Skip to main content

Functional Nanostructured Thin Films

  • Chapter
Functional Nanostructures

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Functional nanostructured surfaces comprised of spatially ordered features, like clusters, wires or thin films, are important in various applications, including nonlinear photonics, magnetic data storage and gas sensing. The primary challenge to realizing the potential of this area is to develop cost-effective fabrication techniques and reliable characterization of such nanostructures. In this chapter we discuss the potential towards controlling the spatial arrangement of surface structures by modification to thin film nucleation and growth processes during physical vapor deposition. We also review structures resulting from surface instabilities generated by energetic ion beam irradiation—another active research area that promises simple and reliable self-assembly of nanostructures. Careful characterization of spatial order and thin film morphological properties like size, shape and connectedness are very important towards understanding the role of processing parameters, as well as in structure-property correlations. In this regard, image analysis can be a simple but vital step. We review the techniques of Fourier analysis and Minkowski functional analysis to understand the length scales and morphologies of surface nanostructures. Finally, examples of applications from the areas of nonlinear optics, magnetism and gas sensing are provided which highlight the need for control of size and spatial order in nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Drexler. Molecular Engineering: An approach of the development of general capabilities for molecular manipulation, in Proceedings of the National Academy of Sciences, 78, 5275–78 (1981).

    Article  Google Scholar 

  2. K. Drexler and Foster. J.S., Synthetic tips. Nature, 343, 600–604 (1990).

    Article  Google Scholar 

  3. H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta. Mater., 48, 1–29 (2000).

    Article  Google Scholar 

  4. K. Inomata and Y. Saito, Spin-dependent tunneling through layered ferromagnetic nanoparticles. Appl. Phys. Lett., 73, 1143–45 (1998).

    Article  Google Scholar 

  5. J. Stahl, M. Debe, and P. Coleman, Enhanced bioadsorption characteristics of a uniquely nanostructured thin film, J. Vac. Sci. Tech. A, 14,1761–64 (1996).

    Article  Google Scholar 

  6. D. Shlanski, S. Kulinich, E. Levashov, and J. Moore, Structure and physical-mechanical properties of nanostructured thin films, Phys. Sol. St., 45, 1177–84 (2003).

    Article  Google Scholar 

  7. S. Shukla and S. Seal, Room temperature hydrogen gas sensitivity of nanocrystalline pure tin oxide, J. Nanosci. Nanotech., 4,141–149 (2004).

    Article  Google Scholar 

  8. R. White, The physical boundaries to high-density magnetic recording, J. Mag. Magn. Mat., 209, 1–5 (2000).

    Article  Google Scholar 

  9. C. Black, C. Murray, R. Sandstrom, and S. Sun, Spin-dependent tunneling in self-assembled conanocrystal superlatlices. Science. 290, 1131–34, (2000).

    Article  Google Scholar 

  10. M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg. Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Lett., 23(17), 1331–33 (1998).

    Article  Google Scholar 

  11. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meitzer, E. Barel, B. E. Koel, and A. G. Requicha, Local detection of electromagnetic energy transport below the diffraction limit in the metal nanoparticle plasmon waveguides, Nature Materials, 2, 229 (2003).

    Article  Google Scholar 

  12. S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512–514 (1999).

    Article  Google Scholar 

  13. J. Lodder, M. Haast, and L. Abelman, Patterned magnetic thin films for ultra high density recording, in Proceedings of NATO Advanced Study Institute on Magnetic Systems Beyond 2000 (G.C. Hadjipannayis, ed.), pp. 117–145 (Dordrecht, Netherlands: Kluwer Academic Publishers, 2002).

    Google Scholar 

  14. J. Matthews, Epitaxial Growth: Parts A and B. (Academic Press, New York, 1975).

    Google Scholar 

  15. W. Zhang, C. Zhang, and R. Kalyanaraman, Dynamically ordered thin film nanoclusters, J. Vac. Sei. Tech. B, 23, L5–L9 (2005).

    Article  Google Scholar 

  16. C. Zhang and R. Kalyanaraman, In situ nanostructured film formation during physical vapor deposition, App. Phys. Lett., 8323, 4827–29 (2003).

    Article  Google Scholar 

  17. G. Timp, R. Behringer, D. Tennant, J. Cunningham, M. Prentiss, and K. Berggren. Using light as a lens for submicron, neutral-atom lithography, Phys. Rev. Lett., 69, 1636–39 (1992).

