Skip to main content

Nanostructures: Sensor and Catalytic Properties

  • Chapter
Functional Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

It is not a coincidence that very often the materials and sensitization methodologies used in chemical sensing are basically the same as the ones practiced in the field of catalysis. In both fields, a chemical reaction on the surface of the sensor or catalyst is the origin of the desired reaction products (in catalysis) or the electrical signals (in sensing). These fields were widely explored during the past few decades but both are currently experiencing a renaissance thanks to exciting new opportunities offered by nanotechnology.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Sinfell. Catalysis: An old but continuing theme in chemistry, in: Proc. Am. Philos. Soc. 143, 388–399 (1999).

    Google Scholar 

  2. G.A. Somorjai and R.M. Rioux, High technology catalysts towards 100% selectivity: Fabrication, characterization and reaction studies, Catal, Today 100, 201–215 (2005).

    Google Scholar 

  3. U. Heiz and Li. Landman, Nanocatalysis, (Springer, Heidelberg, 2006).

    Google Scholar 

  4. M. Valden, X. Lai and D.W. Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281. 1647–1650 (1998).

    Google Scholar 

  5. A. Naitabdi, L.K. Ono, and B. Roldan Cuenya, Local investigation of the electronic properties of size-selected Au nanoparticles by scanning tunneling spectroscopy. Appl. Phys. Lett. 89. 043101 (2006).

    Google Scholar 

  6. D. Dalacu and L. Martinu, Optical properties of discontinuous gold films: Finite-size effects, J. Opt. Soc. Am. B 18, 85–92 (2001).

    Google Scholar 

  7. M. Haruta, Size-and support-dependency in the catalysis of gold, Catal. Today 36, 153–166 (1997).

    Google Scholar 

  8. H. Hakkinen, W. Abbet, A. Sanchez, U. Heiz and U. Landman, Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew. Chem. Int. Ed. 42, 1297–1300 (2003).

    Google Scholar 

  9. J.D. Aiken and R.G. Finke, A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis, J. Mol. Catal. A 145, 1–14 (1999).

    Google Scholar 

  10. C.T. Campbell, Ultrathin metal films and particles on oxide surfaces-Structural, electronic and chemisorptive properties, Surf. Sei. Rep. 27, 1–44 (1997).

    Google Scholar 

  11. U. Heiz, S. Abbet. A. Sanchez. W.D. Schneider, H. Hakkinen and U. Landman, Chemical reactions on size-selected clusters on surfaces, in: Proc. Nobel Symposium 117 (E. Campbell, M. Larsson. eds.) (World Scientific, Singapore, 2001).

    Google Scholar 

  12. A. Kolmakov and D.W. Goodman, Size effect in catalysis by supported metal clusters, in: Quantum Phenomena in Clusters and Nanostructures, (A.W. Castleman Jr. and S.N. Khanna. eds.) (Springer, New York, 2003).

    Google Scholar 

  13. M. Harula. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6. 102–115 (2002).

    Google Scholar 

  14. N. Lopez, T.V.W. Janssens, B.S. Clausen, et al., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J. Catal. 223. 232 (2004).

    Google Scholar 

  15. M. Mavrikakis, P. Stoltze and J. Norskov. Making gold less noble, Catal. Lett. 64, 101–106 (2000).

    Google Scholar 

  16. R. Meyer, C. Lemire, S.K. Shaikhutdinov and HJ. Freund, Surface chemistry of catalysis by gold. Gold Bulletin 37. 72 (2004).

    Google Scholar 

  17. S.K. Shaikhutdinov. R. Meyer, M. Naschitzki, M. Baumer and H.J. Freund, Size and support effects for CO adsoiption on gold model catalysts, Catal. Lett. 86, 211 (2003).

    Google Scholar 

  18. L.K. Ono. D. Sudfeid, B. Roldan Cuenya. In-situ gas-phase catalytic properties of TiC-supported size-selected gold nanoparticles synthesized by diblock copolymer encapsulation. Surf. Sei. 600, 5041–5050 (2006).

    Google Scholar 

  19. J.D. Aiken, Y. Lin and R.G. Finke. A perspective on nanocluster catalysis: Polyoxoanion and n-C4H9N+ stabilized Ir(O) nanoclusters “soluble heterogeneous catalysts”. J. Mol. Catal. A 114, 29–51 (1996).

    Google Scholar 

  20. O. Alexeev and B.C. Gates. Iridium clusters supported on γ-Al2O3: Structural characterization and catalysis of toluene hydrogenation, J. Catal. 176, 310–320 (1998).

    Google Scholar 

  21. A.M. Argo and B.C. Gates, Support effects in alkene and hydrogenation catalyzed by welldefined supported rhodium and iridium clusters, Absl. Papers Am. Chem. Soc. 221. U476–U476 (2001).

