Skip to main content

Nanostructured High-Anisotropy Materials for High-Density Magnetic Recording

  • Chapter
Functional Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2522 Accesses

Abstract

Magnetic recording is widely used in infocom technologies and consumer electronic products. The magnetic disk drive featuring a total storage capability of 5 MB at a recording density of 2 Kbit/in.2 was invented at IBM in 1956 using longitudinal magnetic recording (LMR) mode, which aligned the magnetization of the recording bits horizontally parallel to the surface of the disk. The area! densities of hard disk drives increased over 100% per annum during the late 1990s as shown in Fig. 1.

Demonstrated areal density trend (The data for longitudinal magnetic recording were reprinted with permission of Hitachi Global Storage technologies. From Page 19 of HDD Roadmap, http://www.hitachigst.com/hdd/hddpdf/tech/hdd_technology2003.pdf)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Wood, J. Miles and T. Olson, Recording technologies for terabit per square inch systems, IEEE Trans. Magn. 38, 1711(2002).

    Google Scholar 

  2. R. Wood, Y. Sonobe, Z. Jin and B. Wilson, Perpendicular recording; the promise and the problems. J. Magn. Magn. Mater. 235. 1 (2001).

    Google Scholar 

  3. R. Wood. The feasibility of magnetic recording at I Terabit per square inch, IEEE Trans. Magn. 36,36 (2000).

    Google Scholar 

  4. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. H. Sun and Eric E. Fullerton, Magnetic recording: advancing into the future, J. Phys. D 35, R157 (2002).

    Google Scholar 

  5. N. Honda, K. Ouchi and S. Iwasaki. Design consideration of ultrahigh-density perpendicular magnetic recording media, IEEE Trans. Magn. 38, 1615 (2002).

    Google Scholar 

  6. D. Lilvinov, M. H. Kryder and S. Khizroev. Recording physics of perpendicular media: hard layers, J. Magn. Magn. Mater. 241.453 (2002).

    Google Scholar 

  7. S. Khizroev, M. H. Kryder and D. D. Lilvinov. Next generation perpendicular systems, IEEE Trans. Magn. 37, 1922 (2001).

    Google Scholar 

  8. D. Lilvinov, M. H. Kryder and S. Khizroev. Recording physics of perpendicular media: soft underlayer. J. Magn. Magn. Mater. 232. 84 (2001).

    Google Scholar 

  9. M. H. Kryder and R. W. Gustafson, High-density perpendicular recording: advances, issues, and extensibility. J. Magn. Magn. Mater. 287,449 (2005).

    Google Scholar 

  10. D. Weiler, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickerl, J. U. Thiele and M. F. Doerner, High K u− materials approach to 100 ß, IEEE Trans. Magn. 36, 10 (2000).

    Google Scholar 

  11. C. A. Ross. Patterned magnetic recording media, Annu. Rev. Mater. Res. 31. 203 (2001).

    Google Scholar 

  12. B. D. Terris and T. Thomson. Nanofabricated and self-assembled magnetic structures as data storage media, J. Phys. D 38, R199 (2005).

    Google Scholar 

  13. J. H. Judy. Past, present, and future of perpendicular magnetic recording, J. Magn. Magn. Mater. 287, 16(2005).

    Google Scholar 

  14. K. Ouchi, Review on recent developments of perpendicular recording media, IEICE Trans. Electron. E84C, 1121 (2001).

    Google Scholar 

  15. G. M. Chow, W. C. Goh, Y. K. Hwu, T. S. Cho, J. H. Je, H. H. Lee, H. C. Kang, D. Y. Non, C. K. Lin and W. D. Chang, Structure determination of nanostructured Ni-Co films by anomalous x-ray scattering, Appl. Phys. Lett. 75, 2503 (1999).

    Google Scholar 

  16. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, ASM International. Materials Park, OH (1990).

    Google Scholar 

  17. D. E. Laughlin, K. Srinivasan, M. Tanase and L. Wang, Crystallographic aspects of L10 magnetic materials, Scripta. Mater. 53, 383 (2005).

    Google Scholar 

  18. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd Edition, Prentice-Hall International, London (2001).

    Google Scholar 

  19. C. J. Sun, G. M. Chow and J. P. Wang, Epitaxial L10 FePt magnetic thin films sputtered on Cu (001), Appl. Phys. Lett. 82, 1902 (2003).

    Google Scholar 

  20. C. J. Sun, B. H. Liu, J. P. Wang and G. M. Chow. Sputtered FePt films with uniform nanoscale grain size on Cu (001) single crystal, J. Appl. Phys. 97. I0J103 (2005).

    Google Scholar 

  21. A. Cebollada, R. F. C. Ferrow and M. F. Toney, Magnetic Nanostructure, H. S. Nalwa ed., American Scientific Publisher, Stevenson Ranch, California (2002). p. 98

    Google Scholar 

  22. R. F. C. Farrow, D. Weiler, R. F. Marks, M. F. Toney, A. Cebollada and G. R. Harp, Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films. J. Appt. Phys. 79, 5967(1996).

    Google Scholar 

  23. S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada and K. Fukamichi. Chemicalorder-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films, Phys. Rev. B 66, 024413 (2002).

