Skip to main content

Photoluminescence Spectroscopic Studies on TiO2 Photocatalyst

  • Chapter
  • First Online:
Book cover Environmentally Benign Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Photoluminescence is a powerful technique in the study of semiconductor photocatalysts. This chapter deals with the application of photoluminescence techniques to the study of TiO2 in relation to its photocatalytic performance. The assignment of the visible and the near-infrared luminescence characteristics of TiO2 are discussed. The influence of the adsorbed molecules, such as H2O, O2, H2, unsaturated hydrocarbons and Pt loaded on TiO2, on the photoluminescence characteristics of TiO2 is also discussed. The relationship between the photoluminescence features of TiO2 and the photo-assisted reaction of water and methanol mixture is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anpo M (1997) Catal Surv Jpn 1:169

    Article  CAS  Google Scholar 

  • Anpo M, Che M (2000) Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis. Adv Catal 44:119–257

    Article  Google Scholar 

  • Anpo M, Aikawa N, Kodama S, Kubokawa Y (1984) Photocatalytic hydrogenation of alkynes and alkenes with water over TiO2. Hydrogenation accompanied by bond fission. J Phys Chem 88:2569–2572

    Article  CAS  Google Scholar 

  • Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamellot E (1985a) Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89:5017–5021

    Article  CAS  Google Scholar 

  • Anpo M, Shima T, Kubokawa Y (1985b) ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles. Chem Lett 168:1799–1802

    Article  Google Scholar 

  • Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates. J Phys Chem 91:4305–4310

    Article  CAS  Google Scholar 

  • Anpo M, Tomonari M, Fox MA (1989) In situ photoluminescence of TiO2 as a probe of photocatalytic reactions. J Phys Chem 93:7300–7302

    Article  CAS  Google Scholar 

  • Anpo M, Chiba K, Tomonari M, Coluccia S, Che M, Fox MA (1991) Photocatalysis on native and platinum-loaded TiO2 and ZnO catalysts – origin of different reactivities on wet and dry metal oxides. Bull Chem Soc Jpn 64:543–551

    Article  CAS  Google Scholar 

  • Chaves A, Katiyan KS, Porto SPS (1974) Coupled modes with A1 symmetry in tetragonal BaTiO3. Phys Rev 10:3522–3533

    Article  CAS  Google Scholar 

  • Chen J, Feng ZC, Ying PL, Li MJ, Han B, Li C (2004a) The visible luminescent characteristics of ZnO supported on SiO2 powder. Phys Chem Chem Phys 6:4473–4479

    Article  CAS  Google Scholar 

  • Chen J, Feng ZC, Ying PL, Li C (2004b) ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies. J Phys Chem B 108:12669–12676

    Article  CAS  Google Scholar 

  • Chen J, Feng ZC, Shi JY, Ying PL, Zhang HD, Li C (2005) The surface sites of sulfated zirconia studied in situ by laser-induced fluorescence spectroscopy. Chem Phys Lett 401:104–108

    Article  CAS  Google Scholar 

  • Cronemeyer DC (1959) Infrared absorption of reduced rutile TiO2 single crystals. Phys Rev 113:1222–1226

    Article  CAS  Google Scholar 

  • de Haart LGJ, Blasse G (1986) The observation of exciton emission from rutile single crystals. J Solid State Chem 61:135–136

    Article  Google Scholar 

  • Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  • Ding Z, Lu GQ, Greenfield PF (2000) Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J Phys Chem B 104:4815–4820

    Article  CAS  Google Scholar 

  • Emeline AV, Ryabchuk VK, Serpone N (2005) Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections. J Phys Chem B 109:18515–18521

    Article  CAS  Google Scholar 

  • Fernández I, Cremades A, Piqueras J (2005) Cathodoluminescence study of defects in deformed (110) and (100) surfaces of TiO2 single crystals. Semicond Sci Technol 20:239–243

    Article  Google Scholar 

  • Forss L, Schubnell M (1993) Temperature dependence of the luminescence of TiO2 powder. Appl Phys B 56:363–366