    Google Scholar 

  22. A.M. Argo, J.F. Odzak and B.C. Gates. Role of cluster size in catalysis: Spectroscopic investigation of γ-Al2O3-supporled Ir4 and Ir6 during ethene hydrogenation, J. Am. Chem. Soc. 125. 7107–7115 (2003).

    Google Scholar 

  23. A.T. Ashcroft. A.K. Cheetham, P.J.F. Hams, et al., Particle-size studies of supported metalcatalysts—a comparative-study by X-ray-diffraction. EXAFS and electron-microscopy, Catal. Lett. 24, 47–57 (1994).

    Google Scholar 

  24. A. Berko and F. Solymosi. Effects of different gases on the morphology of Ir nanoparticles supported on the TiO2(110)-(1 × 2) surface, J. Phys. Chem. B 104, 10215–10221 (2000).

    Google Scholar 

  25. D.S. Cunha and G.M. Cruz, Hydrogenation of benzene and toluene over Ir particles supported on γ-Al2O3, Appl. Catal. A 236, 55–66 (2002).

    Google Scholar 

  26. S.E. Deutsch, J.T. Miller, K. Tomishige, Y. Iwasawa, W.A. Weber and B.C. Gates. Supported Ir and Pt clusters: Reactivity with oxygen investigated by extended X-ray absorption fine structure spectroscopy. J. Phys. Chem. 100, 13408–13415 (1996).

    Google Scholar 

  27. S.E. Deutsch, F.S. Xiao and B.C. Gates. Near absence of support effects in toluene hydrogenation catalyzed by MgO-supported iridium clusters, J. Catal. 170, 161–167 (1997).

    Google Scholar 

  28. J.D. Grunwaldt, P. Kappen, L. Basini and B.S. Clausen. Iridium clusters for catalytic partial oxidation of methane—an in situ transmission and fluorescence XAFS study, Catal. Lett. 78, 13–21 (2002).

    Google Scholar 

  29. S. Kawi and B.C. Gales, MgO-supported [Ir-6(CO)(15)]2-:Catalyst for CO hydrogenation. J. Catal. 149, 317–325 (1994).

    Google Scholar 

  30. F.C.C. Moura, R.M. Lago, E.N. dos Santos and M.H. Araujo, Unique catalytic behavior of Ir-4 clusters for the selective hydrogénation of 1,5-cyciooctadiene, Catal. Comm. 3, 541–545 (2002).

    Google Scholar 

  31. L. Slievano, S. Calogero, R. Psaro and F.E. Wagner, Advances in the application of Mössbauer spectroscopy with less-common isotopes for the characterization of bimetallic supported nanoparticles: 193Ir Mössbauer spectroscopy. Comm. Inorg. Chem. 22. 275–292 (2001).

    Google Scholar 

  32. M.S. Ureta-Zanariu, C. Yanez, G. Reyes, J.R. Gancedo and J.F. Marco, Electrodeposited Pt-Ir electrodes: Characterization and electrocatalytic activity for the reduction of the nitrate ion, .J. Solid. State Electmchem. 2, 191–197 (1998).

    Google Scholar 

  33. Z. Xu, P.S. Xiao, S.K. Purneil, et at., Size-dependent catalytic activity of supported metal-clusters, Nature 372, 346–348 (1994).

    Google Scholar 

  34. A. Zhao and B.C. Gates, Toluene hydrogénation catalyzed by tetrairidium clusters supported on γ-Al2O3, J. Catal. 168, 60–69 (1997).

    Google Scholar 

  35. O.B. Yang. S.I. Woo and Y.G. Kim, Comparison of platinum iridium bimetallic catalysts supported on gamma-alumina and hy-zeolite in n-hexane reforming reaction. Appl. Catal. A 115, 229–241 (1994).

    Google Scholar 

  36. M. Frank and M. Baumer, From atoms to crystallites: Adsorption on oxide-supported metal particles, Phys. Chem. Chem. Phys. 2, 3723–3737 (2000).

    Google Scholar 

  37. L.M.P. Gruijthuijsen, G.J. Howsmon. W.N. Delgass. D.C. Koningsberger, R.A. van Santen and J.W. Niemantsverdriet, Structure and reactivity of bimetallic Felr/SiO2 catalysts after reduction and during high-pressure CO hydrogénation, J. Catal, 170, 331–345 (1997).

    Google Scholar 

  38. M.M. Bhasin, W.J. Bartley, P.C. Ellgen and T.P. Wilson, J. Catal. 54, 120 (1978).

    Google Scholar 

  39. T. Fukushima. Y. Ishii, Y. Onda, M. Ichikawa, Promoting role of Fe in enhancing activity and selectivity of MeOH production from CO and H2 catalyzed by SiO2-supported Ir, J. Chem. Soc. Chem. Comm. 24, 1752–1754 (1985).

    Google Scholar 

  40. J. R. Croy, S. Mosiafa, Jing Liu, Yong-ho Sohn, B. Roldan Cuenya. Size-dependent study of MeOH decomposition over size-selected Pi nanoparticles synthesized via micelle encapsulation, Catal Lett., DOI:I0.1007/S10562-007-9162-01 (in press 2007).