    Google Scholar 

  24. J. W. Edingion, in Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold. New York (1976).

    Google Scholar 

  25. A. Cebollada, R. F. C. Ferrow and M. F. Toney. Magnetic Nanostructure, H. S. Nalwa, ed., American Scientific Publisher, Stevenson Ranch, California (2002), p. 106.

    Google Scholar 

  26. M. Weisheit, L. Schultz and S. Fahler, Textured growth of highly coercive L10-ordered FePt thin films on single crystalline and amorphous substrates. J. Appl. Phys. 95, 7489 (2004).

    Google Scholar 

  27. M. Weisheit, L. Schultz and S. Fahler, On the influence of composition on laser-deposited Fe-Pt films, J. Magn. Magn. Mater. 290–291, 570 (2005).

    Google Scholar 

  28. K. H. Kang, T. Yang and T. Suzuki. Structural and magnetic properties of FePt-Ag composite film with perpendicular magnetic anisotropy, IEEE Trans. Magn. 38,2039 (2002)

    Google Scholar 

  29. T. Yang, K. H. Kang, G. H. Yu and T. Suzuki, Slructural and magnetic properties of (001 )-orienîed FePt/Ag composite film, J. Phys, D-Appl, Phys. 35, 2897 (2002).

    Google Scholar 

  30. T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara and K. Mono, L10 ordering of offstoichiometric FePt(00l) thin films at reduced temperature, Appl. Phys. Un. 82, 2461 (2003).

    Google Scholar 

  31. Z. L. Zhao, Ph.D Thesis, “Magnetic Properties of L10 FePt Thin Films with Additional Ultrathin Nonmagnetic Layers Data Storage Institute and National University of Singapore (2005).

    Google Scholar 

  32. Y. K. Takahashi, M. Ohnuma and K. Mono, Ordering process of sputtered FePt films. J. Appl. Phys. 93,7580 (2003).

    Google Scholar 

  33. K. Takahashi and K. Hono, Ordering process and size effect of FePt magnetic thin films. J. Magn. Soc. Jpn 29, 72 (2005).

    Google Scholar 

  34. T. Maeda, T. Kai, A. Kikitsu, T. Nagase and J. I. Akiyama. Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu, Appl. Phys. Lett. 80, 2147 (2002).

    Google Scholar 

  35. T. Kai, T. Maeda, A. Kikitsu, J. Akiyama, T. Nagase and T. Kishi, Magnetic and electronic structures of FePtCu ternary ordered alloy. J. Appl. Phys. 95.609 (2004).

    Google Scholar 

  36. T. Maeda, A. Kikitsu, T. Kai,. T. Nagase, H. Aikawa and J. Akiyama. Effect of added Cu on disorder-order transformation of L10-FePt, IEEE Trans. Magn. 38. 2796 (2002).

    Google Scholar 

  37. Y. K. Takahashi, M. Ohnuma and K. Hono, Effect of Cu on the structure and magnetic properties of FePt sputtered film, J. Magn. Magn. Mater. 246, 259 (2002).

    Google Scholar 

  38. K. W. Wierman, C. L. Piatt and J. K. Howard, Impact of stoichiometry on L10 ordering in FePt and FePtCu thin films, J. Magn. Magn. Mater. 278, 214 (2004).

    Google Scholar 

  39. X. C. Sun, S. S. Kang, J. W. Harreil, D. E. Nikeles, Z. R. Dai, J. Li and Z. L. Wang, Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films. J. Appl. Phys. 93,7337 (2003).

    Google Scholar 

  40. K. W. Wierman, C. L. Piatt, J. K. Howard and F. E. Spada, Evolution of stress with L10 ordering in FePt and FeCuPt thin films, J. Appl. Phys. 93, 7160 (2003).

    Google Scholar 

  41. K. Barmak, D. C. Berrya, B. J. Kima, K. W. Wierman, E. B. Svedberg and J. K. Howard. Engineering Conference International, Copper Mountain, CO. August 15–20, 2004.

    Google Scholar 

  42. C. L. Piatt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, L10 ordering and microstructure of FePt thin films with Cu. Ag, and Au additive, J. Appl. Phys. 92, 6104 (2002).

    Google Scholar 

  43. Y. Z. Zhou, J. S. Chen, G. M. Chow and J. P. Wang, Structure and magnetic properties of in-plane oriented FePt-Ag nanocomposites, J. Appl. Phys. 93. 7577 (2003).

    Google Scholar 

  44. S. S. Kang, D. E. Nike and J. W. Harreli, Synthesis, chemical ordering, and magnetic properties of self-assembled FePt-Ag nanoparticles, J. Appl, Phys. 93, 7178 (2003).

    Google Scholar 

  45. C. Chen, O. Kitakami, S. Okamoto and Y. Shimada, Ordering and orientation of CoPt/SiO2 granular films with additive Ag. Appl. Phys. Lett. 76, 3218 (2000).

    Google Scholar 

  46. O. Kitakami, Y. Shimada, Y. Oikawa, H. Daimon and K. Fukamichi, Low-temperature ordering of L10-CoPt thin films promoted by Sn, Pb. Sb, and Bi additives, Appl, Phys. Lett. 78, 1104 (2001).

    Google Scholar 

  47. Z. L. Zhao, J. Ding, K. hiaba, J. S. Chen and J. P. Wang, Promotion of L10-ordered phase transformation by the Ag top layer on FePt thin films, Appl. Phys. Lett. 83, 2196 (2003).