    Article  Google Scholar 

  18. J. McClelland, R. Schölten, E. Palm, and R. Celolta. Laser-focused atomic deposition. Science. 262, 877–880 (1993).

    Article  Google Scholar 

  19. L. Huang, S. Chey, and J. Weaver, Buffer-layer-assisted growth of nanocrystals: Ag-Xe-Si(111), Phys. Rev. Lett., 80, 4095–98 (1998).

    Article  Google Scholar 

  20. S. Wolf and R. Tauber, Silicon Processing for the VLSI Era-1 Process Technology. (Lattice Press, Sunset Beach, California, 1986).

    Google Scholar 

  21. J. Sheats and B. Smith, Microlithography Science and Technology. (Marcel Dekker, New York. 1998).

    Google Scholar 

  22. D. Chambliss, R. Wilson, and S. Chiang, Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations, Phys. Rev. Lett., 66, 1721–24 (1991).

    Article  Google Scholar 

  23. S. Sun, C. Murray, D. Weller, L. Folks, and A. Moser, Monodisperse Fe-Pl nanoparticles and ferromagnetic Fe-Pt nanocrystal superlattices, Science, 287, 1989–1992 (2000).

    Article  Google Scholar 

  24. F. Ross, J. Tersoff, and R. Tromp, Coarsening of self-assembled Ge quantum dots on Si(001). Phys. Rev. Lett., 80, 984–87 (1998).

    Article  Google Scholar 

  25. S. Facsko and H. Kurz, Energy dependence of quantum dot formation by ion sputtering, Phys. Rev. B. 63, 165329-1–165329-5 (2001).

    Article  Google Scholar 

  26. M. Sarikaya and I. Aksay, Design and Processing of Materials by Biomimicking. (AIP, New York, 1994).

    Google Scholar 

  27. L. Maissel and R. Glang. Handbook of Thin Film Technology. Ch. 8. (McGraw Hill, New York. 1970).

    Google Scholar 

  28. J. Venables, Introduction to Surface and Thin Film Processes, Ch. 5. (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  29. D. Walton. Nucleation of vapor deposits, J. Chem. Phys., 37, 2182–88 (1962).

    Article  Google Scholar 

  30. B. Lewis and D. Campbell, Nucleation and initial-growth behavior of thin-film deposits, J. Vac. Sei. Tech., 4, 209–218 (1967).

    Article  Google Scholar 

  31. Y. Mo, J. Kleiner, M. Webb, and M. Lagally, Activation energy for surface diffusion of Si on Si(001): A scanning-tunneling-microscopy study, Phys. Rev. Lett,, 66, 1998–2001 (1991).

    Article  Google Scholar 

  32. J. Venables, G. Spiller, and M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys., 47, 339–459 (1984).

    Article  Google Scholar 

  33. P. Mulheran and J. Blackman, Capture zones and scaling in homogeneous thin-film growth, Phys. Rev. B, 53, 10261–68 (1996).

    Article  Google Scholar 

  34. W. Burton, N. Cabrera, and F. Frank, The growth of crystals and the equilibrium structure of their surfaces, Phil, Trans. R. Soc. Land. A, 243, 299–346 (1951).

    Article  Google Scholar 

  35. R. Sigsbee and G. Pound. Heterogeneous nucleation from the vapor. Advan. Coll. Inteif. Sci., 1, 335–390 (1967).

    Article  Google Scholar 

  36. S. Stoyanov and D. Kaschiev, Current Topics in Materials Science, 7. (North-Holland, Amsterdam, 1981).

    Google Scholar 

  37. M. Bartelt and J. Evans. Scaling analysis of diffusion-mediated island growth in surface adsorption processes, Phys. Rev. B, 46, 12675–88 (1992).

    Article  Google Scholar 

  38. C. Zhang. A novel in situ technique to fabricate thin films with controlled lateral-thickness modulations. PhD thesis. Department of Physics. Washington University, St. Louis, MO 63130. June 2004. Advisor: Ramki Kalyanaraman.

    Google Scholar 

  39. C. Zhang and R. Kalyanaraman, In situ lateral patterning of thin films of various materials deposited by physical vapor deposition, J. Mat. Res., 19(2), 595–599 (2004).

