Skip to main content

High-Resolution Transmission Electron Microscopy for Nanocharacterization

  • Chapter
Book cover Functional Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2670 Accesses

Abstract

The study of nanomaterials is not only limited to the characterization of their properties as an ensemble of nanoparticles, but also often extends to the study of individual nanoparticles. Variations in size, shape and internal structure of nanoparticles may influence the macroscopic properties of these materials. Therefore, research in nanotechnology is frequently aimed at developing materials with uniform size and shape. In some cases periodic arrangements of uniform particles are developed. These requirements pose significant technological challenges for the preparation of devices incorporating nanostructured materials. Testing of the desired uniformity or periodicity of nanomaterials cannot be done by optical inspection as the resolution of optical methods is not sufficient for the characterization of nanomaterials. While some structural properties can be inferred from the macroscopic properties of the whole device or the ensemble of nanoparticles, scattering methods (using X-rays or neutrons) measure structural properties by averaging over the irradiated volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Kassab, T., Wollenberger, H., Schmitz, G., Kirchheim, R., 2003, Tomography by atom probe field ion microscopy, in: High-Resolution Imaging and Spectroscopy of Materials, Eds. F. Emst, M. Rühle, Springer Series in Materials Science, Vol. 50. pp. 271–320, Springer-Verlag, Newy York.

    Google Scholar 

  2. Andersen, R., Klepeis, S. J., 1997. A new tripod polisher method for preparing TEM specimens of particles and fibers, Eds. R.M. Andersen, S.D. Walck, Mater. Res. Soc. Proc. 480, Pittsburgh, 187–192.

    Google Scholar 

  3. Aroyo, M. I., Perez-Mato, J. M., Capillas, C. Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H., 2006, Bilbao Crystallographic Server I: Databases and crystallographic computing programs, Z F. Kristallographie 221: 15–27. http://www.cryst.ehu.es/.

    Article  Google Scholar 

  4. Barna, A., Peez, B., Menyhard, M., 1998, Amorphizalion and surface morphology development at low-energy ion milling, Ultramicroscopy 70: 161–171.

    Article  Google Scholar 

  5. Batson P. E., Mook, H. W., Kruit, P., 2000, High brightness monochromator for STEM, in: International Union of Microbeam Analysis 2000, Institute of Physics, Bristol, U.K., Vol. 165. pp. 213–214.

    Google Scholar 

  6. Beeli, C., Doudin, B., Ansermet, J.-Ph., Stadelmann, P. A., 1997, Measurement of the remanent magnetization of single Co/Cu and Ni nanowires by off-axis TEM electron holography. Ultramicroscopy 67: 143–151.

    Article  Google Scholar 

  7. Bera, D., Kuiry, S. C., McCutchen, M., Seal, S., Heinrich, H., Slane, G. C., 2004, In situ synthesis of carbon nanotubes decorated with palladium nanoparticles using arc-discharge in solution method. J. Appl Phys. 96: 5152–5157.

    Article  Google Scholar 

  8. Bera, D., Johnston, G., Heinrich, H., Seal, S., 2006. A parametric study on the synthesis of carbon nanotubes through arc-discharge in water, Nanotechnology 17: 1722–1730.

    Article  Google Scholar 

  9. Brink, H. A., Bartels, M. M. G., Burgner, R. P., Edwards, B. N., 2003, A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs, Ultramicroscopy 96: 367–384.

    Article  Google Scholar 

  10. Cliff, G., Lorimer, G. W., 1975, The quantitative analysis of thin specimens, J. Micr. 103: 203.

    Google Scholar 

  11. Coene, W. M. J., Thust, A., Op de Beeck, M., Van Dyck, D., 1996, Maximum-likelihood method for focus-variation image reconstruction in high-resolution transmission electron microscopy, Ultramicroscopy 64: 109–135.