    Google Scholar 

  48. S. R. Lee, S. Yang, Y. K. Kim and J. G. Na, Rapid ordering of Zr-doped FePt alloy films. Appl. Phys. Lett. 78,4001(2001).

    Google Scholar 

  49. T. Suzuki, K. Harada, N. Honda and K. Ouchi, Preparation of ordered Fe-Pt thin films for perpendicular magnetic recording media, J. Magn. Magn. Mater. 193. 85 (1999).

    Google Scholar 

  50. Y.-N. Hsu, S. Jeong, D. Laughlin and D. N. Lambeth, Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films. J. Appl. Phys. 89, 7068 (2001).

    Google Scholar 

  51. Y. F. Xu, J. S. Chen and J. P. Wang, In situ ordering of FePt thin films with face-centeted-tetragonal (001) texture onCr100−x Rux underlayerat low substratetemperature, Appl. Phys. Lett. 80,3325 (2002).

    Google Scholar 

  52. Y. F. Ding, J. S. Chen, F. J. Liu, C. J. Sun and G. M. Chow, Effect of lattice mismatch on chemical ordering of epitaxial L10 FePt films, J. Appl. Phys. 97, 10H303 (2005).

    Google Scholar 

  53. C. H. Lai, C. H. Yang, C. C. Chiang and T. K. Tseng, Dynamic stress-induced low-temperature ordering of FePt, Appl. Phys. Lett. 85, 4430 (2004).

    Google Scholar 

  54. Y.-N. Hsu, S. Jeong, D. N. Lambeth and D. Laughlin, In situ ordering of FePt thin films by using Ag/Si and Ag/Mn3Si/Ag/Si templates, IEEE Trans. Magn. 36, 2945 (2000).

    Google Scholar 

  55. J. S. Chen. B. C. Lim and T. J. Zhou, Effect of ultrahigh vacuum on ordering temperature, crystallographic and magnetic properties of L10 FePt (001 ) film on CrRu underlayer, J. Vac. Sci. Tech. Ali, 23, 184 (2005).

    Google Scholar 

  56. J. S. Chen, Y. F. Xii and J. P. Wang, Effect of Pt buffer layer on structural and magnetic properties of FePt thin films, J. Appl. Phys. 93,1661 (2003).

    Google Scholar 

  57. D. Ravelosona, C. Chappert, V. Mathet and H. Bermas, Chemical order induced by ion irradiation in FePt (001) films, Appl. Phys. Lett. 76, 236 (2000).

    Google Scholar 

  58. C. H. Lai, C. H. Yang and C. C. Chiang, Ion-irradiation-induced direct ordering of L10 FePt phase, Appl. Phys. Lett. 83,4550 (2003).

    Google Scholar 

  59. Y. Zhu and J. W. Cai, Low-temperature ordering of FePt thin films by a thin Audi underlayer. Appl. Phys. Lett. 87, 32504 (2005).

    Google Scholar 

  60. G. H. O. Daalderop, P. J. Kelly and M. F. H. Schurmanns, Magnetocrystalline anisotropy and orbital moments in transition-metal compounds, Phys. Rev. B, 44, 12054 (1991).

    Google Scholar 

  61. S. Ostanin, S. S. A. Razee, J. B. Staunton, B. Ginatempo and E. Bruno, Magnetocrystalline anisotropy and compositional order in Fe0.5Pt0.5: calculations from an ab initio electronic model, J. Appl. Phys. 93,453 (2003).

    Google Scholar 

  62. I. V. Solovyev, P. 11. Dederichs and I. Mertig, Origin of orbital magnetization and magnetocrystalline anisotropy in TX-ordered alloys (where T=Fe, Co and X=Pd, Pt), Phys. Rev. B 52, 13419(1995).

    Google Scholar 

  63. A. Sakuma, First principle calculation of the magnetocrystalline anisotropy energy of FePt and CoPt ordered alloys, J. Phys. Soc. Jpn. 63, 3053 (1994).

    Google Scholar 

  64. P. M. Oppeneer, Magneto-optical spectroscopy in the valence-band energy regime: relationship to the magnetocrystalline anisotropy, J. Magn. Magn. Mater. 188, 275 (1998).

    Google Scholar 

  65. I. Galanakis, M. Alouani and H. Dreysee, Perpendicular magnetic anisotropy of binary alloys: a total-energy calculation, Phys. Rev. B 62, 6475 (2000).

    Google Scholar 

  66. P. Ravindran, A. Kjekshus, H. Fjellvöag, P. James, L. Nordström, B. Johansson and O. Eriksson. Large magnetocrystalline anisotropy in bilayer transition metal phases from first-principles fullpotential calculations, Phys. Rev. B 63, 144409 (2001).

    Google Scholar 

  67. O. A. Ivanov, L. V. Solina, V. A. Demshira and L. M. Magal. Phys. Met. Metallogr. 35, 92 (1973).

    Google Scholar 

  68. J.-U. Thiele, L. Folks, M. F. Toney and D. K. Weiler, Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L10 films. J. Appl. Phys. 84, 5686 (1998).

    Google Scholar 

  69. J. U. Thiele, K. R. Coffey, M. F. Toney, J. A. Hedstrom and A. J. Kellock, Temperature-dependent magnetic properties of highly chemically ordered Fe55−x NixPt45L10 films. J. Appl. Phys. 91, 6595 (2002).