    Google Scholar 

  41. J. R. Croy. S. Mostafa, J. Liu, Yongho Sohn, H. Heinrich and B. Roldan Cuenya, Support dependence of MeOH decomposition over size-selected Pi nanoparticles. Catal. Lett, (accepted, 2007).

    Google Scholar 

  42. M. Valden and D.W. Goodman, Structure-activity correlations for Au nanoclusters supported on TiO2, Israel J. Chem. 38, 285–292 (1998).

    Google Scholar 

  43. M. Valden, S. Pak. X. Lai and D.W. Goodman, Structure sensitivity of CO oxidation over model Au/TiO2 catalysts, Catal. Lett. 56, 7–10 (1998).

    Google Scholar 

  44. A. Szabo, M.A. Henderson and J.T. Yates, Oxidation of CO by oxygen on a stepped platinum surface: Identification of the reaction site. J. Chem. Phys. 96, 6191–6202 (1992).

    Google Scholar 

  45. C. Duriez, H. C.R. and C. Chapon, Molecular beam study of the chemisorption of CO on wellshaped palladium particles epitaxially oriented on MgO(100), Surf. Sei. 253, 190 (1991).

    Google Scholar 

  46. M. Frank, S. Andersson, J. Libuda, el al., Panicle size dependent CO dissociation on aluminasupported Rh: A model study, Chem. Phys. Lett. 279, 92–99 (1997).

    Google Scholar 

  47. L.K. Ono and B. Roldan Cuenya, Effect of inierparticle interaction on the low temperature oxidation of CO over size-selected Au nanocatalysts supported on ullrathin TiC films, Catal. Lett. 113, 86–93 (2007).

    Google Scholar 

  48. E. Comini, A. Cristalli, G. Faglia and G. Sberveglieri, Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sens. Actuators B 65, 260–263 (2000).

    Google Scholar 

  49. M. Law, H. Kind, B. Messer, F. Kim and P.D. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed. 41, 2405–2408 (2002).

    Google Scholar 

  50. Y. Cui, Q.Q. Wei, H.K. Park and C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292 (2001).

    Google Scholar 

  51. E. Comini, G. Faglia, G. Sberveglieri Z.W. Pan and Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl. Phys. Lett. 81, 1869–1871 (2002).

    Google Scholar 

  52. A. Kolmakov, Y Zhang, G. Cheng and M. Moskovits, Detection of CO and oxygen using tin oxide nanowire sensors. Adv. Mater. 15. 997–1000 (2003).

    Google Scholar 

  53. D.H. Zhang, Z.Q. Liu, C. Li, et al., Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nana Letters 4, 1919–1924 (2004).

    Google Scholar 

  54. CM. Lieber. Nanoscale science and technology: Building a big future from small things. MRS Bulletin 28, 486–491 (2003).

    Google Scholar 

  55. Y.N. Xia, P.D. Yang, Y.G. Sun, et al., One-dimensional nanostructures: Synthesis, characterization, and applications,Adv. Mater. 15, 353–389 (2003).

    Google Scholar 

  56. Z.L. Wang, Functional oxide nanobelts: Materials, properties and potential applications in nanosystenis and biotechnology, Ann. Rev. Phys. Chem. 55, 159–196 (2004).

    Google Scholar 

  57. E. Rothenberg, M. Kazes, E. Shaviv and U. Banin, Electric field induced switching of the fluorescence of single semiconductor quantum rods, Nano tetters 5. 1581–1586 (2005).

    Google Scholar 

  58. H.J. Freund, J. Libuda, M. Baumer, T. Risse and A. Carlsson, Cluster, facets, and edges: Sitedependent selective chemistry on model catalysts. Chem. Record 3, 181–200 (2003).

    Google Scholar 

  59. L. Aballe, A. Barinov, A. Locatelli, S. Heun and M. Kiskinova, Tuning surface reactivity via electron quantum confinement, Phys. Rev. Lett. 93, 196103 (2004).

    Google Scholar 

  60. N. Yamazoe. New approaches for improving semiconductor gas sensors, Sens. Actuators B, 5. 7–19 (1991).

    Google Scholar 

  61. N.M. White and J.D. Turner. Thick-film sensors: Past, present and future, Meas. Sei. Techn. 8. 1–20 (1997).

    Google Scholar 

  62. W. Göpel. Solid-state chemical sensors—Atomistic models and research trends, Sens. Actuators 16, 167–193 (1989).

    Google Scholar 

  63. D. Kohl, Function and applications of gas sensors, J. Phys.D 34, RI25–RI49 (2001).

    Google Scholar 

  64. P.T. Moseley. New trends and future-Prospects of thick-film and thin-film gas sensors, Sens. Actuators B 3, 167–174 (1991).

