Skip to main content

Second Generation Visible-Light-Active Photocatalysts: Preparation, Optical Properties, and Consequences of Dopants on the Band Gap Energy of TiO2

  • Chapter
  • First Online:
Environmentally Benign Photocatalysts

Abstract

First generation metal-oxide photocatalysts based mostly on nominally pure, pristine titanium dioxide have been the object of great debate in the past 30 years with regard (i) to the nature of the oxidative agent (OH radicals vs. holes h+); (ii) to the site at which the reaction takes place (surface vs. bulk solution); (iii) to whether TiO2 is indeed a photocatalyst since turnover numbers are difficult to determine owing to the nature of the particle surface; and (iv) to how the process efficiency can be ascertained, among many other issues yet to be resolved satisfactorily. One issue that has taken some time to be resolved is the notion of how we can make better use of sunlight’s visible radiation seeing that the absorption edge of TiO2 is at 387 nm (ca. 3.2 eV – the band gap energy) for the anatase polymorph. A successful strategy that is gaining some momentum is to dope this metal oxide with suitable dopants (e.g., metal ions and/or non-metals) to shift the absorption edge to longer wavelengths. Doping has been achieved using various physical and chemical strategies, which have led to materials whose absorption edges have been red-shifted to wavelengths ~550 nm (and beyond in some cases). The debate that now occupies discussions of doped-TiO2 materials regards the causes for this red shift. Several reports, based on density functional theory (DFT), have asserted that the band gap of doped-TiO2 is narrowed because of interactions between the dopant states and the O 2p states of the valence band, thereby pushing the valence band edge upward. Others have proposed isolated dopant states located within the band gap to explain the red shift of the absorption edges of doped-TiO2 systems through excitation of the electrons in these states to the conduction band of TiO2. Absorption spectra, calculated from several diffuse reflectance spectra (DRS) reported in the literature for both metal ion-doped TiO2s and systems doped with non-metals (e.g., carbon, sulfur, nitrogen, and fluorine), are remarkably similar if not identical in the visible spectral region. The broad spectral envelope observed at wavelengths greater than 400 nm can be deconvoluted into 2–3 single bands, which indicate different species give rise to these bands. This chapter is therefore concerned, albeit in a very restrictive way, with the various strategies used to dope TiO2, with their modeling by DFT methods, and finally with their optical properties with which we shall argue that the absorption edge red-shift originates from a singular source involving mostly the formation of (additional to existing) oxygen vacancies in the metal-oxide lattice (both surface and bulk) that can act as electron traps to yield F-type color centers and/or Ti3+ color centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aita Y, Komatsu M, Yin S, Sato T (2004) Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process. J Solid State Chem 177:3235–3238

    Article  CAS  Google Scholar 

  • Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516

    Article  CAS  Google Scholar 

  • Asahi R, Taga Y, Mannstadt W, Freeman AJ (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61:7459–7465

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photo-catalysis in nitrogen-doped titanium oxides. Science 293:269–275

    Article  CAS  Google Scholar 

  • Beck DD, White JM, Ratcliffe CT (1986) Catalytic reduction of carbon monoxide with hydrogen sulfide. 3. Study of adsorption of oxygen, carbon monoxide and carbon monoxide coadsorbed with hydrogen sulfide on anatase and rutile using Auger electron spectroscopy and temperature-programmed desorption. J Phys Chem 90:3132–3136

    Article  CAS  Google Scholar 

  • Belver C, Bellod R, Fuerte A, Fernandez-Garcia M (2006a) Nitrogen-containing TiO2 photocatalysts part 1. Synthesis and solid characterization. Appl Catal B 65:301–308

    Article  CAS  Google Scholar 

  • Belver C, Bellod R, Stewart SJ, Requejo FG, Fernandez-Garcia M (2006b) Nitrogen-containing TiO2 photocatalysts part 2. Photocatalytic behavior under sunlight excitation. Appl Catal B Environ 65:309–314