    Google Scholar 

  70. A. B. Shick and O. N. Mryasov, Coulomb correlations and magnetic anisotropy in ordered L10 CoPt and FePt alloys, Phys. Rev. B 67, 172407 (2003).

    Google Scholar 

  71. J. Lyubina, I. Opahle, K. H. Müller, O. Gutfleisch, M. Richter, M. Wolf and L. Schultz, Magnetocrystalline anisotropy in L10 FePt and exchange coupling in FePt/Fe3Pt nanocomposites, J. Phys: Condens. Matter 17,4157 (2005).

    Google Scholar 

  72. T. Shima, T. Moriguchi, S. Mitani and K. Takanashi. Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition, Appl. Phys. Lett. 80. 288 (2002).

    Google Scholar 

  73. H. Nishio, H. Taguchi, S. Hashimoto, K. Yajima, A. Fukuno and H. Yamamoto, A comparison of magnetic anisotropy constants and anisotropy fields of permanent magnets determined by various measuring methods, J. Phys. D: Appl. Phys. 29, 2240 (1996).

    Google Scholar 

  74. Y. Uesaka, Y. Nakatani, N. Hayashi, H. Fukushima and N. Inaba, Accuracy of 45° torque method for obtaining anisotropy constant of 2D random films. IEEE Trans. Magn. 35, 2673, (1999).

    Google Scholar 

  75. M. Takahashi, T. Shimatsu, M. Siiekane, M. Miyamura, K. Yamaguchi and H. Yamasaki, Magnetization reversal mechanism evaluated by rotational hysteresis loss analysis for the thin-film media, IEEE Trans. Magn. 28, 3285 (1992).

    Google Scholar 

  76. Y. Endo, O. Kitakami, S. Okamoto and Y. Shimada, Determination of first and second magnetic anisotropy constants of magnetic recording media. Appl. Phys. Uli. 77, 1689 (2000).

    Google Scholar 

  77. S. Okamoto, K. Nishiyama, O. Kitakami and Y. Shimada, Enhancement of magnetic surface anisotropy of Pd/Co/Pd trilayers by the addition of Sm, J. Appl. Phys. 90, 4085 (2001).

    Google Scholar 

  78. W. Sucksmith and J. E. Thompson. Proc. R. Soc. London, A 225, 362 (1954).

    Google Scholar 

  79. S. De haan, C. Lodder T. J. A. Popma, J. Magn. Soc. Jpn 15 (S2), 349 (1991).

    Google Scholar 

  80. N. Akulov. Z. Phys. 100,197 (1936).

    Google Scholar 

  81. C. Zener, Classical theory of the temperature dependence of magnetic anisotropy energy, Phys. Rev. 96, 1335 (1954).

    Google Scholar 

  82. H. B. Callen and E. Callen, The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+ l)/2 power law, J. Phys. Chem. Solids 27, 1271 (1966).

    Google Scholar 

  83. H. Zeng, R. Sabirianov, O. Mryasov, M. L. Yan, K. Cho and D. J. Sellmyer. Curie temperature of FePt: B2O3 nanocomposite films, Phys. Rev. B 66. 184425 (2002).

    Google Scholar 

  84. R. Burgholz and U. Gradmann, Structure and magnetism of oligatomic Ni(l I I)-films on Re(0001), J. Magn. Magn. Mater. 45, 389 (1984).

    Google Scholar 

  85. J. A. Christodoulides, M. J. Bonder, Y. Huang, Y. Zhang, S. Sloyanov and G. C. Hadjupanayis, Intrinsic and hysteresis properties of FePt nanoparticles. Phys. Rev. B 68, 054428 (2003).

    Google Scholar 

  86. M. P. Sharrock. Time-dependent magnetic phenomena and particle-size effects in recording media, IEEE Trans. Magn. 26, 193 (1990).

    Google Scholar 

  87. D. Weiler and A. Moser. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35,4423 (1999).

    Google Scholar 

  88. C. Chen, O. Kitakami and Y. Shimada, Particle size effects and surface anisotropy in Fe-based granular films, J. Appl. Phys. 84, 2184 (1998).

    Google Scholar 

  89. M. Jamet, M. Négrier, V. Dupluis, J. T. Combes, P. Mélion, A. Perez, W. Wernsdorfer, B. Barbara and B. Baguenard. Interface magnetic anisotropy in cobalt clusters embedded in a platinum matrix, J. Magn. Magn. Mater. 237. 293 (2001).

    Google Scholar 

  90. S. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang and G. C. Hadjupanayis, Investigation of CoPl/M (M=Ag, C) films for high-density recording media, J. Magn. Magn. Mater. 193. 181 (1999).

    Google Scholar 

  91. J. A. Christodoulides, P. Färber, M. Daniii, H. Okumura, G. C. Hadjupanayis, V. Skumryev and D. Weiler. Magnetic, structural and microstructural properties of FePt/M (M=C, BN) granular films, IEEE Trans. Magn. 37, 1292 (2001).

    Google Scholar 

  92. J. A. Christodoulides, Y. Huang, Y. Zhang, G. C. Hadjupanayis, I. Panagiotopoulos and D. Niarchos, CoPt and FePt thin films for high-density recording media, J. Appl. Phys. 87, 6938 (2000).