    Article  Google Scholar 

  12. Crystal Lattice Structures, http://cst-www.nrl.navy.mil/lattice/index.html, U.S. Naval Research Laboratories.

    Google Scholar 

  13. De Graef, M., 2003, Introduction to Conventional Transmission Electron Microscopy, University Press, Cambridge.

    Book  Google Scholar 

  14. Disko, M. M., 1992, Transmission electron energy-loss spectrometry in materials science. Eds.: Disko, M.M., Ahn, C.C., Fultz, B., in: Transmission Electron Energy Loss Spectroscopy in Materials Science, Minerals, Metals & Materials Society, Warrendale, PA.

    Google Scholar 

  15. Egerton, R. F., 1996, Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, New York.

    Google Scholar 

  16. Erni, R., 2003, Atomic-scale analysis of precipitates in Al-3 at.% Ag: transmission electron microscopy. Dissertation ETH Zürich, Switzerland, No. 14988.

    Google Scholar 

  17. Erni, R., Browning, N. D., 2005, Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy, Ultramicroscopy 104: 176–192.

    Article  Google Scholar 

  18. Erni, R., Heinrich, H., Kostorz, G., 2003a, On the internal structure of Guinier-Preston zones in Al-3 at.% Ag, Phil Mag. Lett. 83: 599–609.

    Article  Google Scholar 

  19. Erni, R., Heinrich, H., Kostorz, G., 2003b, Quantitative characterisation of chemical inhomogeneities in Al-Ag using high-resolution Z-contrast STEM, Ultramicroscopy 94: 125–133.

    Article  Google Scholar 

  20. Fan, Y., Wang, Y., Lou, J., Xu, S., Zhang, L., Heinrich, H., An, L., 2006. Formation of silicon-doped boron nitride bamboo structures via pyrolysis of a polymeric precursor, J. Am. Ceram. Soc., 89: 740–742.

    Article  Google Scholar 

  21. Fornrânek, P., Kittler, M., 2004, Electron holography on silicon microstructures and its comparison to other microscopic techniques, J. Phys.: Condens. Matter 16: S193–S200.

    Article  Google Scholar 

  22. Freitag, B., Kujawa, S., Mui, P. M., Ringnalda, J., Tiemeijer, P. C., 2005, Breaking the spherical and chromatic aberration barrier in transmission electron microscopy, Ultramicroscopy 102: 209–214.

    Article  Google Scholar 

  23. Fultz, B., Howe, J.M., 2002, Transmission Electron Microscopy and Diffractometry of Materials. Springer-Verlag, Berlin.

    Google Scholar 

  24. Gabor, D., 1948, A new microscopic principle, Nature 161: 777–778.

    Article  Google Scholar 

  25. Gai, P. L., Boyes, E. D., 2003, Electron Microscopy in Heterogeneous Catalysis, Institute of Physics, London.

    Book  Google Scholar 

  26. Goodhew, P. J. 1985, Thin foil Preparation for Electron Microscopy, Elsevier, Amsterdam.

    Google Scholar 

  27. Guinier, A., 1949, Precipitation dans les alliages, Physica 15: 148–160.

    Article  Google Scholar 

  28. Haider, M., Rose, H., Uhlemann, S., Kabius, B., Urban, K., 1998, Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electr. Micr. 47: 395–405.

    Google Scholar 

  29. Hattenhauer, R., Schmitz, G., Wilbrandt, P. J., Haasen, P., 1993, Z-contrast TEM on precipitates in AlAg, Phys. Skit. Sol. A 137:429–434.

    Article  Google Scholar 

  30. Heinrich, H., Kostorz, G., 2000, Bloch waves and weak-beam imaging of crystals, J Electron Micms, 49: 61–65.

    Google Scholar 

  31. Heinrich, H., Senapati, S., Kulkarni, S. R., Halbe, A. R., Rudmann, D., Tiwari, A. N., 2005. Defects and interfaces in Cu(In,Ga)Se2-based thin-film solar cells with and without Na diffusion barrier. Mater. Res. Soc. Symp. Proc. 865: 137–142.

    Google Scholar 

  32. Henry, N. F., Lonsdale, K., Eds., 1969, International Tables for X-Ray Crystallography, Vol. 1, Kynoch Press, Birmingham.