    Article  CAS  Google Scholar 

  • Berger T, Sterrer M, Diwald O, Knozinger E, Panayotov D, Thompson TL, Yates JT Jr (2005) Light-induced charge separation in anatase TiO2 particles. J Phys Chem B 109:6061–6068

    Article  CAS  Google Scholar 

  • Chen J, Lin L-B, Jing F-Q (2001) Theoretical study of F-type color center in rutile TiO2. J Phys Chem Solids 62:1257–1262

    Article  CAS  Google Scholar 

  • Cheng P, Li W, Zhou T, Jin Y, Gu M (2004) Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation. J Photochem Photobiol A Chem 168:97–101

    Article  CAS  Google Scholar 

  • Cherkashin, A.E., Volodin, A.M., Koshcheev, S.V. and Zakharenko, V.S. (1980) Energy structure and photosorption and photocatalytic properties of titanium dioxide in carbon monoxide oxidation. Uspekhi Fotoniki, Issue 7, Leningrad State University (LGU), Leningrad, pp. 86–142

    Google Scholar 

  • Colon G, Hidalgo MC, Munuera G, Ferino I, Cutrufello MG, Navio JA (2006) Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl Catal B 63:45–59

    Article  CAS  Google Scholar 

  • Di Valentin C, Pacchioni G-F, Selloni A (2004) Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys Rev B 70:085116

    Article  CAS  Google Scholar 

  • Di Valentin C, Pacchioni G-F, Selloni A, Livraghi S, Giamello E (2005a) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109:11414–11419

    Article  CAS  Google Scholar 

  • Di Valentin C, Pacchioni G-F, Selloni A (2005b) Theory of carbon doping of titanium dioxide. Chem Mater 17:6656–6665

    Article  CAS  Google Scholar 

  • Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  • Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT Jr (2004a) The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J Phys Chem B 108:52–57

    Article  CAS  Google Scholar 

  • Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates JT Jr (2004b) Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J Phys Chem B 108:6004–6008

    Article  CAS  Google Scholar 

  • Dong CX, Xian AP, Han EH, Shang JK (2006) Acid-mediated sol-gel synthesis of visible-light active photocatalysts. J Mater Sci 41:6168–6170

    Article  CAS  Google Scholar 

  • Emeline AV, Kuzmin GN, Purevdorj D, Ryabchuk VK, Serpone N (2000) Spectral dependencies of the quantum yield of photochemical processes on the surface of wide band gap solids. 3. Gas/Solid Systems. J Phys Chem B 104:2989–2999

    Article  CAS  Google Scholar 

  • Emeline AV, Smirnova LG, Kuzmin GN, Basov LL, Serpone N (2002) Spectral dependence of quantum yields in gas-solid heterogeneous photosystems. Influence of anatase/rutile content on the photostimulated adsorption of dioxygen and dihydrogen on titania. J Photochem Photobiol A Chem 148:97–102

    Article  CAS  Google Scholar 

  • Emeline AV, Sheremetyeva NV, Khomchenko NV, Ryabchuk VK, Serpone N (2007) Photoinduced formation of defects and nitrogen-stabilization of color centers in N-doped titanium dioxide. J Phys Chem 111(30):11456–11462

    CAS  Google Scholar 

  • Enache CS, Schoonman J, van de Krol R (2006) Addition of carbon to anatase TiO2 by n-hexane treatment – surface or bulk doping? Appl Surf Sci 252:6342–6347

    Article  CAS  Google Scholar 

  • Formenti M, Juillet F, Meriaudeau P, Teichner SJ (1971) Heterogeneous photo-catalysis for partial oxidation of paraffins. Chem Technol 1:680–686

    Google Scholar 

  • Frach P, Gloess D, Vergohl M, Neumann F, Hund-Rinke K (2004) EJIPAC, Saarbrucken, Germany. Quoted by Yates et al (2006).