    Google Scholar 

  93. C. P. Luo and D. J. Sellmyer, Structural and magnetic properties of FePt: SiO2 granular thin films, Appl Phys. Lett 75,3162(1999).

    Google Scholar 

  94. M. Watanabe, T. Masumoto, D. H. Ping and K. Hono, Microstructure and magnetic properties of FePt-Al-0 granular thin films, Appl Phys. Lett. 76, 3971 (2000).

    Google Scholar 

  95. M. Matsumoto, A. Morisako and N. Katayama, Magnetic properties of FePt and FePt-Al2O3 granular films by post-annealing, J. Appl. Phys. 93, 7169 (2003).

    Google Scholar 

  96. Y. K. Takahashi and K. Mono, Interfacial disorder in the L10 FePt particles capped with amorphous Al2O3, Appl. Phys. Lett 84, 383 (2004).

    Google Scholar 

  97. T. Miyazaki, S. Okamoto, O. Kitakami and Y. Shimada, Fabrication of two-dimensional assembly of L10FePt nanoparticles, J. Appl. Phys. 93,7759 (2003).

    Google Scholar 

  98. T. Shima, K. Takanashi, Y. K. Takahashi and K. Hono, Preparation and magnetic properties of highly coercive FePt films, Appl. Phys. Lett. 81, 1050 (2002).

    Google Scholar 

  99. T. Shima. K. Takanashi, Y. K. Takahashi and K. Hono, Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films, Appl. Phys. Lett. 85, 2571 (2004).

    Google Scholar 

  100. S. Okamolo, O. Kilakami, N. Kikuchi, T. Miyazaki and Y. Shimada, Size dependences of magnetic properties and switching behavior in FePt L10 nanoparticles, Phys. Rev. B 67.094422 (2003).

    Google Scholar 

  101. J. L. Pérez-Diaz and M. C. Muûoz, Induced spin polarization on Fe/nonmagnetic metal interfaces, J. Appl. Phys. 75,6470 (1994).

    Google Scholar 

  102. W. J. Ante, M. M. Schwickert, T. Lin, W. L. O’Brien and G. R. Harp, Induced ferromagnetism and anisotropy of Pi layers in Fe/Pt(001) multilayers, Phys. Rev. B, 60,12933 (1999).

    Google Scholar 

  103. B. M. Lairson and B. M. Clemens, Enhanced Magnetooplic kerr rotation in epitaxial PtFe(OOl) and PtCo(00l) thin films. Appl Phys. Lett 63, 1438 (1993).

    Google Scholar 

  104. M. R. Visokay and R. Sinclair. Direct formation of ordered CoPt and FePt compound thin films by sputtering, Appl. Phys. Lett. 66, 1692 (1995).

    Google Scholar 

  105. T. Yang, E. Ahmad and Y. Suzuki. FePt-Ag nanocomposite film with perpendicular magnetic anisotropy, J. Appl. Phys. 91. 6860 (2000).

    Google Scholar 

  106. Y. F. Ding, J. S. Chen and E. Liu, Epitaxial L10 FePt films on SrTiO3 (1 0 0) by sputtering, J. Crystal Growtfv 276, 111 (2005).

    Google Scholar 

  107. Y.-N. Hsu, S. Jeong, D. E. Laughlin and D. N. Lambeth, The effects of Ag underlayer and Pt intermediate layers on the microstructure and magnetic properties of epitaxial FePt thin films, J. Magn. Magn, Mater. 260. 282 (2003).

    Google Scholar 

  108. S. Jeong, Y.-N. Hsu, D. E. Laughlin and M. E. Mcllenry, Magnetic properties of nanostructured CoPt and FePt thin films. IEEE Trans. Magn. 36, 2336 (2000).

    Google Scholar 

  109. S. Jeong, Y.-N. Hsu, D. E. Laughlin and M. E. Mcllenry, Atomic ordering and coercivity mechanism in FePt and CoPt polycrystalline thin films, IEEE Trans. Magn. 37, 1299 (2001).

    Google Scholar 

  110. S. Jeong, M. E. Mcllenry and D. E. Laughlin, Growth and characterization of L10 FePt and CoPt 00I textured polycrystalline thin films, IEEE Trans. Magn. 37. 1309 (2001 ).

    Google Scholar 

  111. S. Jeong, T. Ohkubo, A. G. Roy, D. E. Laughlin and M. E. Mcllenry, In situ ordered polycrystalline FePt L10 (001) nanostructured films and the effect of CrMn and Zn top layer diffusion. J. Appl Phys. 91 6863 (2002).

    Google Scholar 

  112. K. Kang, Z. G. Zhang, C. Papusoi and T. Suzuki. (001 ) oriented FePt-Ag composite nanogranular films on amorphous substrate, Appl, Phys. Lett. 82, 3284 (2003).

    Google Scholar 

  113. K. Kang, Z. G. Zhang, C. Papusoi and T. Suzuki, Composite nanogranular films of FePt-MgO with (001 ) orientation onto glass substrates, Appl. Phys. Lett. 84,404 (2004).

    Google Scholar 

  114. Z. G. Zhang, K. Kang and T. Suzuki, FePt (001) texture development on an Fe-Ta-C magnetic soft underlayer with SiO2/MgO as an intermediate layer, Appl. Phys. Lett. 83, 1785 (2003).