    Article  Google Scholar 

  40. G. Gilmer, H. Huang, and C. Roland. Thin film deposition: fundamentals and modeling. Comp. Mat. Sci., 12, 354–380 (1998).

    Article  Google Scholar 

  41. H. Huang, G. Gilmer, and T. Diaz de la Rubia, An atomistic simulator for thin film deposition in three dimensions, J. Appl. Phys., 84, 3636–49 (1998).

    Article  Google Scholar 

  42. Hudson. J.B., Surface Science: An Introduction. (Wiley Interscience, New York, 1998).

    Google Scholar 

  43. R. M. Tromp, R. J. Hamers. and J. E. Demuth. Atomic and electronic contributions to Si(111)— (7 × 7) scanning-tunneling-microscopy images, Phys. Rev. B (Condensed Matter), 34(2), 1388–1391 (1986).

    Google Scholar 

  44. R. J. Hamers, R. M. Tromp. and J. E. Demuth, Surface electronic structure of Si(111)—(7 × 7) resolved in real space, Physi. Rev. Lett., 56(18), 1972–1975 (1986).

    Article  Google Scholar 

  45. D. D. Chambliss, R. J. Wilson, and S. Chiang, Ordered nucleation of Ni and Au islands on Au(111) studied by scanning tunneling microscopy, J. Vac. Sci. Technol., 9, 933 (1991).

    Article  Google Scholar 

  46. F. A. Moller, O. M. Magnussen, and R. J. Behm. Overpotential-controlled nucleation of Ni island arrays on reconstructed Au(111) electrode surfaces, Phys. Rev. Lett, 77(26) 5249–5252 (1996).

    Article  Google Scholar 

  47. J. A. Stroscio, D. T. Pierce, R. A. Dragoset, and P. N. First, Microscopy aspects of the initial growth of metastable fcc iron on Au(111), J Vac. Sci. Technol. A, 10, 1981 (1992).

    Article  Google Scholar 

  48. B. Voigtlander, G. Meyer, and N. M. Amer, Epitaxial growth of thin magnetic cobalt films on Au(l 11) studied by scanning tunneling microscopy, Phys. Rev. B, 44(18), 10354–10357 (1991).

    Article  Google Scholar 

  49. B. Fischer, H. Brune, J. V. Barth, A. Fricke. and K. Kern, Nucleation kinetics on inhomogeneous substrate: Al/Au(111), Phys. Rev. Lett:, 82(8), 1732–1735 (1999).

    Article  Google Scholar 

  50. M. B. Hugenschmidt, M. Ruff, A. Hitzke, and R. J. Behm, Rotational epitaxial vs. missing row reconstruction: Au/Cu/Au(110), 388, L1100–L1106 (1997).

    Google Scholar 

  51. M. M. Dovek, C. A. Lang, J. Nogami, and C. F. Quate, Epitaxial growth of Ag on Au(111) studied by scanning tunneling microscopy, Phys. Rev. B, 40(17), 11973–11975 (1989).

    Article  Google Scholar 

  52. C. A. Lang, M. M. Dovek, J. Nogami, and C. F. Quate, Au(111) epitaxial study of scanning tunneling microscopy. Surface Science. 224, L947 (1989).

    Article  Google Scholar 

  53. J. A. Meyer, I. D. Baikie, E. Kopalzki, and R. J. Behm, Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange. Surface Science, 365, L647–L651 (1996).

    Article  Google Scholar 

  54. S. Hofmann. Sputter depth profile analysis of interfaces. Rep. Prog. Phys., 61, 827–888 (1998).

    Article  Google Scholar 

  55. R. E. Lee, Microfabrication by ion-beam etching, J. Vac. Sci. Technol., 18(2), 164–170 (1979).

    Article  Google Scholar 

  56. J. M. Choi, H. E. Kim, and I. S. Lee, lon-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate, Biomaterials, 21, 469–473 (2000).

    Article  Google Scholar 

  57. L. Zhou, K. Kalo, N. Umchara. and Y. Miyake, Nanometer scale island-type texture with controllable height and area ratio formed by ion-beam etching on hard-disk head sliders, Nanoteehnology, 10, 363–372 (1999).

    Article  Google Scholar 

  58. J. G. Pellerin, D. P. Griffis, and P. E. Russell, Focussed ion beam machining of Si, GaAs and InP, Vac. Sc. Technol. B, 8(6), 1945–1950 (1990).