    Google Scholar 

  65. A. Dieguez, A. Romano-Rodriguez, J.R. Morante, J. Kappler, N. Barsan and W. Gopel. Nanoparticle engineering for gas sensor optimization: Improved sol-gel fabricated nanocrystalline SnO2 thick film gas sensor for NO2 detection by calcination, catalytic metal introduction and grinding treatments, Sens. Actuators B 60, 125–137 (1999).

    Google Scholar 

  66. N. Barsan. Conduction models in gas-sensing SnO2 layers—Grain-size effects and ambient atmosphere influence. Sens. Actuators B 17, 241–246 (1994).

    Google Scholar 

  67. G. Sberveglieri. Recent developments in semiconducting thin-film gas sensors, Sens. Actuators B 23 103–109 (1995).

    Google Scholar 

  68. A. Cabot, A. Dieguez, A. Romano-Rodriguez, J.R. Morante and N. Barsan, Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances—Where and how stay the catalytic atoms?, Sens. Actuators B 79, 98–106 (2001).

    Google Scholar 

  69. N. Barsan and U. Weimar. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with Sn1O2 sensors in the presence of humidity. J. Phys. Condens. Matter. 15, R813–R839 (2003).

    Google Scholar 

  70. K. Thompson, J.H. Booske, D.J. Larson and T.F. Kelly, Three-dimensional atom mapping of dopants in Si nanostructures. Appl. Phys. ten. 87, 052108 (2005).

    Google Scholar 

  71. R. Skomski, Nanomagnetics, J. Phys. Condens. Matter. 15, 841–896 (2003).

    Google Scholar 

  72. S.D. Bader, Magnetism in low dimensionality, Suif. Sei. 500, 172–188 (2002).

    Google Scholar 

  73. S.D. Bader, Colloquium: Opportunities in nanomagnetism. Rev. Mod. Phys. 78. 1–15 (2006).

    Google Scholar 

  74. M.N. Baibich, J.M. Broto, A. Pert, et al., Giant magnetoresistance of Fe(001)/Cr(001), Phys. Rev. Lett. 61, 2472–2475 (1988).

    Google Scholar 

  75. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, et al., Spintronic: A spin-based electronics vision of the future, Science 294, 1488–1495 (2001).

    Google Scholar 

  76. D.A. Thonson and J.S. Best, The future of magnetic data storage technology. IBM J. Res. Develop. 44, 311 (2000).

    Google Scholar 

  77. B. Roldan Cuenya, A. Naitabdi. E. Schuster, R. Peters, M. Doi, and W. Keune. Epitaxial growth. magnetic properties and lattice dynamics of Fe nanoclusters on GaAs(00l). (accepted in Phys. Rev. B 2007).

    Google Scholar 

  78. L. Fu, V.P. Dravid, K. Klug, X. Liu and CA. Mirkin, Synthesis and patterning of magnetic nanostructures, Europ. Cells and Mater. 3, 156 (2002).

    Google Scholar 

  79. T.F. Jaramillo, S.H. Baeck, B. Roldan Cuenya and E.W. McFarland, Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles, J. Am. Chem. Soc, 125, 7148–7149 (2003).

    Google Scholar 

  80. B. Roldan Cuenya, S.U. Baeck, T.F. Jaramillo and E.W. McFarland. Size and support dependent electronic and catalytic properties of Auo/Au3+ nanoparticles synthesized from block co-polymer micelles, J. Am. Chem. Soc. 125, 12928–12934 (2003).

    Google Scholar 

  81. N. Cordente, C. Amiens, B. Chaudret, M. Respaud, F. Senocq and M.-J. Casanove, Chemisorption on nickel nanoparticles of various shapes: Influence on magnetism, J. Appl. Phys. 94, 6358–6365 (2003).

    Google Scholar 

  82. H.G. Boyen, G. Kästle, K. Zum, et al., A miceliar route to ordered arrays of magnetic nanoparticles: From size-selected pure cobalt dots to cobalt-cobalt oxide core-shell systems. Adv. Fund. Mater. 13, 359–364 (2003).

    Google Scholar 

  83. M. Giersig and M. Hilgendorff, The preparation of ordered colloidal magnetic particles by magnetophoretic deposition, J. Phys. D 32, L111–L113 (1999).

    Google Scholar 

  84. J.C. Hulteen and R.R. Van Duyne, Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Technol. A 13, 1553–1558 (1995).

    Google Scholar 

  85. A. Naitabdi and B. Roldan Cuenya. Formation, thermal stability and surface composition of size-selected AuFe nanoparticles. Appl. Phys. Lett., (accepted, 2007).

    Google Scholar 

  86. J. Chen, M. Drakaki and J.L. Erskine, Chemisorption-induced change in thin-film spin anisotropy: Oxygen adsorption on the p( 1 × 1 )Fe/Ag( 100) system. Phys. Rev. B 45, 3636–3643 (1992).