    Google Scholar 

  • Ghicov A, Schmidt B, Kunze J, Schmuki P (2007) Photoresponse in the visible range from Cr-doped TiO2 nanotubes. Chem Phys Lett 433:323–326

    Article  CAS  Google Scholar 

  • Glassford KM, Chelikowsky JR (1992) Structural and electronic properties of titanium dioxide. Phys Rev B 46:1284–1298

    Article  CAS  Google Scholar 

  • Gole JL, Stout JD, Burda C, Lou Y, Chen X (2004) Highly efficient formation of visible light tunable TiO2−x N x photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230–1240. See also the web-site: http://www.physics.gatech.edu/people/faculty/jgole.html#links

    Google Scholar 

  • Henderson MA, Epling WS, Perkins CL, Peden CHF, Diebold U (1999) Interaction of Molecular oxygen with the vacuum-annealed TiO2(110) surface: molecular and dissociative channels. J Phys Chem B 103:5328–5337

    Article  CAS  Google Scholar 

  • Henderson MA, Epling WS, Peden CHF, Perkins CL (2003) Insights into photo-excited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110). J Phys Chem B 107:534–545

    Article  CAS  Google Scholar 

  • Huang D-G, Liao S-J, Liu J-M, Danga Z, Petrik L (2006) Preparation of visible-light responsive N–F-codoped TiO2 photocatalyst by a sol–gel-solvothermal method. J Photochem Photobiol A Chem 184:282–288

    Article  CAS  Google Scholar 

  • Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549

    Article  CAS  Google Scholar 

  • Ihara T, Miyoshi M, Ando M, Sugihara S, Iriyama Y (2001) Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment. J Mater Sci 36:4201–4207

    Article  CAS  Google Scholar 

  • Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl Catal B Environ 42:403–409

    Article  CAS  Google Scholar 

  • In S, Orlov A, Garcia F, Tikhov M, Wright DS, Lambert RM (2006) Efficient visible light-active N-doped TiO2 photocatalysts by a reproducible and controllable synthetic route. Chem Commun 40:4236–4238

    Article  CAS  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2−x N x powders. J Phys Chem B 107:5483–5486

    Article  CAS  Google Scholar 

  • Janus M, Inagaki M, Tryba B, Toyoda M, Morawski AW (2006) Carbon-modified TiO2 photocatalyst by ethanol carbonization. Appl Catal B Environ 63:272–276

    Article  CAS  Google Scholar 

  • Joung S-K, Amemiya T, Murabayashi M, Itoh K (2006) Relation between photo-catalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts. Appl Catal A Gen 312:20–26

    Article  CAS  Google Scholar 

  • Katoh M, Aihara H, Horikawa T, Tomida T (2006) Spectroscopic study for photo-catalytic decomposition of organic compounds on titanium dioxide containing sulfur under visible light irradiation. J Colloid Interf Sci 298:805–809

    Article  CAS  Google Scholar 

  • Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2244

    Article  CAS  Google Scholar 

  • Kitano M, Tsujimaru K, Anpo M (2006a) Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photo-catalysts: effect of the work function of the substrates on the yield of the reaction. Appl Catal A Gen 314:179–183

    Article  CAS  Google Scholar 

  • Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006b) Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B 110:25266–25272

    Article  CAS  Google Scholar 

  • Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120:133–138

    Article  CAS  Google Scholar 

  • Kowalczyk SP, McFeely FR, Ley L, Gritsyna VT, Shirley DA (1977) The electronic structure of strontium titanate(IV) and some simple related oxides (magnesium oxide, aluminum oxide, strontium oxide, titanium oxide). Solid State Commun 23:161–169

    Article  CAS  Google Scholar 

  • Kuznetsov VN (2002) Study of oxygen adsorption and reoxidation of reduced titanium dioxide by thermal desorption mass spectrometry. Kinet Catal 43:868–873

    Article  CAS  Google Scholar 

  • Kuznetsov VN, Serpone N (2006) Visible light absorption by various titanium dioxide specimens. J Phys Chem B 110:25203–25209

    Article  CAS  Google Scholar 

  • Kuznetsov VN, Serpone N (2007) Photo-induced coloration and photobleaching of titanium dioxide in TiO2/polymer compositions on UV- and visible-light excitation into the color centers’ absorption bands. Direct experimental evidence negating band gap narrowing in anion-/cation-doped TiO2. Chem Phys 111(42):15277–15288