    Google Scholar 

  115. C. L. Piatt and K. W. Wierman, Use of film thickness and Cu additive to improve (001 ) texture in MgO/FePtCu(C) bilayers, J. Magn. Magn. Mater. 295. 241 (2005).

    Google Scholar 

  116. S. Nakagawa and T. Kamiki, Highly (001) oriented FePt ordered alloy thin films fabricated from Pt(100)/Fe(100) structure on glass disks without seed layers, J. Magn. Magn. Mater. 287, 204 (2005).

    Google Scholar 

  117. A. Yano, T. Koda and S. Matsunuma, FePt fct phase ordered alloy thin film prepared by 30-s annealing with Fe-O under-layer, IEEE Trans. Magn. 41, 3211 (2005).

    Google Scholar 

  118. W. K. Shen, J. H. Judy and J. P. Wang. In situ epitaxial growth of ordered FePt(OOl) films with ultra small and uniform grain size using a RuAl underlayer, J. Appl. Phys. 97. 10H301 (2005).

    Google Scholar 

  119. S. L. Duan, J. O. Artman, B. Wong and D. E. Laughlin, The dependence of the microstructure and magnetic properties of Conicr/Cr thin films on the substrate temperature. IEEE Trans. Magn. 26,1587(1990).

    Google Scholar 

  120. Y. C. Feng, D. E. Laughlin and D. N. Lambeth, Formation of crystallographic texture in Rf sputter-deposited Cr thin films, J. Appl. Phys. 76,7311 (1994).

    Google Scholar 

  121. H. Kataoka, T. Kanbe, H. Kashiwase, E. Fjita, Y. Yahisa and K. Furasawa, Magnetic and recording characteristics of Cr, Ta, W and Zr precoated glass disks, IEEE Trans. Magn, 31, 2734 (1995).

    Google Scholar 

  122. M. Mirzamaani, X. P. Bian, M. F. Doerner, J. Li and M. Parker. Recording performance of thin film media with various crystallographic preferred orientations on glass substrates, IEEE. Trans. Magn. 34, 1588 (1998).

    Google Scholar 

  123. T. Maeda. Fabrication of highly (001) oriented L10 FePt thin film using NiTa seed layer, IEEE Trans. Magn. 41, 3331 (2005).

    Google Scholar 

  124. L. L. Lee, B. K. Cheong, D. E. Laughlin and D. N. Lambeth, MgO seed layers for CoCrPl/Cr longitudinal magnetic recording, Appl. Phys. Lett. 67, 3638 (1995).

    Google Scholar 

  125. L. L. Lee, D. E. Laughlin and D. N. Lambeth, Seed layer induced (002) crystallographic texture in NiAl underlayers, J. Appl. Phys. 79,4902 (1996).

    Google Scholar 

  126. T. Suzuki, N. Honda and K. Ouchi, Preparation and magnetization properties of sputter-deposited Fe-Pt thin films with perpendicular anisotropy. J. Magn. Soc. Japan, 21-s2, 177 (1997).

    Google Scholar 

  127. Y. F. Ding, J. S. Chen and E. Liu. Structural and magnetic properties of FePt films grown on the Cr1−x Mox underlayers, Appl. Phys. A, 81, 1485 (2005).

    Google Scholar 

  128. J. S. Chen, B. C. Lim, Y. F. Ding and G. M. Chow, Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording, J. Magn. Magn. Mater. 303, 309 (2006).

    Google Scholar 

  129. J. S. Chen, B. C. Lim and J. P. Wang. Controlling the crystallographic orientation and the axis of magnetic anisotropy in L10 FePt films, Appl. Phys. Lett. 81. 1848 (2002).

    Google Scholar 

  130. B. C. Lim, J. S. Chen and J. P. Wang, Crystallographic orientation control in L10 FePt films on CrRu underlayer. Surf. Coat. Technol. 198, 296 (2005).

    Google Scholar 

  131. Y. F. Ding, Ph.D Thesis, “Development of L10 FePt (001) Films for Perpendicular Magnetic Recording,” Data Storage Institute and Nanyang Technological University (2005).

    Google Scholar 

  132. Y. F. Ding, J. S. Chen, E. Liu and J. P. Wang. Dependence of microstructure and magnetic properties of FePt films on Cr90Ru10 underlayers, J. Magn. Magn. Mater. 285.443 (2005).

    Google Scholar 

  133. C. P. Luo, S. H. Liou, L. Gao, Y. Liu and D. J. Sellmyer. Nanostructured FePt: B2O3 thin films with perpendicular magnetic anisotropy, Appl. Phys. Lett. 77. 2225 (2000).

    Google Scholar 

  134. H. Zeng, M. L. Yan, N. Powers and D. J. Sellmyer, Orientation-controlled nonepitaxial L10 CoPt and FePt films, Appl. Phys. Lett. 80,2350 (2002).

    Google Scholar 

  135. M. L. Yan, N. Powers and D. J. Sellmyer. Highly oriented nonepitaxially grown L10 FePt films, J. Appl. Phys. 93,8292 (2003).

    Google Scholar 

  136. M. L. Yan, H. Zeng, N. Powers and D. J. Sellmyer, L10(00l )-oriented FePt: B2O2 composite films for perpendicular recording, J. Appl. Phys. 91, 8471 (2002).