    Article  Google Scholar 

  59. J. C. Kim, J. Y. Ji, J. S. Kline, J. R. Tucker, and T. C. Shen, Preparation of atomically clean and flat Sid00) surfaces by low-energy ion sputtering and low-temperature annealing. Applied Surface Science, 220, 293–297 (2003).

    Article  Google Scholar 

  60. S. Rusponi, G. Costantini. and Boragno, Ripple wave vector rotation in anislropic crystal sputtering, Phys. Rev. Lett., 81(13), 2735–2738 (1998).

    Article  Google Scholar 

  61. M. V. Ramamurty, T. Curcic, and Judy, X-ray scattering study of the surface morphology of Au(111 ) during Ar+ ion irradiation, Phys. Rev. Lett., 80(21), 4713–4716 (1998).

    Article  Google Scholar 

  62. J. Erlebacher, M. Aziz, and Chason, Spontaneous pattern formation on ion bombardment Si(001), Phys. Rev. Lett., 82(11), 2330–2333 (1999).

    Article  Google Scholar 

  63. T. Michely, M. Kalff, and Cosma, Step edge diffusion and step atom detachment in surface evaluation: Ion erosion of Pt(111), Phys. Rev. Lett., 86(12), 2589–2592 (2001).

    Article  Google Scholar 

  64. F. Frost, A. Schlinder, and F. Bigl, Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws, Phys. Rev. Lett., 85, 19, 4116–4119 (2000).

    Article  Google Scholar 

  65. G. Costantini, F. B. M ongeol, and Boragno. Is ion sputtering always a “negative homoepitaxial deposition” Phys. Rev. Lett., 86(5), 838–841 (2001).

    Article  Google Scholar 

  66. O. Malis, J. D. B rock, and Headrick, Ion-induced pattern formation on Co surfaces: an x-ray scattering and kinetic Monte Carlo study, Phys. Rev. B, 66, 035408 (2002).

    Article  Google Scholar 

  67. H. J. Ernst, The pattern formation during ion bombardment of Cu(001) investigated with helium atom beam scattering. Surface Science. 383, L755–L759 (1997).

    Article  Google Scholar 

  68. M Ritter, M. Stindimann, M. Farle, and K. Baberschke. Nanostructuring of the Cu(001) surface by ion bombardment: a STM study. Surface Science, 348, 243–252 (1996).

    Article  Google Scholar 

  69. G. Costantini, S. Rusponi. F. B. d. Mongeot, C. Boragno, and U. Valbusa, Periodic structures induced by normal-incidence sputtering on Ag(110) and Ag(001): flux and temperature dependence. J. Phys: Condens. Matter, 13, 5875–5891 (2001).

    Google Scholar 

  70. G. Carter and V. Vishnyakov. Roughening and ripple instability on ion-bombarded Si. Phys. Rev. B. 54(24), 17647–17653 (1996).

    Article  Google Scholar 

  71. S. J. Chey, J. E. V. Nostrand, and D. G. Cahill, Surface morphology of Ge(001) during etching by low-energy ions, Phys. Rev. B, 52(23), 16696–16701 (1995).

    Article  Google Scholar 

  72. R. M. Bradley and J. M. E. Harper, Theory of ripple topography induced by ion bombardment, J. Vac. Sci. Technol. A, 6(4), 2390–2395 (1988).

    Article  Google Scholar 

  73. E. Chason, T. M. M ayer, B. K. Kellerman, D. T. Mcllroy, and A. J. Howard. Roughening instability and evolution of the Ge(001) surface during ion sputtering, Phys. Rev. Lett., 72(19), 3040–3043 (1994).

    Article  Google Scholar 

  74. P. Sigmund. A mechanism of surface micro-roughening by ion-bombardment J. Mat. Sci., 8, 1545–1553 (1973).

    Article  Google Scholar 

  75. S. Rusponi, C. Boragno, and U. Valbusa, Ripple structure on Ag(110) surface induced by ion sputtering. Phys. Rev. Lett., 78(14), 2795–2798 (1997).

    Article  Google Scholar 

  76. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Formation of ordered nanoscale semiconductor dots by ion sputtering. Science, 285, 1551–1553 (1999).