    Article  Google Scholar 

  • Fujihara K, Ohno T, Matsumura M (1998) Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. J Chem Soc Faraday Trans 94:3705–3709

    Article  CAS  Google Scholar 

  • Fujihara K, Izumi S, Ohno TA, Matsumura M (2000) Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J Photochem Photobiol A 132:99–104

    Article  CAS  Google Scholar 

  • Ghosh AK, Wakim FG, Jr Addiss RR (1969) Photoelectronic processes in rutile. Phys Rev 184:979–988

    Article  CAS  Google Scholar 

  • Göpel W, Rocker G, Feirabend R (1983) Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2. Phys Rev B 28:3427–3438

    Article  Google Scholar 

  • Grabner L, Stokowski SE, Jr Brower WS (1970) No-phonon 4T2g4A2g transitions of Cr3+ in TiO2. Phys Rev B 2:590–597

    Article  Google Scholar 

  • Hachiya K, Kondoh J (2003) Photoluminescence from localized states in rutile by Ar+-ion laser excitation. Physica B 334:130–134

    Article  CAS  Google Scholar 

  • Harada N, Goto M, Iijima K, Sakama H, Ichikawa N, Kunugita H, Ema K (2007) Time-resolved luminescence of TiO2 powders with different crystal structures. Jpn J Appl Phys 46:4170–4171

    Article  CAS  Google Scholar 

  • Henderson MA, Epling WS, Perkins CL, Peden CHF (1999) Interaction of molecular oxygen with the vacuum-annealed TiO2 (110) surface: molecular and dissociative channels. J Phys Chem B 103:5328–5337

    Article  CAS  Google Scholar 

  • Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeon K, Oh S, Suh YD, Yoshikawa H, Masuhara H, Yoon M (2009) Blinking photoluminescence properties of single TiO2 nanodiscs: interfacial electron transfer dynamics. Phys Chem Chem Phys 11:534–542

    Article  CAS  Google Scholar 

  • Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energ Mat Sol C 90:1773–1787

    Article  CAS  Google Scholar 

  • Jung HS, Kim H (2009) Origin of low photocatalytic activity of rutile TiO2. Electron Mater Lett 5:73–76

    Article  CAS  Google Scholar 

  • Jung KY, Park SB, Anpo M (2005) Photoluminescence and photoactivity of titania particles prepared by the sol–gel technique: effect of calcination temperature. J Photochem Photobiol A Chem 170:247–252

    Article  CAS  Google Scholar 

  • Knorr FJ, Mercado CC, McHale JL (2008) Trap-state distributions and carrier transport in pure and mixed-phase TiO2: influence of contacting solvent and interphasial electron transfer. J Phys Chem C 112:12786–12794

    Article  CAS  Google Scholar 

  • Kurtz RL, Stockbauer R, Madey TE, Roman E, de Segovia JL (1989) Synchrotron radiation studies of H2O adsorption on TiO2 (110). Surf Sci 218:178–200

    Article  CAS  Google Scholar 

  • Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Lu G, Linsebigler A, Yates JT Jr (1994) Ti3+ Defect sites on TiO2(110): production and chemical detection of active sites. J Phys Chem 98:11733–11738

    Article  CAS  Google Scholar 

  • Mochizuki S, Shimizu T, Fujishiro F (2003) Photoluminescence study on defects in pristine anatase and anatase-based composites. Physica B 340–342:956–959

    Article  Google Scholar 

  • Montoncello F, Carotta MC, Cavicchi B, Ferroni M, Giberti A (2003) Near-infrared photoluminescence in titania: evidence for phonon-replica effect. J Appl Phys 94:1501–1505

    Article  CAS  Google Scholar 

  • Murakami Y, Kenji E, Nosaka AY, Nosaka Y (2006) Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J Phys Chem B 110:16808–16811

    Article  CAS  Google Scholar 

  • Murakami Y, Endo K, Ohta I, Nosaka AY, Nosaka Y (2007) Can OH radicals diffuse from the UV-irradiated photocatalytic TiO2 surfaces? Laser-induced-fluorescence study. J Phys Chem C 111:11339–11346