    Google Scholar 

  137. P. Rasmussen, X. Rut and J. E. Shield. Texture formation in FePt thin films via thermal stress management, Appl. Phys. Lett. 86, 191915 (2005).

    Google Scholar 

  138. S. J. Greaves, H. Muraoka, Y. Sugita and Y. Nakamura, Intergranular exchange pinning effects in perpendicular recording media, IEEE Trans. Magn. 35, 3772 (1999).

    Google Scholar 

  139. I. Kaur and W. Gust, Fundamentals of grain and interphase boundary diffusion, 22nd Edition, Ziegler Press, Stuttgart (1989), Chapter 1–2.

    Google Scholar 

  140. J. Zou, B. Bian, D. E. Laughlin and D. N. Lambeth, Improved grain isolation of Co80Pt20 films via grain boundary diffusion of Mn, IEEE Trans. Magn. 37. 1471 (2001).

    Google Scholar 

  141. J. P. Wang, L. P. Tan, M. L. Yan and T. C. Chong. Co alloy longitudinal thin film media with ultrahigh coercivity, J. Appl. Phys. 87. 6352 (2000).

    Google Scholar 

  142. D. Jin, J. P. Wang and H. Gong, Theoretical study of Cr diffusion in Co-Cr alloy thin film recording media, J. Vac. Set. Technol. A 20,7 (2002).

    Google Scholar 

  143. J. S. Chen and J. P. Wang, Structural and magnetic properties of FePt Film with Cu top layer diffusion, J. Magn. Magn, Mater. 284. 423 (2004).

    Google Scholar 

  144. L. H. Lewis, T. R. Thurston, V. Panchanathan, U. Wildgruber and D. O. Welch, Spatial texture distribution in thermomechanically deformed 2-14-1-based magnets, J. Appl. Phys. 82, 3430 (1997).

    Google Scholar 

  145. Z. L. Zhao, J. P. Wang, J. S. Chen and J. Ding, Control of magnetization reversal process with pinning layer in FePt thin films, Appl. Phys. Lett. 81, 3612 (2002).

    Google Scholar 

  146. Y. Huang, H. Okumura, G. C. Hadjipanayis and D. Weiler, Perpendicularly oriented FePt nanoparticles sputtered on heated substrates. J. Magn. Magn. Mater. 242, 317 (2002).

    Google Scholar 

  147. J. A. Christodoulides, Y. Huang, Y. Zhang, G. C. Hadjipanayis, I. Panagiotopoulos and D. Niarchos. CoPt and FePt thin films for high-density recording media, J. Appl. Phys. 87, 6938 (2000).

    Google Scholar 

  148. D. H. Ping, M. Ohnuma, K. Hono, M. Walanabe, T. Iwase and T. Masumolo, Microslructures of FePt-Al-O and FePt-Ag nanogranular thin films and their magnetic properties. J. Appl. Phys. 90, 4708 (2001).

    Google Scholar 

  149. S. C. Chen, P. C. Kuo, C. T. Lie and J. T. Hua, Microstructure and coercivity of granular FePt-AlN thin films, J. Magn. Magn. Mater. 236. 151 (2001)

    Google Scholar 

  150. C. M. Kuo and P. C. Kuo, Magnetic properties and microstructure of FePt-Si3N4 nanocomposite thin films, J. Appl. Phys. 87,419 (2000).

    Google Scholar 

  151. M. Daniil, P. A. Färber, H. Okumura, G. C. Hadjipanayis and D. Weller, FePt/BN granular films for high-density recording media, J. Magn. Magn. Mater. 246, 297 (2002).

    Google Scholar 

  152. S. R. Lee, S. H. Yang, Y. K. Kim and J. G. Na, Microstructural evolution and phase transformation characteristics of Zr-doped FePt films, J. Appl. Phys. 91,6857 (2002).

    Google Scholar 

  153. K. R. Koffey, M. A. Parker and J. K. Howard, High anisotropy L10 thin films for longitudinal recording, IEEE Trans. Magn. 31, 2737 (1995).

    Google Scholar 

  154. P. C. Kuo, Y. D. Yao, C. M. Kuo and H. C. Wu. Microstructure and magnetic properties of the (FePt)100−x Crx thin films. J. Appl. Phys. 87, 6146 (2000).

    Google Scholar 

  155. S. C. Chen, P. C. Kuo, A. C. Sun, C. T. Lie and W. C. Hsu, Granular FePt-Ag thin films with uniform FePt particle size for high-density magnetic recording. Mater. Sci. Eng. B 88, 91 (2002).

    Google Scholar 

  156. C. M. Kuo, P. C. Kuo, W. C. Hsu, C. T. Li and A. C. Sun. Effects of W and Ti on the grain size and coercivity of Fe50Pt50 thin films. J. Magn. Magn. Mater. 209, 100 (2000).

    Google Scholar 

  157. C. L. Platt, K. W. Wierman, J. K. Howard, A. G. Roy and D. E. Laughlin, A comparison of FePt Ihm films with Hf02 or MnO additive, J. Magn. Magn. Mater. 260,487 (2003).

    Google Scholar 

  158. N. Li, B. M. Lairson and O. H. Kwon, Magnetic characterization of intermetallic compound FePt and FePtX (X=B, Ni) thin films. J. Magn. Magn. Mater. 205. 1 (1999).

    Google Scholar 

  159. N. Li and B. M. Lairson, Magnetic recording on FePt and FePtB intermetallic compound media, IEEE Trans. Magn. 35, 1077 (1999).