    Google Scholar 

  87. M.B. Knickelbein, Nickel cluster: The influence of adsorbates on magnetic moments, J. Chem. Phys. 116, 9703–9311 (2002).

    Google Scholar 

  88. P.W. Seiwood (Ed.), Chemisorption and magnetization (Academic Press, New York, 1975).

    Google Scholar 

  89. M. Primet, J.A. Dalmon and G.A. Martin, Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195–373 K range studied by infrared spectroscopy and magnetic methods, J. Catal. 46, 25–36 (1977).

    Google Scholar 

  90. Q. Ge, S.J. Jenkins and D.A. King. Localization of adsorbale-induced demagnetization: CO chemisorbed on Ni(100), Chem. Phys. Lett. 327, 125–130 (2000).

    Google Scholar 

  91. T. Hill, M. Mozaffari-Afshar, J. Schmidt, et al., Influence of CO adsorption on the magnetism of small CO nanoparticles deposited on Al2O3, Chem. Phys. Lett. 292, 524–530 (1988).

    Google Scholar 

  92. S. Pick and H. Dreysse, Tight-binding study of ammonia and hydrogen adsorption on magnetic cobalt systems, Surf. Sci. 460, 153–161 (2000).

    Google Scholar 

  93. M. Boudait, J.A. Dumesic and H. Topsoe, Surface, catalytic, and magnetic properties of small 94.iron particles: The effect of chemisorption of hydrogen on magnetic anisotropy, in: Proc. Natl. Acad. Sci. USA 74, 806–810 (1977).

    Google Scholar 

  94. I. Lundström, S. Shivaraman, C. Svensson and L. Lundkvist, A hydrogen-sensitive MOS field-effect transistor, Appl. Phys. Lett. 26, 55 (1975).

    Google Scholar 

  95. K.l. Lurtdstrom, M.S. Shivaraman and C.M. Svensson, Hydrogen-sensitive Pd-gate MOS-transistor, J. Appl. Phys. 46, 3876–3881 (1975).

    Google Scholar 

  96. M.C. Steele, J.W. Hile and B.A. Maciver, Hydrogen-sensitive palladium gate MOS capacitors, Appl. Phys. 47, 2537–2538 (1976).

    Google Scholar 

  97. R. Morrison, Semiconductor gas sensors. Sens. Actuators 2, 329–341 (1982).

    Google Scholar 

  98. D. Filippini, M. Rosch, R. Aragon and U. Weimar, Field-effect NO: sensors with group 1B metal gates, Sens. Actuators B 81, 83–87 (2001).

    Google Scholar 

  99. S.J. Fonash, H. Huston and S. Ashok, Conducting MIS diode gas detectors—The Pd/SiOx/Si hydrogen sensor. Sens. Actuators 2, 363–369 (1982).

    Google Scholar 

  100. H. Geistlinger, I. Eisele, B. Flietner and R. Winter, Dipole-and charge transfer contributions to the work function change of semiconducting thin films: Experiment and theory. Sens. Actuators B 34, 499–505 (1996).

    Google Scholar 

  101. I. Lundström and L.G. Petersson. Chemical sensors with catalytic metal gates. J. Vac. Sci. Technol. A 14, 1539–1545 (1996).

    Google Scholar 

  102. I. Lundström, Why bother about gas-sensitive field-effect devices?, Sens. Actuators A 56, 75–82 (1996) and references therein.

    Google Scholar 

  103. M. Eriksson and L.G. Ekedahl, Hydrogen adsorption slates al the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensor, J Appl. Phys. 83, 3947–3951 (1998).

    Google Scholar 

  104. M. Johansson, I. Lundström and L.G. Ekedahl. Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing environments, J. Appl. Phys. 84, 44–51 (1998).

    Google Scholar 

  105. D. Filippini, R. Aragon and U. Weimar, NO2 sensitive Au gate metai-oxide-semiconduclor capacitors, J. Appl. Phys. 90, 1883–1886 (2001).

    Google Scholar 

  106. D. Filippini, L. Fraigi, R. Aragon and U. Weimar, Thick film Au-gate field-effect devices sensitive to NO2, Sens. Actuators B 81, 296–300 (2002).

    Google Scholar 

  107. D. Filippini and I. Lundström, Chemical images generated by large area homogeneous illumination of metal-insulator-semiconductor structures, Appl. Phys. Lett. 82, 3791–3793 (2003).

    Google Scholar 

  108. W.-C. Liu, H.J. Pan, H.-l. Chen, K.-W. Lin and C.K. Wang, Comparative hydrogen-sensing study of Pd/GaAs and Pd/lnP metal-oxide-semiconductor Schottky diodes, Japn. J. Appl. Phys. 40, 6254–6259 (2001).

    Google Scholar 

  109. A. Spetz, M. Armgarth and I. Lundström. Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gates, J. Appl. Phys. 64, 1274–1283 (1988).