    Article  Google Scholar 

  77. B. Warren. X-ray Diffraction. (Dover, New York. 1990).

    Google Scholar 

  78. E. Hecht, Optics, Ch. 5. Fourth ed. (Addison-Wesley, Reading, 2002).

    Google Scholar 

  79. A. Rosenfeld and A. Kak, Digital Picture Processing. Computer Science and Applied Mathematics (Academic, New York, 1976).

    Google Scholar 

  80. A. Jain, Fundamentals of Digital Image Processing. (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  81. W. Rasband, ImageJ, tech. rep., U. S. National Institutes of Health, Bethesda, MD. USA (1997), http://rsb.info.nih.gov/ij.

    Google Scholar 

  82. C. Favazza, J. Trice, H. Krishna, R. Sureshkumar, and R. Kalyanaraman, Leaser-induced short and long-range ordering of Co nanoparticles on Si02, App. Phys. Lett., 88, 153118 (2006).

    Article  Google Scholar 

  83. M. Salerno and M. Banzato, Minkowski measures for image analysis in scanning probe microscopy, Microscopy and Analysis, 19(4), 13–15 (2005).

    Google Scholar 

  84. K. Mecke, T. Buchen, and H. Wagner. Robust morphological measures for large-scale structure in the universe, Asttvn. Astrophys., 288, 697–704 (1994).

    Google Scholar 

  85. K. R. Mecke. Morphological characterization of patterns in reaction-diffusion systems. Phys. Rev. E, 53(5), 4794–4800 (1996).

    Article  Google Scholar 

  86. C. Favazza, R. Kalyanaraman, R. Sureshkumar, Nanotechnology. 17, 4229–34 (2006).

    Article  Google Scholar 

  87. J. Watson and K. Ihokura, Gas-sensing materials, in MRS Bull. (J. Watson and K. Ihokura. eds.). Mat. Res. Soc., 24 (1999).

    Google Scholar 

  88. W. Gopel, Nanostructured sensors for molecular recognition, Phil Trans., 353, 333–354 (1995).

    Article  Google Scholar 

  89. T. Seiyama, A. Kato, K. Fujishi, and M. Nagatani. A new detector for gaseous components using semiconductive thin film, Anal. Chem., 34, 1052–1953 (1962).

    Article  Google Scholar 

  90. E. van Selten, T. M. Gür, D. H. A. Blank, J. C. Bravman, and M. R. Beasley, Miniature Nernstian oxygen sensor for déposition and growth environments. Rev. Set. Instr., 73, 156–161 (2002).

    Article  Google Scholar 

  91. H. Nagle, R. Gutierrez-Osuna. and S. Schiffman, The how and why of electronic noses. IEEE Spect., 35(9), 15 (1998).

    Google Scholar 

  92. P. Althainz, J. Goschnick, S. Ehrmann, and Ache H.J., Multisensor microsystem for contaminants in air, Sens. Actual. B, 33, 72–76 (1996).

    Article  Google Scholar 

  93. B. Yang, M. Carotta, G. Faglia, M. Ferroni, V. Guidi, G. Marlinelli, and G. Sberveglieri. Quantification of H2S and N02 using gas sensor arrays and an artificial neural network, Sens. Actual. B, 43, 235–238 (1997).

    Article  Google Scholar 

  94. J. Anglesea, P. Corcoran, and W. Elshaw, The application of genetic algorithms to multisensor array optimization. Proc. 12th Europ. Conference on Sohl-State Trandueers, 2, 1103–07 (1998).

    Google Scholar 

  95. G. Martinelli, M. Carotta, E. Traversa, and G. Ghiolti. Thick-film gas sensors based on nano-sized semiconducting oxide powders. MRS Bull., 24, 30–35 (1999).

    Google Scholar 

  96. M. Kennedy, F. Kruis, H. Fissan, B. R. Mehla, S. Stappert. and G. Dumpich. Tailored nanoparticle films from monosized tin oxide nanocrystals: particle synthesis, film formation, and sizedependent gas-sensing properties, J. App. Phys., 93, 551–560 (2003).

    Article  Google Scholar 

  97. F. Cosandey, G. Skandan, and A. S inghal, Materials and processing issues in nanostructured semiconductor gas sensors, JOM-e. 52, 1–6 (2000). http://www.tms.org/pubs/journalsJJOMJ 0010/Cosandey/Cosandey-OO 10.html.