    Google Scholar 

  160. K. Kang, T. Suzuki, Z. G. Zhang and C. Papusoi, Structural and magnetic studies of nanocomposite FePt-MgO films for perpendicular magnetic recording applications, J. Appl. Phys. 95, 7273 (2004).

    Google Scholar 

  161. M. L. Yan, R. F. Sabirianov, Y. F. Xu, X. Z. Li and D. J. Sellmyer, Ll0 ordered FePt: C composite films with (OOl)texture, IEEE Trans. Magn. 40, 2470 (2004).

    Google Scholar 

  162. H. S. Ko, A. Perumal and S. C. Shin. Fine control of L10 ordering and grain growth kinetics by C doping in FePt films, Appl. Phys. Lett. 82,2311 (2003).

    Google Scholar 

  163. T. Suzuki and K. Ouchi, Sputter-deposited (Fe-Pt)-MgO composite films for perpendicular recording media, IEEE Trans. Magn. 37. 1283 (2001).

    Google Scholar 

  164. J. S. Chen, T. J. Zhou, B. C. Lim, Y. F. Ding and B. Liu, Microstructure and magnetic properties of rapidly annealed FePt (001) and FePt-MgO (001) films. J. Appl. Phys. 97, 10N108 (2005).

    Google Scholar 

  165. T. Suzuki, Nanostructured L10 Fe-Pt based thin films for perpendicular magnetic recording. Materials Transactions, 44, 1535 (2003).

    Google Scholar 

  166. S. Yoshimura, D. D. Djaaprawira, T. K. Kong, Y. Masuda, H. Shoji and M. Takahashi, Grain size reduction by utilizing a very thin CrW seed layer and dry-etching process in CoCrTaNiPt longitudinal media, J. Appl. Phys. 87,6860 (2000).

    Google Scholar 

  167. L. L. Lee, D. E. Laughlin and D. N. Lambeth, NiAl underlayers for cocrta magnetic thin films, IEEE Trans. Magn. 30. 3951 (1994).

    Google Scholar 

  168. K. W. Liu and F. Mucklich, Synthesis and thermal stability of nano-RuAl by mechanical alloying. Mater. Sci. Eng., A 329, 112 (2002).

    Google Scholar 

  169. J. S. Chen, B. C. Lim and J. P. Wang, Effect of NiAl intermediate layer on structural and magnetic properties of L10 FePt films with perpendicular anisotropy, J. Appl. Phys. 93. 8167 (2003).

    Google Scholar 

  170. J.-U Thiele, M. E. Best, M. F. Toney and D. Weller, Grain size control in FePt thin films by Ar-ion etched Pt seed layers, IEEE Trans. Magn. 37, 1271 (2001).

    Google Scholar 

  171. R. Skomski and J. M. D. Coey. Permanent Magnetism, Institute of Physics Publishing Ltd. Philadelphia (1999), p. 185.

    Google Scholar 

  172. Z. L. Zhao, J. Ding, J. S. Chen and J. P. Wang. Coerciviiy enhancement by Ru nonmagnetic pinning layer in Fe-Pt thin films, J. Appl. Phys. 93, 7753 (2003).

    Google Scholar 

  173. W. F. Brown, The effect of dislocations on magnetization near saturation, Phys. Rev. 60, 139 (1941).

    Google Scholar 

  174. J. S. Chen, Y. Z. Zhou, B. C. Um, T. J. Zhou, J. Zhang and G. M. Chow. Improvement of recording performance in FePt perpendicular media by Ag pinning layer, IEEE Trans. Magn. 41 3196(2005).

    Google Scholar 

  175. T. Suzuki and K. Ouchi, Ordered Fe-Pt(OOl) thin films by two temperature step depositions for recording media, J. Appl, Phys. 91. 8079 (2002).

    Google Scholar 

  176. T. Suzuki, T. Kiya, N. Honda and K. Ouchi, High-density recording on ultrathin Fe-Pt perpendicular composite media. IEEE Trans. Magn. 36, 2417 (2000).

    Google Scholar 

  177. T. Suzuki, T. Kiya, N. Honda and K. Ouchi. Fe-Pt perpendicular double-layered media with high-recording resolution, J. Magn. Magn. Mater. 235, 312 (2001).

    Google Scholar 

  178. T. Suzuki, Z. G. Zhang, A. K. Singh, J. H. Yin, A. Perumal and H. Osawa, High-density perpendicular magnetic recording media of granular-type (FePt/MgO)/soft underlayer, IEEE Trans. Magn. 41,555(2005).

    Google Scholar 

  179. Z. G. Zhang, A. K. Singh, J. H. Yin, A. Perumal and T. Suzuki, Double-layered perpendicular magnetic recording media of granular-type FePt-MgO films. J. Magn. Magn. Mater. 287, 224 (2005).

    Google Scholar 

  180. J. H. Yin, A. K. Singh and T. Suzuki. Recording performance of granular-type FePt-MgO perpendicular media. IEEE Trans. Magn. 41, 3208. (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, J.S., Sun, C.J., Chow, G.M. (2008). Nanostructured High-Anisotropy Materials for High-Density Magnetic Recording. In: Seal, S. (eds) Functional Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48805-9_7

Download citation

Publish with us

Policies and ethics