    Google Scholar 

  33. Hillyard, S., Silcox, J., 1995, Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging, UItramicroscopy 58: 6–17.

    Article  Google Scholar 

  34. Hofmann, D., Emst, F., 1994, Quantitative high-resolution transmission electron microscopy of the incoherent Σ3 (211 ) boundary in Cu, Ultramicroscopy 53: 205–221.

    Article  Google Scholar 

  35. Howe, J. M., Dahmen, U., Gronski, R., 1987, Atomic mechanisms of precipitate plate growth, Phil. Mag. A 56: 31–61.

    Article  Google Scholar 

  36. Hytch, M.J., Snoeck, E., Kilaas, R., 1998, Quantitative measurements of displacement and strain fields from HREM micrographs, Ultramicroscopy 74: 131–146.

    Article  Google Scholar 

  37. Iijima, S., 1991, Helical microtubules of graphitic carbon, Nature 354: 56–58.

    Article  Google Scholar 

  38. Ishizuka, K., 2002, A practical approach for STEM image simulation based on the FFT multislice method, Ultramicroscopy 90: 71–83.

    Article  Google Scholar 

  39. Jouneau, P.-H., Stadelmann, P., 1998, EMS On Une, http://cimesgl.epfl.ch/CIOL/ems.html.

    Google Scholar 

  40. Kabius, B., Haider, M., Uhlemann, S., Schwan, E., Urban, K., Rose, H., 2002, First application of a spherical-aberration corrected transmission electron microscope in material science, J. Elec. Micro, 51:51–58.

    Article  Google Scholar 

  41. Kahl, F., 1999, “Design eines Monochromators für Elektronenquellen.” Ph.D. Thesis. Darmstadt University of Technology, Germany.

    Google Scholar 

  42. Kempshall, B. W., Sohn, Y. H., Jha, S. K., Laxman, S., Vanlleet, R. R., Kimmel, J., 2004, A microstructural observation of near-failure thermal barrier coating: a study by photostimulated luminescence spectroscopy and transmission electron microscopy, Thin Solid Films 466: 128–136.

    Article  Google Scholar 

  43. Kersker, M. M., 2001, The modern microscope today, Eds.: Zhang, X.-F., Zhang, Z., Progress in Transmission Electron Microscopy 1, Springer Series in Surface Sciences, Vol. 38, Springer-Verlag, Berlin, pp. 1–34.

    Google Scholar 

  44. Keyse, R. E., Garratt-Reed, A. J., Goodhew, P. J., Lorimer, G. W., 1998, Introduction to Scanning Transmission Electron Microscopy, Microscopy Handbooks Vol. 39, Springer, New York.

    Google Scholar 

  45. Kirkland, E. J., 1998, Advanced Computing in Electron Microscopy. Plenum Press, New York.

    Google Scholar 

  46. Kisielowski, C., Hetherington, C. J. D., Wang, Y. C., Kilaas, R., O’Keefe, M.A., Thust, A., 2001, Imaging columns of the light elements C, N. and O with sub-Angstrom resolution, Ultramicroscopy 89: 243–263.

    Article  Google Scholar 

  47. Kittel, C., 1995, Introduction to Solid-Sutte Physics, Wiley, New York.

    Google Scholar 

  48. Kohler-Redlich, P., Mayer, J., 2003, Quantitative analytical transmission electron microscopy, Eds.: Ernst, F., Rühle, M., High-Resolution Imaging and Spectrometry of Materials, Springer, Berlin, pp. 119–188.

    Google Scholar 

  49. Konno, T.J., Okunishi, E., Ohsuna, T., Hiraga, K., 2004, HAADF-STEM study on the early stage of precipitation in aged Al-Ag alloys, J. Electron. Microscopy 53: 611–616.

    Article  Google Scholar 

  50. Kothieitner, G., Hofer, F., 2003, Elemental occurrence maps: a starting point for quantitative EELS spectrum image processing, Ultramicroscopy 96: 491–508.

    Article  Google Scholar 

  51. Krivanek, O.L., Nellist, P.D., Deltby, N., Murfitt, M.F., Szilagyi, Z., 2003, Towards sub-0.5 Å electron beams, Ultramicroscopy 96: 229–237.