    Article  CAS  Google Scholar 

  • Naito K, Tachikawa T, Fujitsuka M, Majima T (2009) Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures. J Am Chem Soc 131:934–936

    Article  CAS  Google Scholar 

  • Nakajima H, Mori T (2004) Influence of platinum loading on photoluminescence of TiO2 powder. J Appl Phys 96:925–927

    Article  CAS  Google Scholar 

  • Nakajima H, Mori T (2006) Photoluminescence of Pt-loaded TiO2 powder. Physica B 376–377:820–822

    Article  Google Scholar 

  • Nakajima H, Itoh K, Murabayashi M (2001) Influence of the adsorbate and the crystal structure on the photoluminescence property of TiO2 powder in air with ethanol vapor at room temperature. Chem Lett 4:304–305

    Article  Google Scholar 

  • Nakajima H, Itoh K, Murabayashi M (2002) Influences of C1–C3 alcohols and purities of TiO2 powders on their photoluminescence properties at room temperature. Bull Chem Soc Jpn 75:601–606

    Article  CAS  Google Scholar 

  • Nakajima H, Mori T, Watanabe M (2004) Relationship between photoluminescence intensity of TiO2 suspension containing ethanol and its surface coverage on TiO2 surface. Jpn J Appl Phys 43:3609–3610

    Article  CAS  Google Scholar 

  • Nakajima H, Mori T, Shen Q, Toyoda T (2005) Photoluminescence study of mixtures of anatase and rutile TiO2 nanoparticles: influence of charge transfer between the nanoparticles on their photoluminescence excitation bands. Chem Phys Lett 409:81–84

    Article  CAS  Google Scholar 

  • Nakato Y, Tsumura A, Tsubomura H (1983) Photo- and electroluminescence spectra from an n-TiO2 semiconductor electrode as related to the intermediates of the photooxidation reaction of water. J Phys Chem 87:2402–2405

    Article  CAS  Google Scholar 

  • Nakato Y, Ogawa H, Morita K, Tsubomura H (1986) Luminescence spectra from n-TiO2 and n-SrTiO3 semiconductor electrodes and those doped with transition-metal oxides as related with intermediates of the photooxidation reaction of water. J Phys Chem 90:6210–6216

    Article  CAS  Google Scholar 

  • Nakato Y, Akanuma H, Magari Y, Yae S, Shimizu J-I, Mori H (1997) Photoluminescence from a bulk defect near the surface of an n-TiO2 (rutile) electrode in relation to an intermediate of photooxidation reaction of water. J Phys Chem B 101:4934–4939

    Article  CAS  Google Scholar 

  • Nishimoto S, Ohtani B, Kajiwara H, Kagiya T (1985) Correlation of the crystal structure of titanium dioxide prepared from titanium tetra-2-propoxide with the photocatalytic activity for redox reactions in aqueous propan-2-ol and silver salt solutions. J Chem Soc Faraday Trans 81:61–68

    Article  CAS  Google Scholar 

  • Ohno T, Sarukawa K, Matsumura M (2001) J Phys Chem B 105:2417–2420

    Article  CAS  Google Scholar 

  • Plugaru R, Cremades A, Piqueras J (2004) The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J Phys Condens Matter 16:S261–S268

    Article  CAS  Google Scholar 

  • Poznyak SK, Sviridov VV, Kulak AI, Samtsov MP (1992) Photoluminescence and electroluminescence at the TiO2-electrolyte interface. J Electroanal Chem 340:73–97

    Article  CAS  Google Scholar 

  • Qian L, Jin ZS, Zhang JW, Huang YB, Zhang ZJ, Du ZL (2005) Study of the visible-excitation luminescence of NTA-TiO2 (AB) with single-electron-trapped oxygen vacancies. Appl Phys A 80:1801–1805

    Article  CAS  Google Scholar 

  • Salvador P, García González ML (1992) Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-TiO2 rutile. J Phys Chem 96:10349–10353