    Google Scholar 

  98. G. Heiland, Homogeneous semiconductor gas sensors. Sens. Actual., 2, 343–361 (1982).

    Article  Google Scholar 

  99. K. Ihokura and J. Watson, The Stannic oxide gas sensors principles and applications. (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  100. N. Yamazoe and T. Seiyama. Sensing mechanism of oxide semiconductor gas sensors, in Solidstate sensors and actuators, 3rd Int. Conf., Philadelphia, PA, pp. 376–379 (1985).

    Google Scholar 

  101. D. Williams. Solid-Stale Gas Sensors (Adam Hilger, Philadelphia, 1987).

    Google Scholar 

  102. H. Ogawa, M. Nishikawa, and A. Abe, Hall measurement studies and electrical conductivity model of tin oxide ultrafine particle films., J. Appl. Phys., 53, 4448–4454 (1982).

    Article  Google Scholar 

  103. C. Xu, J. Tamaki, N. Miura.and N. Yamazoe. Grain size effects on gas sensitivity of porous Sn02 based element. Sens. Actaut. B, 3, 147–155 (1991).

    Article  Google Scholar 

  104. G. Williams and G. Coles. The gas-sensing potential of nanocrystalline tin dioxide produced by laser ablation techniques, MRS Bull., 24, 25–27 (1999).

    Google Scholar 

  105. G. Korotchenkov, V. B rynzari, and S. Dmitrtev, Sn02 films for thin film gas sensor design. Mat. Sci. and Eng. B, 63, 195–204 (1999).

    Article  Google Scholar 

  106. T. Yang, H. Lin, B. Wei, C. Wu, and C. Lin, UV enhancement of the gas sensing properties of nano-Ti02, Rev. Adv. Mater. Sci., 4, 48–54 (2003).

    Google Scholar 

  107. H. Windischmann and P. Mark, A model for the operation of a thin-film SnOx conductance modulation carton monoxide sensor, J. Elec. Soc, 126, 627–633 (1979).

    Article  Google Scholar 

  108. A. Brailsford, M. Yussouff, and E. M. Logothetis. Theory of gas sensors, Sens. Actual. B, 13, 135–138 (1993).

    Article  Google Scholar 

  109. S. Guiati, N. M ehan, D. P. Goyal. and A. Mansingh, Electrical equivalent model for Sn02 bulk sensors. Sens. Actual B, 87, 309–320 (2002).

    Article  Google Scholar 

  110. F. Hossein-Babaei and M. Orvatinia, Analysis of thickness dependence of the sensitivity in thin film resistive gas sensors. Sens. Actual. B, 89, 256–261 (2003).

    Article  Google Scholar 

  111. S. Koehl and M. Paniccia. The quest to siliconize photonics. Photonics Spectra, pp. 53–60 (Nov. 2005).

    Google Scholar 

  112. U. Fischer, A. Dereux, and J.-C. Weeber, Near-field optics and surface plasmon polaritons. In: Topics in Applied Physics. Controlling Light Confinement by Excitation of Localized Surface Plasmons, (Springer, New York, 2001), pp. 49–69.

    Google Scholar 

  113. J. Krenn, J. C. Weeber, A. Dereux, B. Schider, A. Leitner, F. R. Aussenegg. and C. Girard, Direct observation of localized surface plasmon coupling, Phys. Rev. B, 60, 5029–5033 (1999).

    Article  Google Scholar 

  114. M. L. Brongerman, J. W. H artman, and H. A. Atwater, Electromagnetic energy transfer and switching in nanoparlicle chain arrays below the diffraction limit, Phys. Rev. B. 62, R16356 (2000).

    Article  Google Scholar 

  115. S. A. Maier, M. L. Brongersma, P. G. K ik, and H. A. Atwater, Observation of near-field coupling in metal nanoparlicle chains using far-field polarization spectroscopy, Phys. Rev. B., 65, 193408–1 (2002).

    Article  Google Scholar 

  116. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters. (Springer, Berlin, 1994).

    Google Scholar 

  117. J. Krenn. Nanoparticle waveguides: Watching energy transfer. Nature Materials, 2, 210–211, (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krishna, H., Kalyanaraman, R. (2008). Functional Nanostructured Thin Films. In: Seal, S. (eds) Functional Nanostructures. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48805-9_2

Download citation

Publish with us

Policies and ethics