    Article  Google Scholar 

  52. Krumeich, F., Muhr, H.-J., Niederberger, M., Bieri, F., Nesper, R., 2000, The cross-sectional structure of vanadium oxide nanotubes studied by transmission electron microscopy and electron spectroscopic imaging, Z. Anorg. Allg. Chem. 626: 2208–2216.

    Article  Google Scholar 

  53. Lehmann, M., Lichte, H., 2002, Tutorial on off-axis electron holography, Microsc. Microanal. 8: 447–466.

    Article  Google Scholar 

  54. Lehmann, M., Lichte, H., Geiger, D., Lang, G., Schweda, E., 1999, Electron holography at atomic dimensions: present state, Materials Characterization 42: 249–263.

    Article  Google Scholar 

  55. Lichte, H., 1997, Electron holography methods, Eds.: Amelinckx, S, van Dyck, D., van Landuyt, J., van Tendeloo, G., Handbook of Microscopy: Applications in Materials Science, Solid-State Physics and Chemistry, Methods I, VCH Weinheim, Germany, pp. 515–536.

    Google Scholar 

  56. Lichte, H., Geiger, D., Harscher, A., Heindl, E., Lehmann, M., Malamidis, D., Orchiwski, A., Ran, W.-D., 1996, Artefacts in electron holography, Ultramicroscopy 64: 67–77.

    Article  Google Scholar 

  57. Lichte, H., Lehmann, M., 2002, Electron holography: a powerful tool for the analysis of nanostructures, Adv. Imaging and Elec. Pity. 123: 225–255.

    Google Scholar 

  58. Litynska, L., Dutkiewicz, J., Heinrich, H., Kostorz, G., 2004, Structure of precipitates in Al-Mg-Si-Sc and Al-Mg-Si-Sc-Zr alloys, Acta. Metall. Slovaca 10:514–519.

    Google Scholar 

  59. Liu, J., Byeon, J. W., Sohn, Y.H., 2006, Effects of phase constituents/microstructure of thermally grown oxide on the failure of EB-PVD thermal barrier coating with NiCoCrAl Y bond coat. Surface & Coatings Technology 200: 5869–5876.

    Article  Google Scholar 

  60. Malik, A., Schönfeld, B., Kostorz, G., Pedersen, J.S., 1996, Microstructure of Guinier-Preston zones in Al-Ag, Acta Mater. 39:4845–4852.

    Article  Google Scholar 

  61. Malis, T., Cheng, S.C., Egerton, R.F., 1988, EELS log-ratio technique for specimen-thickness measurement in the TEM, J. Elect. Microsc. Tech. 8: 193–200.

    Article  Google Scholar 

  62. Möbus, G., Rühle, M., 1994, Structure determination of metal-ceramic interfaces by numerical contrast evaluation of HRTEM micrographs. Ultramicroscopy 56: 54–70.

    Article  Google Scholar 

  63. Müller, E., Kruse, P., Gerthsen, D., Schowalter, M., Rosenauer, A., Lamoen, D., Kling, R., Waag, A., 2005, Measurement of the mean inner potential of ZnO nanorods by transmission electron holography, Appl. Phys. Lett. 86: 154108, 1–3.

    Article  Google Scholar 

  64. Neddermeyer, H., Hanbüchen, M., 2003. Scanning tunneling microscopy (STM) and spectroscopy (STS), atomic force microscopy (AFM). in: High-Resolution Imaging and Spectroscopy of Materials, Eds. F. Ernst, M. Rühle, Springer Series in Materials Science Vol. 50, pp. 271–320, Springer-Verlag, New York.

    Google Scholar 

  65. Neumann, W., Kirmse, H., Häusler, I., Otto, R., Hähnert, I., 2004, Quantitative TEM analysis of quantum structures, Journal of Alloys and Compounds 382: 2–9.

    Article  Google Scholar 

  66. Op de Beeck, M., Van Dyck, D., Coene, W., 1996, Wave function reconstruction in HRTEM: the parabola method, Ultramicroscopy 64: 167–183.