    CAS  Google Scholar 

  • Kuznetsov VN, Serpone N (2009) On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens. Analysis and Assignments, J Phys Chem C 113:15110–15123

    Google Scholar 

  • Lawless D (1993) Photophysical studies on materials of interest to heterogeneous photocatalysis and to imaging science: CdS quantum dots, doped and undoped ultrasmall semiconductor TiO2 particles, and silver halides. Ph.D. Thesis, Concordia University, Montreal, Canada (work carried out between 1988 and 2002)

    Google Scholar 

  • Lee DH, Cho YS, Yi WI, Kim TS, Lee JK, Jung HJ (1995) Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate. Appl Phys Lett 66:815–816

    Article  CAS  Google Scholar 

  • Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl Phys Lett 78:1125–1127

    Article  CAS  Google Scholar 

  • Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF (2001) Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photo-catalyst. Appl Catal B Environ 32:215–227

    Article  CAS  Google Scholar 

  • Li X, Yue P-L, Kutal C (2003) Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles. New J Chem 27:1264–1269

    Article  CAS  Google Scholar 

  • Li D, Haneda H, Ohashi N, Hishita S, Yoshikawa Y (2004a) Synthesis of nanosized nitrogen-containing MOx-ZnO (M = W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition. Catal Today 93–95:895–901

    Article  CAS  Google Scholar 

  • Li D, Haneda H, Hishita S, Ohashi N (2004b) Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Mater Sci Eng B B117:67–75

    Article  CAS  Google Scholar 

  • Li D, Haneda H, Labhsetwar NK, Hishita S, Ohashi N (2005a) Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem Phys Lett 401:579–584

    Article  CAS  Google Scholar 

  • Li D, Haneda H, Hishita S, Ohashi N (2005b) Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596–2602

    Article  CAS  Google Scholar 

  • Li D, Ohashi N, Hishita S, Kolodiazhnyi T, Haneda H (2005c) Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N–F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. J Solid State Chem 178:3293–3302

    Article  CAS  Google Scholar 

  • Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005d) Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl Catal A Gen 285:181–189

    Article  CAS  Google Scholar 

  • Lin Y-M, Tseng Y-H, Huang J-H, Chao CC, Chen C-C, Wang A (2006) Photocatalytic activity for degradation of nitrogen oxides over visible light responsive titania-based photocatalysts. Environ Sci Technol 40:1616–1621

    Article  CAS  Google Scholar 

  • Lindgren T, Mwabora JM, Avendan E, Jonsson J, Hoel A, Granqvist C-G, Lindquist S-E (2003) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J Phys Chem B 107:5709–5716

    Article  CAS  Google Scholar 

  • Livraghi S, Votta A, Paganini MC, Giamello E (2005) The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis. Chem Commun 28(4):498–500

    Article  CAS  Google Scholar 

  • Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128:15666–15671

    Article  CAS  Google Scholar 

  • Ma T, Akiyama M, Abe E, Imai I (2005) High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett 5:2543–2547

    Article  CAS  Google Scholar 

  • Matsumoto T, Iyi N, Kaneko Y, Kitamura K, Ishihara S, Takasu Y, Murakami Y (2007) High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite. Catal Today 120:226–232

    Article  CAS  Google Scholar 

  • Matsuoka M, Kitano M, Takeuchi M, Anpo M, Thomas JM (2005) Photocatalytic water splitting on visible light-responsive TiO2 thin films prepared by a RF magnetron sputtering deposition method. Top Catal 35:305–310

    Article  CAS  Google Scholar 

  • Matsushima S, Takehara K, Yamane H, Yamada K, Nakamura H, Arai M, Kobayashi K (2007) First-principles energy band calculation for undoped and S-doped TiO2 with anatase structure. J Phys Chem Solids 68:206–210

    Article  CAS  Google Scholar 

  • Mo SD, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B Condens Matter 51:13023–13032