    Google Scholar 

  110. H. Nienhaus, S.J. Weyers, B. Gergen and E.W. McFarland, Thin Au/Ge Schottky diodes for detection of chemical reaction induced electron excitation, Sens. Actuators B 87, 421–424 (2002).

    Google Scholar 

  111. H. Nienhaus, Electronic excitations by chemical reactions on metal surfaces, Surf. Sci. Rep. 45, 3–78 (2002).

    Google Scholar 

  112. H. Nienhaus, U.S. Bergh, B. Gergen, A. Majumdar, W.U. Weinberg and E.W. McFarland, Direct detection of electron-hole pairs generated by chemical reactions on metal surfaces. Surf. Sci. 445, 335–342 (2000).

    Google Scholar 

  113. H. Nienhaus, H.S. Bergh, B. Gergen, A. Majumdar, W.H. Weinberg and E.W. McFarland, Electron-hole pair creation at Ag and Cu surfaces by adsorption of atomic hydrogen and deuterium, Phys. Rev. Lett. 82, 446–449 (1999).

    Google Scholar 

  114. H. Nienhaus, H.S. Bergh, B. Gergen, A. Majumdar, W.H. Weinberg and E.W. McFarland, Selective H atom sensors using ultrathin Ag/Si Schottky diodes, Appl. Phys. Lett. 74, 4046–4048 (1999).

    Google Scholar 

  115. H. Nienhaus, H.S. Bergh, B. Gergen, A. Majumdar, W.H. Weinberg and E.W. McFarland, Ultrathin Cu films on Si(111): Schottky barrier formation and sensor applications, J. Vac. Sci. Technol. A 17, 1683–1687 (1999).

    Google Scholar 

  116. B. Gergen, H. Nienhaus, W.H. Weinberg and E.W. McFarland. Chemically induced electronic excitations at metal surfaces, Science 294, 2521–2523 (2001).

    Google Scholar 

  117. B. Gergen, S.J. Weyers, H. Nienhaus, W.H. Weinberg and E.W. McFarland. Observation of excited electrons from nonadiabatic molecular reactions of NO and O2 on polycrystalline Ag. Surf. Sci. 488, 123–132 (2001).

    Google Scholar 

  118. U.S. Bergh, B. Gergen, H. Nienhaus, A. Majumdar, W.H. Weinberg and E.W. McFarland, An ultrahigh vacuum system for the fabrication and characterization of ultrathin metal-semiconductor films and sensors. Rev. Sci. Instr. 70, 2087–2094 ( 1999).

    Google Scholar 

  119. H. Nienhaus, B. Gergen, W.H. Weinberg and E.W. McFarland, Detection of chemically induced hot charge carriers with ultrathin metal film Schottky contacts. Surf. Sci. 514, 172–181 (2002).

    Google Scholar 

  120. B. Gergen, H. Nienhaus, W.H. Weinberg and E.M. McFarland. Morphological investigation of ultrathin Ag and Ti films grown on hydrogen terminated Si(111), J. Vac. Sei. Technol. B 18, 2401–2405 (2000).

    Google Scholar 

  121. B. Gergen. Observations of electronic excitations in gas-metal interactions, PhD thesis. (University of California Santa Barbara. 2001)

    Google Scholar 

  122. B. Roidan Cuenya and E.W. McFarland, Sensors based on chemicurrents. in: Dekker Encyclopedia Nanosci. Nanotechnol., edited by James A. Schwarz, Cristian I. Contescu, Karol Putyera, p. 3527 (Marcel Dekker, New York, 2004).

    Google Scholar 

  123. B. Roldan Cuenya, H. Nienhaus and E.W. McFarland. Chemically induced charge carrier production and transport in Pd/SiO2/n-Si(111) MOS Schottky diodes, Phys. Rev. B 70, 115322 (2004).

    Google Scholar 

  124. X. Liu, B. Roldan Cuenya and E.W. McFarland, A MIS device structure for detection of chemically induced charge carriers, Sens. Actuators B 99, 556–561 (2004).

    Google Scholar 

  125. C.R. Crowell, L.E. Howarth, W.G. Spitzer and E.E. Labate, Attenuation length measurements of hot electrons in metal films, Phys. Rev. 127, 2006–2015 (1962).

    Google Scholar 

  126. J. Y. Park and G.A. Somorjai. The catalytic nanodiode: Detecting continuous electron flow at oxide-metal interfaces generated by a gas-phase exothermic reaction, Chem. Phys. Chem. 7, 1409–1413 (2006).

    Google Scholar 

  127. J. Y. Park and G.A. Somorjai, Energy conversion from catalytic reaction to hot electron current with metal-semiconductor Schottky nanodiodes, J. Vac. Sei. Technol. B 24, 1967–1971 (2006).

    Google Scholar 

  128. M.S. Arnold, P. Avouris, Z.W. Pan and Z.L. Wang, Field-effect transistors based on single semi-conducting oxide nanobelts, J. Phys. Chem. B 107, 659–663 (2003).