    Article  Google Scholar 

  67. Pennycook, S.J., Jesson, D.E., Browning, N.D., 1995, Atomic-resolution electron energy loss spectroscopy in crystalline solids, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 96: 575–582.

    Article  Google Scholar 

  68. Pennycook, S.J., Jesson, D.E., Nellisl, P.D., Chisholm, M.F., Browning, N.D., 1997, Scanning transmission electron microscopy: Z contrast, Eds.: Amelinckx, S, van Dyck, D., van Landuyt, J., van Tendeloo, G., Handbook of Microscopy, Applications in Materials Science, Solid-Slate Physics and Chemistry. Methods II, VCH Weinheim, Gennany, pp. 595–620.

    Google Scholar 

  69. Portmann, M. J., Erni, R., Heinrich, H., Kostorz, G., 2004, Bulk interfaces in a Ni-rich Ni-Au alloy investigated by high-resolution Z-contrast imaging. Micron 35: 695–700.

    Article  Google Scholar 

  70. Qin, L.-C, 2001, Determining the helicity of carbon nanotubes by electron diffraction, Eds.: Zhang, X.-F., Zhang, Z., Progress in Transmission Electron Microscopy, Vol. 2, Springer-Verlag, Berlin, pp. 73–104.

    Google Scholar 

  71. Rau, W.D., Lichte, H., 1998, High-resolution off-axis electron holography, in: Introduction to Electron Holography, Eds. E. Völkl, L. F. Ailard, and D. C. Joy, Kluwer Academic, New York, pp. 201–229.

    Google Scholar 

  72. Rau, W.D., Schwander, P., Baumann, F.H., Höppner, W., Ounnazd, A., 1999, Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rew. Lett. 82: 2614–2617.

    Article  Google Scholar 

  73. Reimer, L., 1989, Transmission Electron Microscopy, Springer-Verlag, Berlin.

    Google Scholar 

  74. Roberts, S., McCaffrey, J., Giannuzzi, L., Stevie, F., Zaluzec, N., 2001, Advanced techniques in TEM specimen preparation, Eds.: Zhang, X.-F., Zhang, Z., Progress in Transmission Electron Microscopy 1. Springer Series in Surface Sciences 38, Springer-Verlag, Berlin, pp. 301–361.

    Google Scholar 

  75. Rose, H., 1990, Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope, Optik 85: 19–24.

    Google Scholar 

  76. Rose, H., 2004, Advances in electron optics, Eds.: Ernst, F., Rühle, M., High-Resolution Imaging and Spectrometry of Materials, Springer-Verlag, Berlin, pp. 189–270.

    Google Scholar 

  77. Rosenauer, A., 2003, Transmission Electron Microscopy of Semiconductor Nanostructures, Ed. G. Höhler, Springer Tracts in Modern Physics 182, Springer-Verlag, Berlin.

    Google Scholar 

  78. Scherzer, O., 1936, Über einige Fehler von Elektronenlinsen. Z. Phys. 101: 593–603.

    Article  Google Scholar 

  79. Schwander, P., Kisielowski, C., Seibt, M., Baumann, F.H., Kim, Y., Ounnazd, A., 1993, Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy, Phys. Rev. Lett. 71: 4150–4153.

    Article  Google Scholar 

  80. Senapati, S., Kabes, B., Heinrich, H., 2006, Ag2AI plates in Al-Ag alloys, Zeitschrift für Metallkunde 97:325–328.

    Google Scholar 

  81. Shindo, D., Oikawa, T., 2002, Analytical Electron Microscopy for Materials Science, Springer-Verlag, Tokyo.

    Google Scholar 

  82. Shiojiri, M., 2004, HAADF-STEM imaging and microscopy observations of heterostructures in electronic devices. Electron Technology—Internet Journal 36, 3: 1–8.

    Google Scholar 

  83. Signoretti, S., Beeli, C., Liou, S.-H., 2004, Electron holography quantitative measurements on magnetic force microscopy probes, J. Magn. Magn. Mater. 272–276: 2167–2168.