    Article  CAS  Google Scholar 

  • Morikawa T, Asahi R, Ohwaki T, Aoki A, Taga Y (2001) Band-gap narrowing of titanium dioxide by nitrogen doping. Jpn J Appl Phys 2(40):L561–L563

    Article  Google Scholar 

  • Mori-Sanchez P, Recio JM, Silvi B, Sousa C, Martin Pendas A, Luana V, Illas F (2002) Rigorous characterization of oxygen vacancies in ionic oxides. Phys Rev B Condens Matter 66:075103

    Article  CAS  Google Scholar 

  • Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR (2004) Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J Phys Chem B 108:17269–17273

    Article  CAS  Google Scholar 

  • Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A Chem 161:205–212

    Article  CAS  Google Scholar 

  • Nakamura R, Tanaka T, Nakato Y (2004) Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J Phys Chem B 108:10617–10620

    Article  CAS  Google Scholar 

  • Navio JA, Colon G, Litter MI, Bianco GN (1996) Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate. J Mol Catal A Chem 106:267–276

    Article  CAS  Google Scholar 

  • Nie X, Sohlberg K (2004) The influence of surface reconstruction and C-impurities on photocatalytic water dissociation by TiO2. Mater Res Soc Symp Proc 801:205–210

    CAS  Google Scholar 

  • Noda H, Oikawa K, Ogata T, Matsuki K, Kamata H (1986) Preparation of titanium(IV) oxides and its characterization. Chem Soc Jpn 8:1084–1090

    Google Scholar 

  • Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 32:364–365

    Article  CAS  Google Scholar 

  • Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl Catal A Gen 265:115–121

    Article  CAS  Google Scholar 

  • Ohno T, Miyamoto Z, Nishijima K, Kanemitsu H, Xueyuan F (2006) Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations. Appl Catal A Gen 302:62–68

    Article  CAS  Google Scholar 

  • Pascual J, Camassel J, Mathieu H (1978) Fine structure in the intrinsic absorption edge of titanium dioxide. Phys Rev B Condens Matter 18:5606–5614

    Article  CAS  Google Scholar 

  • Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203–211

    Article  CAS  Google Scholar 

  • Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69:138–144

    Article  CAS  Google Scholar 

  • Rodriguez JA, Liu G, Jirsak T, Hrbek J, Chang Z, Dvorak J, Maiti A (2002) Activation of gold on titania: adsorption and reaction of SO2 on Au/TiO2(110). J Am Chem Soc 124:5242–5250

    Article  CAS  Google Scholar 

  • Saha NC, Tompkins HG (1992) Titanium nitride oxidation chemistry: an X-ray photo-electron spectroscopy study. J Appl Phys 72:3072–3079

    Article  CAS  Google Scholar 

  • Sakthivel S, Kisch H (2003a) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911

    Article  CAS  Google Scholar 

  • Sakthivel S, Kisch H (2003b) Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. Chemphyschem 4:487–490

    Article  CAS  Google Scholar 

  • Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  • Sanjines R, Tang H, Berger H, Gozzo F, Margaritondo G, Levy F (1994) Electronic structure of anatase TiO2 oxide. J Appl Phys 75:2945–2951

    Article  CAS  Google Scholar 

  • Saraf LV, Patil SI, Ogale SB, Sainkar SR, Kshirsager ST (1998) Synthesis of nanophase TiO2 by ion beam sputtering and cold condensation technique. Int J Mod Phys B 12:2635–2647

    Article  CAS  Google Scholar 

  • Sathish M, Viswanathan B, Viswanath RP, Gopinath ChS (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349–6353

    Article  CAS  Google Scholar 

  • Sato S (1986) Photocatalytic activity of nitrogen oxide (NOx)-doped titanium dioxide in the visible light region. Chem Phys Lett 123:126–128

    Article  CAS  Google Scholar 

  • Sato S, Nakamura R, Abe S (2005) Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A Gen 284:131–137

    Article  CAS  Google Scholar 

  • Sekiya T, Ichimura K, Igarashi M, Kurita S (2000) Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere. J Phys Chem Solids 61:1237–1242