    Google Scholar 

  129. C. Li, D.H. Zhang, X.L. Liu. et al., In2O3 nanowires as chemical sensors, Appl. Phys. Lett. 82, 1613–1615 (2003).

    Google Scholar 

  130. Y.L. Wang, X.C. Jiang and Y.N. Xia, A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions, J. Am. Chem. Soc. 125, 16176–16177 (2003).

    Google Scholar 

  131. Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y Tseng and J.G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett. 85, 5923–5925 (2004).

    Google Scholar 

  132. B.J. Murray, J.T. Newberg, E.C. Walter, Q. Li, J.C. Hemminger and R.M. Penner, Reversible resistance modulation in mesoscopic silver wires induced by exposure to amine vapor. Anal. Chem. 77, 5205–5214 (2005).

    Google Scholar 

  133. D.J. Zhang, C. Li, X.L. Liu, S. Han, T. Tang and C.W. Zhou, Doping dependent NH3 sensing of indium oxide nanowires, Appl. Phys. Lett. 83, 1845–1847 (2003).

    Google Scholar 

  134. S. Semancik, R.E. Cavicchi, M.C. Wheeler, et al., Microhotplate platforms for chemical sensor research, Sens. Actuators B 77, 579–591 (2001).

    Google Scholar 

  135. T. Rantala, V. Lantto and T. Rantala, Computational approaches to the chemical sensitivity of semiconducting tin dioxide, Sens. Actuators B 47, 59–64 (1998).

    Google Scholar 

  136. V.E. Henrich and P.A. Cox, Surface science of metal oxides (Cambridge University Press, New York, 1996).

    Google Scholar 

  137. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48, 53–229 (2003).

    Google Scholar 

  138. M. Batzill and U. Diebold. The surface and materials science of tin oxide. Progr. Surf. Sci. 79, 47–154 (2005).

    Google Scholar 

  139. V. Lantto, T.T. Rantala and T.S. Rantala. Atomistic understanding of semiconductor gas sensors, J. Europ. Ceram. Soc. 21, 1961–1965 (2001).

    Google Scholar 

  140. W. Göpel, J. Hesse and J. N. Zemel, Sensors: A comprehensive survey (VCH, Weinheim, 1995).

    Google Scholar 

  141. P.T. Moseley and B.C. Tofield., Solid-state gas sensors, (Adam Hilger, Bristol and Philadelphia, 1987).

    Google Scholar 

  142. G. Sberveglieri, Gas sensors: Principles, operation and developments, (Kluwer Academic, Boston, 1992).

    Google Scholar 

  143. T. Wolkenstein, Electronic processes on semiconductor surfaces during chemisorption (Springer, New York, 1991).

    Google Scholar 

  144. O.V. Krylov and V.F. Kiselev, Electronic phenomena in adsorption and catalysis on semiconductors and dielectrics. Springer Series Surf. Sci. 7 (Springer, Berlin, 1987).

    Google Scholar 

  145. C. Li, D.H. Zhang, B. Lei, S. Han, X.L. Liu and C.W. Zhou, Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors. J. Phys. Chem. B 107, 12451–12455 (2003).

    Google Scholar 

  146. A. Kolmakov and M. Moskovits. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures, Ann. Rev. Mater. Res. 34, 151–180 (2004).

    Google Scholar 

  147. Y. Zhang, A. Kolmakov, Y. Lilach and M. Moskovits, Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire, J. Phys. Chem, B 109, 1923–1929 (2005).

    Google Scholar 

  148. Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu and M. Moskovits, Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it, Nano Lett. 4, 403–407 (2004).

    Google Scholar 

  149. X.F. Duan, Y. Huang and C.M. Lieber, Nonvolatile memory and programmable logic from molecule-gated nanowires, Nano Lett. 2, 487–490 (2002).

    Google Scholar 

  150. C. Li, W.D. Fan, B. Lei, et al., Multilevel memory based on molecular devices, Appl. Phys. Lett. 84, 1949–1951 (2004).

    Google Scholar 

  151. Z.Y. Fan and J.G. Lu, Gate-refreshable nanowire chemical sensors, Appl. Phys. Lett. 86, (2005).

    Google Scholar 

  152. S.V. Kalinin, J. Shin, S. Jesse, et al., Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device, J. Appl. Phys. 98, (2005).

    Google Scholar 

  153. J. Goldberger, D.J. Sirbuly, M. Law and P. Yang, ZnO nanowire transistors, J. Phys. Chem. B 109, 9–14 (2005).

    Google Scholar 

  154. W.I. Park, G.C. Yi, M. Kim and S.J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod helerostructures. Adv. Mater. 15, 526–529 (2003).

    Google Scholar 

  155. Y. Lilach, J.P. Zhang, M. Moskovits and A. Kolmakov, Encoding morphology in oxide nanos-tructures during their growth, Nano Lett, 5, 2019–2022 (2005).