    Article  Google Scholar 

  84. Signoretti, S., Del Bianco, L., Pasquini, L., Matteucci, G., Beeli, C., Bonetti, E., 2003, Electron holography of gas-phase condensed Fe nanoparticles, J. Magn. Magn. Mater. 262: 142–145.

    Article  Google Scholar 

  85. Tanaka, M., Terauchi, M., Convergent-Beam Election Diffraction I–III, 1985, JEOL Ltd., Tokyo.

    Google Scholar 

  86. Tanaka, M., Terauchi, M., Tsuda, K., Saitoh, K., Convergent-Beam Electron Diffraction IV, 2002. JEOL-Marunzen, Tokyo.

    Google Scholar 

  87. Terheggen, M., 2003, “Microstructural Changes in CdS/CdTe Thin Film Solar Cells During Annealing with Chlorine,” Dissertation ETH Zürich, Switzerland, No. 15214.

    Google Scholar 

  88. Twitchett, A.C., Dunin-Borkowski, R.E., Hallifax, R.J., Broom, R.F., Midgley, P.A., 2004, Off-axis electron holography of electrostatic potentials in unbiased and reverse biased focused ion beam milled semiconductor devices. J. Microsc. 214: 287–296.

    Article  Google Scholar 

  89. Velázquez-Salazar, J.J., Muñoz-Sandoval, E., Romo-Herrera, J.M., Lupo, F., Rühle, M., Terrones, H., Terrones, M., 2005, Synthesis and state of art characterization of BN bamboo-like nanotubes: Evidence of a root growth mechanism catalyzed by Fe. Chem. Phys. Lett. 416: 342–348.

    Article  Google Scholar 

  90. Villars, P., Calvert, L.D., Eds., 1991, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd Edition, ASM International, Materials Park, OH.

    Google Scholar 

  91. Voelkl, E., Allard, L.F., Frost, B., 1997, Electron holography: recent developments. Scanning Microscopy 11:407–416.

    Google Scholar 

  92. von Heimendahl, M., 1980, Electron Microscopy of Materials, Academic Press, London.

    Google Scholar 

  93. Wang, S.Q., Wang, Y.M., Ye, H.Q., 2001, Quantitative analysis of high-resolution atomic images, Eds.: Zhang, X.-F, Zhang, Z., Progress in Transmission Electron Microscopy 1, Springer Series in Surface Sciences 38, Springer-Verlag, Berlin, pp. 162–190.

    Google Scholar 

  94. Wang, Z.L., 2001, Inelastic scattering in electron microscopy: effects, spectrometry and imaging. Eds.: Zhang, X.-F., Zhang, Z., Progress in Transmission Electron Microscopy 1, Springer, Series in Surface Sciences 38, Springer-Verlag, Berlin, pp. 113–159.

    Google Scholar 

  95. Williams, D.B., Carter, C. B., 1996, Transmission Electron Microscopy, Plenum Press, New York.

    Google Scholar 

  96. Yamazaki, T., Watanabe, K., Rečnik, A., Čeh, M., Kawasaki, M., Shiojiri, M., 2000, Simulation of atomic-scale high-angle annular dark field scanning transmission electron microscopy images, J. Eleclr. Microsc. 49: 753–759.

    Google Scholar 

  97. Zandbergen, H. W., Trœholt, C., 1997, Small particles, Eds.: Amelinckx, S., van Dyck, D., van Landuyt, J., van Tendeloo, G., Handbook of Microscopy: Applications in Materials Science, Solid-State Physics and Chemistry: Applications, VCH Weinheim, Germany, pp. 691–738.

    Google Scholar 

  98. Zhou, D., 2001, HREM study of carbon nanoclusters grown from carbon arc-discharge, Eds.: Zhang, X.-F., Zhang, Z., Progress in Transmission Electron Microscopy 2, Springer-Verlag, Berlin, pp. 25–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heinrich, H. (2008). High-Resolution Transmission Electron Microscopy for Nanocharacterization. In: Seal, S. (eds) Functional Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48805-9_8

Download citation

Publish with us

Policies and ethics