    Article  CAS  Google Scholar 

  • Sekiya T, Yagisawa T, Kamura N, Mulmi DD, Kurita S, Murakami Y, Kodaira T (2004) Defects in anatase TiO2 single crystal controlled by heat treatments. J Phys Soc Jpn 73:703–710

    Article  CAS  Google Scholar 

  • Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293

    Article  CAS  Google Scholar 

  • Sonawane RS, Dongare MK (2006) Sol–gel synthesis of Au/TiO2 thin films for photo-catalytic degradation of phenol in sunlight. J Mol Catal A Chem 243:68–76

    Article  CAS  Google Scholar 

  • Soria J, Conesa JC, Augugliaro V, Palmisano L, Schiavello M, Sclafani A (1991) Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J Phys Chem 95:274–282

    Article  CAS  Google Scholar 

  • Sun Y, Egawa T, Shao C, Zhang L, Yao X (2004a) EPR line broadening of F center in high-surface-area anatase titania nanoparticles prepared by MOCVD. J Cryst Growth 268:118–122

    Article  CAS  Google Scholar 

  • Sun Y, Egawa T, Shao C, Zhang L, Yao X (2004b) Quantitative study of F center in high-surface-area anatase titania nanoparticles prepared by MOCVD. J Phys Chem Solids 75:1793–1797

    Article  CAS  Google Scholar 

  • Suriye K, Praserthdam P, Jongsomjit B (2006) Control of Ti3+ surface defect on TiO2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis. Appl Surf Sci 253:3849–3855

    Article  CAS  Google Scholar 

  • Tachikawa T, Tojo S, Kawai K, Endo M, Fujitsuka M, Ohno T, Nishijima K, Miyamoto Z, Majima T (2004) Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J Phys Chem B 108:19299–19306

    Article  CAS  Google Scholar 

  • Tachikawa T, Fujitsuka M, Majima T (2007) Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem B 111(14):5259–5275

    CAS  Google Scholar 

  • Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, Iwamoto N (2000) Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst. Catal Lett 67:135–137

    Article  CAS  Google Scholar 

  • Tang H, Levy F, Berger H, Schmid PE (1995) Urbach tail of anatase TiO2. Phys Rev B 52:7771–7774

    Article  CAS  Google Scholar 

  • Teoh WY, Amal R, Madler L, Pratsinis SE (2007) Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catal Today 120:203–213

    Article  CAS  Google Scholar 

  • Thompson TL, Yates JT Jr (2005) TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top Catal 35:197–210

    Article  CAS  Google Scholar 

  • Tian F-H, Liu C-B (2006) DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2. J Phys Chem B 110:17866–17871

    Article  CAS  Google Scholar 

  • Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456

    Article  CAS  Google Scholar 

  • Umebayashi T, Yamaki T, Yamamoto S, Miyashita A, Tanaka S, Sumita T, Asai K (2003a) Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. J Appl Phys 93:5156–5160

    Article  CAS  Google Scholar 

  • Umebayashi T, Yamaki T, Tanaka S, Asai K (2003b) Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett 32:330–331

    Article  CAS  Google Scholar 

  • Vitiello RP, Macak JM, Ghicov A, Tsuchiya H, Dick LFP, Schmuki P (2006) N-doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun 8:544–548

    Article  CAS  Google Scholar 

  • Wang H, Lewis JP (2005) Effects of dopant states on photoactivity in carbon-doped TiO2. J Phys Condens Matter 17:L209–L213

    Article  CAS  Google Scholar 

  • Wang H, Lewis JP (2006) Second-generation photocatalytic materials: anion-doped TiO2. J Phys Condens Matter 18:421–434

    Article  CAS  Google Scholar 

  • Wang J, Wen F-Y, Zhang Z-H, Zhang X-D, Pan Z-J, Zhang P, Kang P-L, Tong J, Wang L, Xu L (2006) Investigation on degradation of dyestuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent. J Photochem Photobiol A:Chem 180:189–195

    Article  CAS  Google Scholar 

  • Wang J, Zhu W, Zhang Y, Liu S (2007a) An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: visible-light-induced photodecomposition of methyl-ene blue. J Phys Chem C 111:1010–1014