    Google Scholar 

  156. M. Batzill, K. Katsiev, D.J. Caspar and U. Diebold. Variations of the local electronic surface properties of TiO2(110) induced by intrinsic and extrinsic defects, Phys. Rev. B 66, 235401 (2002).

    Google Scholar 

  157. M. Batzill, E.L.D. Hebenstreit, W. Hebenstreit and U. Diebold. Influence of subsurface. charged impurities on the adsorption of chlorine at TiO2(110). Chem. Phys. Lett. 367, 319–323 (2003).

    Google Scholar 

  158. V.P. Zhdanov. Nm-sized metal particles on a semiconductor surface. Schottky model, etc, Surf. Sci, 512, L331–L334 (2002).

    Google Scholar 

  159. A. Kolmakov, D.O. Klenov, Y Lilach, S. Stemmer and M. Moskovits. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles, Nano Lett. 5, 667–673 (2005).

    Google Scholar 

  160. Z.L. Wang, New developments in transmission electron microscopy for nanotechnology, Adv. Mater. 15, 1497–1514 (2003).

    Google Scholar 

  161. A. Kolmakov, X. Chen and M. M. Moskovits, Functionalizing nanowires with catalytic nanoparticles for gas sensing applications, J. Nanosci. Nanolech. (in press) (2007).

    Google Scholar 

  162. B.H. Frazer, M. Girasole, L.M. Wiese, T. Franz and G. De Stasio, Speclromicroscope for the photoelectron imaging of nanostructures with X-Rays (SPHINX): Performance in biology, medicine and geology, Ultramieroscopy 99, 87–94 (2004).

    Google Scholar 

  163. S. Gunther, B. Kaulich, L. Gregoratti and M. Kiskinova, Prog. Surf. Set. 70, 187–260 (2002).

    Google Scholar 

  164. J.W. Chiou, C.L. Yuen, J.C. Jan, et al., Electronic structure of the carbon nanotube tips studied by X-ray-absorption spectroscopy and scanning photoelectron microscopy, Appl. Phys. Lett. 81, 4189–4191 (2002).

    Google Scholar 

  165. A. Goldoni, R. Larciprete, L. Gregoratti, et al., X-ray photoelectron microscopy of the C Is core level of free-standing single-wall carbon nanotube bundles, Appl. Phys. Lett. 80, 2165–2167 (2002).

    Google Scholar 

  166. S. Suzuki, Y. Watanabe, T. Ogino, et al., Extremely small diffusion constant of Cs in multiwalled carbon nanotubes, J. Appl. Phys. 92, 7527–7531 (2002).

    Google Scholar 

  167. S. Suzuki, Y. Watanabe, T. Ogino, et al., Electronic structure of carbon nanotubes studied by photoelectron spectromicroscopy, Phys. Rev. B 66, 035414 (2002).

    Google Scholar 

  168. J.W. Chiou, J.C. Jan, U.M. Tsai, et al., Electronic structure of GaN nanowire studied by X-rayabsorplion spectroscopy and scanning photoeleciron microscopy, Appl. Phys. Lett. 82, 3949–3951 (2003).

    Google Scholar 

  169. I.H. Hong, J.W. Chiou, S.C Wang, et al., Electronic structure of aligned carbon nanotubes studied by scanning photoelectron microscopy. J. Phys. IV 104, 467–470 (2003).

    Google Scholar 

  170. S. Suzuki, Y. Watanabe, T. Ogino, et al., Observation of single-walled carbon nanotubes by photoemission microscopy, Carbon 42, 559–563 (2004).

    Google Scholar 

  171. R. Larciprete, A. Goldoni, S. Lizzit and L. Pelaccia, The Electronic properties of carbon nanotubes studied by high resolution photocmission spectroscopy. Appl. Surf. Sci. 248, 8–13 (2005).

    Google Scholar 

  172. S. Gunther, A. Kolmakov, J. Kovac and M. Kiskinova. Artifact formation in scanning photoelectron emission microscopy, Ulinimicroscopy 75, 35–51 (1998).

    Google Scholar 

  173. B. Gilten, R. Andres, P. Perfetti, G. Margaritondo, G. Rempfer and G. De Stasio. Charging phenomena in PEEM imaging and spectroscopy, Ulinimicroscopy 83, 129–139 (2000).

    Google Scholar 

  174. A. Kolmakov, U. Lanke, R. Karam, J. Shin, S. Jesse and S.V. Kalinin, Local origins of sensor activity in 1D oxide nanostructures: From spectromicroscopy to device, Nanotechnology 17 (16): 4014–4018 (2006)

    Google Scholar 

  175. A. Kolmakov. The effect of morphology and surface doping on sensitization of quasi-1D metal oxide nanowire gas sensor, Proc. SPIE 6370, 63700X–5 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cuenya, B.R., Kolmakov, A. (2008). Nanostructures: Sensor and Catalytic Properties. In: Seal, S. (eds) Functional Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48805-9_6

Download citation

Publish with us

Policies and ethics