    Article  CAS  Google Scholar 

  • Sanjinés R, Tang H, Berger H, Gozzo F, Margaritondo G, Lévy F (1994) Electronic structure of anatase TiO2 oxide. J Appl Phys 75:2945–2951

    Article  Google Scholar 

  • Sekiya T, Yagisawa T, Kamiya N, Mulmi DD, Kurita S, Murakami Y, Kodaira T (2004) Defects in anatase TiO2 single crystal controlled by heat treatments. J Phys Soc Jpn 73:703–710

    Article  CAS  Google Scholar 

  • Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor? J Phys Chem 99:16646–16654

    Article  CAS  Google Scholar 

  • Shi JY, Chen J, Feng ZC, Chen T, Wang XL, Ying PL, Li C (2006) Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites. J Phys Chem B 110:25612–25618

    Article  CAS  Google Scholar 

  • Shi JY, Chen J, Feng ZC, Chen T, Lian YX, Wang XL, Li C (2007a) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–699

    Article  CAS  Google Scholar 

  • Shi JY, Chen J, Zhou GH, Feng ZC, Ying PL, Li C (2007b) Photoluminescence spectroscopy of NaTaO3 and NaTaO3:Bi3+ photocatalysts. Chem J Chin Univ 28:692–695

    CAS  Google Scholar 

  • Tanaka K, Capule MFV, Hisanaga T (1991) Effect of crystallinity of TiO2 on its photocatalytic action. Chem Phys Lett 187:73–76

    Article  CAS  Google Scholar 

  • Tang H, Berger H, Schmid PE, Lévy F, Burri G (1993) Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87:847–850

    Article  CAS  Google Scholar 

  • Tang H, Berger H, Schmid PE, Lévy F (1994a) Optical properties of anatase (TiO2). Solid State Commun 92:267–271

    Article  CAS  Google Scholar 

  • Tang H, Prasad K, Sanjinès R, Schmid PE, Lévy F (1994b) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047

    Article  CAS  Google Scholar 

  • Tsai S, Cheng S (1997) Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal Today 33:227–237

    Article  CAS  Google Scholar 

  • Wang LQ, Ferris KF, Skiba PX, Shultz AN, Baer DR, Engelhard MH (1999) Interactions of liquid and vapor water with stoichiometric and defective TiO2(100) surfaces. Surf Sci 440:60–68

    Article  CAS  Google Scholar 

  • Wu NL, Lee MS, Pon ZJ, Hsu JZ (2004) Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution. J Photochem Photobiol A Chem 163:277–280

    Article  CAS  Google Scholar 

  • Yu JC, Lin J, Lo D, Lam SK (2000) Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2. Langmuir 16:7304–7308

    Article  CAS  Google Scholar 

  • Zacharias M, Fauchet PM (1997) Blue luminescence in films containing Ge and GeO2 nanocrystals: the role of defects. Appl Phys Lett 71:380–382

    Article  CAS  Google Scholar 

  • Zhang WF, Zhang MS, Yin Z, Chen Q (2000a) Photoluminescence in anatase titanium dioxide nanocrystals. Appl Phys B 70:261–265

    Article  CAS  Google Scholar 

  • Zhang WF, Zhang MS, Yin Z (2000b) Microstructures and visible photoluminescence of TiO2 nanocrystals. Phys Stat Sol (a) 179:319–327

    Article  CAS  Google Scholar 

  • Zhang J, Li MJ, Feng ZC, Chen J, Li C (2006) UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, grant 20673112 and 20373069), the National Basic Research Program of China (grant 2009CB220010), and Program for Strategic Scientific Alliances between China and the Netherlands (2008DFB50130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Shi, J., Wang, X., Feng, Z., Chen, T., Chen, J., Li, C. (2010). Photoluminescence Spectroscopic Studies on TiO2 Photocatalyst. In: Anpo, M., Kamat, P. (eds) Environmentally Benign Photocatalysts. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48444-0_7

Download citation

Publish with us

Policies and ethics