    Article  CAS  Google Scholar 

  • Wang J, Zhang Q, Yin S, Sato T, Saito F (2007b) Raman spectroscopic analysis of sulfur-doped TiO2 by co-grinding with TiS2. J Phys Chem Solids 68:189–192

    Article  CAS  Google Scholar 

  • Xu C, Killmeyer R, McMahan L, Gray S, Khan UM (2006) Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination. Appl Catal B Environ 64:312–317

    Article  CAS  Google Scholar 

  • Yamaki T, Umebayashi T, Sumita T, Yamamoto S, Maekawa M, Kawasuso A, Itoh H (2003) Fluorine-doping in titanium dioxide by ion implantation technique. Nucl Instrum Methods Phys Res B 306:254–258

    Article  CAS  Google Scholar 

  • Yamamoto T, Yamashita F, Tanaka I, Matsubara E, Muramatsu A (2004) Electronic states of sulfur doped TiO2 by first principles calculations. Mater Trans 45:1987–1990

    Article  CAS  Google Scholar 

  • Yanagisawa Y, Sumimoto T (1994) Oxygen exchange between CO2 adsorbate and TiO2 surfaces. Appl Phys Lett 64:343–344

    Article  CAS  Google Scholar 

  • Yang S, Gao L (2004) New method to prepare nitrogen-doped titanium dioxide and its photocatalytic activities irradiated by visible light. J Am Ceram Soc 87:1803–1805

    Article  CAS  Google Scholar 

  • Yang M-C, Yang T-S, Wong M-S (2004) Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition. Thin Solid Films 469(470):1–5

    Article  CAS  Google Scholar 

  • Yang K, Dai Y, Huang B, Han S (2007) Theoretical study of N-doped TiO2 rutile crystals. J Phys Chem B 110:24011–24014

    Article  CAS  Google Scholar 

  • Yates HM, Nolan MG, Sheel DW, Pemble ME (2006) The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J Photochem Photobiol A:Chem 179:213–223

    Article  CAS  Google Scholar 

  • Yin S, Yamaki H, Komatsu M, Zhang Q, Wang J, Tang Q, Saito F, Sato T (2003) Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine”. J Mater Chem 13:2996–3001

    Article  CAS  Google Scholar 

  • Yin S, Ihara K, Aita Y, Komatsu M, Sato T (2006) Visible-light induced photo-catalytic activity of TiO2−x A y (A = N, S) prepared by precipitation route. J Photochem Photobiol A Chem 179:105–114

    Article  CAS  Google Scholar 

  • Yu J, Zhou M, Cheng B, Zhao X (2006) Preparation, characterization and photo-catalytic activity of in situ N, S-codoped TiO2 powders. J Mol Catal A Chem 246:176–184

    Article  CAS  Google Scholar 

  • Zhou J, Takeuchi M, Zhao XS, Ray AK, Anpo M (2006) Photocatalytic decomposition of formic acid under visible light irradiation over V-ion-implanted TiO2 thin film photocatalysts prepared on quartz substrate by ionized cluster beam (ICB) deposition method. Catal Lett 106:67–70

    Article  CAS  Google Scholar 

  • Zhu J, Deng Z, Chen F, Zhang J, Chen H, Anpo M, Huang J, Zhang L (2006a) Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+. Appl Catal B Environ 62:329–335

    Article  CAS  Google Scholar 

  • Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006b) Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180:196–204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of us (NS) wishes to thank Prof. Angelo Albini for his kind hospitality during the writing of this contribution in the winter semester 2007. It gave NS the opportunity to escape the rigors of the Canadian cold winters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Serpone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Serpone, N., Emeline, A.V., Kuznetsov, V.N., Ryabchuk, V.K. (2010). Second Generation Visible-Light-Active Photocatalysts: Preparation, Optical Properties, and Consequences of Dopants on the Band Gap Energy of TiO2 . In: Anpo, M., Kamat, P. (eds) Environmentally Benign Photocatalysts. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48444-0_3

Download citation

Publish with us

Policies and ethics