. Watts, W.K. Hsu, G.Z. Chen, D.J. Fray, H.W. Kroto and D.R.M. Walton, A low resistance boron-doped carbon nanotube-polystyrene composite, J. Mater. Chem. 11(10). 2482–2488 (2001).

    Article  Google Scholar 

  200. A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J.R Wicksted and A. Hirsch, Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Mater. 1(3), 190–194 (2002).

    Article  Google Scholar 

  201. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, I.E. Fischer and K.I. Winey. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225(2000).

    Article  Google Scholar 

  202. H. Ni, X.D. Li, H.S. Gao and T.P. Nguyen, Nanoscale structural and. mechanical characterization of bamboo-like polymer/silicon nanocomposite films. Nanotechnology 16(9), 1746–1753 (2005).

    Article  Google Scholar 

  203. B. Bhushan, Micro/Nanotribology and Its Applications to Magnetic Storage Devices and Mems. Tribology Intr. 28(2), 85–96 (1995).

    Article  Google Scholar 

  204. L.L. Sohn and R.L. Willett, Fabrication of Nanostructures Using Atomic-Force-Microscope-Based Lithography, Appl. Phys. Lett. 67(11), 1552–1554 (1995).

    Article  Google Scholar 

  205. T.H. Fang, W.J. Chang and S.L. Tsai. Nanomechanical characterization of polymer using atomic force microscopy and nanoindentation. Microelectronics J. 36(1), 55–59 (2005).

    Article  Google Scholar 

  206. P.M. Campbell and E.S. Snow, Proximal probe-based fabrication of nanostructures, Semiconductor Sei. Technol. 11(11), 1558–1562(1996).

    Article  Google Scholar 

  207. P.M. Campbell and E.S. Snow, Proximal probe-basal fabrication of nanometer-scale devices. Mater. Sei. Eng. B 51(1–3), 173–177 (1998).

    Article  Google Scholar 

  208. J. Israclachvili, Intermolecular and Surface Forces (Academic, London, 1992).

    Google Scholar 

  209. M. Tello and R. Garcia, Nano-oxidationof silicon surfaces: comparison of noncontact and contact atomic-force microscopy methods, Appl. Phys. Lett 79(3), 424–426 (2001).

    Article  Google Scholar 

  210. H. Sugimura, T. Uchida, N. Kitamura and H. Masuhara. Nanofabrication of titanium surface by tip-induced anodization in scanning tunneling microscopy, Jap..1. Appl. Phys. Part 2-tett. 32(4A), L553–L555 (1993).

    Article  Google Scholar 

  211. K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B.J. Vartanian and J.S. Harris. Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system, Appl. Phys. Lett. 68(1), 34–36 (1996).

    Article  Google Scholar 

  212. A. Inoue, T. Ishida, N. Choi, W. Mizutani and H. Tokumoto, Nanometer-scale patterning of self-assemblal monolayer films on native silicon oxide, Appl. Phys. ten. 73(14), 1976–1978 (1998).

    Google Scholar 

  213. M.S. Bobji and B. Bhushan. In situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy, J. Mater. Res. 16(3). 844–855 (2001).

    Article  Google Scholar 

  214. H.J. Mamin and D. Rugar, Thermomechanical writing with an atomic force microscope Tip, Appl, Phys. Lett. 61(8), 1003–1005 (1992).

    Article  Google Scholar 

  215. V. Bouchiat and D. Esteve, Lift-off lithography using an atomic force microscope, Appl. Phy. Lett. 69(20), 3098–3100 (1996).

    Article  Google Scholar 

  216. J.B. Pethica and W.C Oliver, Tip surface interactions in STM and AFM, Phys. Scripta T19A, 61–66(1987).

    Article  Google Scholar 

  217. E.Z. Luo, J.B. Xu, W. Wu, I.H. Wilson, B. Zhao and X. Yan, Identifying conducting phase from the insulating matrix in percolating metal-insulator nanocomposites by conducting atomic force microscopy, Appl. Phys. A 66, S1171–S1174 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Samudrala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bandyopadhyay, S., Samudrala, S.K., Bhowmick, A.K., Gupta, S.K. (2008). Applications of Atomic Force Microscope (AFM) in the Field of Nanomaterials and Nanocomposites. In: Seal, S. (eds) Functional Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48805-9_9

Download citation

Publish with us

Policies and ethics