Skip to main content

Photofunctionalization of TiO2 for Optimal Bone-titanium Integration: A Novel Phenomenon of Super Osseointegration

  • Chapter
  • First Online:
Environmentally Benign Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Osteoporotic fractures, degenerative changes in joints, and edentulous jaws are quite common clinical problems. Owing to its bone bonding property, the so-called osseointegration or bone-titanium integration, titanium implants are used as a reconstructive anchor in such diseases and disorders, despite unsolved concerns of medical and societal concerns and cost issues. Here, we present ultraviolet (UV) light-treated titanium surfaces with markedly increased bone-forming and bonding capacity. The UV-treated surface offers an osteoblast-affinity environment, as demonstrated by enhanced attachment, spread, proliferation, and functional differentiation of bone-forming cells (osteoblasts). New bone formation spreads extensively onto the UV-treated titanium implants with virtually no intervention by soft tissue, maximizing the bone-implant contact up to nearly 100% compared with 55% of untreated titanium. The UV treatment accelerates the establishment of implant biomechanical fixation by fourfold. These cell-affinity properties strongly correlated with UV-catalytic removal of hydrocarbons from the TiO2 surface. The data suggest that this photofunctionalization converts bioinert titanium to bioactive titanium, enabling more rapid and complete establishment of bone-titanium integration. We propose to define the unique biological phenomenon specifically induced around this novel titanium surface as “super osseointegration” and expect it to have immediate and broad applications in dental and orthopedic fields because it is simple, highly effective, and inexpensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T (2009) The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials 30:1015

    Article  CAS  Google Scholar 

  • Alborzi A, Mac K, Glackin CA, Murray SS, Zernik JH (1996) Endochondral and intramembranous fetal bone development: osteoblastic cell proliferation, and expression of alkaline phosphatase, m-twist, and histone H4. J Craniofac Genet Dev Biol 16:94

    CAS  Google Scholar 

  • Annual industry report (2003) US markets for dental implants: executive summary. Implant Dent 12:108

    Google Scholar 

  • Att W, Tsukimura N, Suzuki T, Ogawa T (2007) Effect of supramicron roughness characteristics produced by 1- and 2-step acid etching on the osseointegration capability of titanium. Int J Oral Maxillofac Implants 22:719

    Google Scholar 

  • Att W, Takeuchi M, Suzuki T, Kubo K, Anpo M, Ogawa T (2009) Enhanced osteoblast function on ultraviolet light-treated zirconia. Biomaterials 30(7):1273–1280

    Article  CAS  Google Scholar 

  • Bachle M, Kohal RJ (2004) A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res 15:683

    Article  Google Scholar 

  • Brunski JB, Puleo DA, Nanci A (2000) Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 15:15

    CAS  Google Scholar 

  • Butz F, Aita H, Takeuchi K, Ogawa T (2005) Enhanced mineralized tissue adhesion to titanium over polystyrene assessed by the nano-scratch test. J Biomed Mater Res A 74:164

    Google Scholar 

  • Butz F, Aita H, Wang CJ, Ogawa T (2006) Harder and stiffer bone osseointegrated to roughened titanium. J Dent Res 85:560

    Article  CAS  Google Scholar 

  • Carlsson GE, Lindquist LW (1994) Ten-year longitudinal study of masticatory function in edentulous patients treated with fixed complete dentures on osseointegrated implants. Int J Prosthodont 7:448

    CAS  Google Scholar 

  • Cooper LF (2000) A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent 84:522

    Article  CAS  Google Scholar 

  • Doundoulakis JH, Eckert SE, Lindquist CC, Jeffcoat MK (2003) The implant-supported overdenture as an alternative to the complete mandibular denture. J Am Dent Assoc 134:1455

    Google Scholar 

  • Espehaug B, Furnes O, Havelin LI, Engesaeter LB, Vollset SE (2002) The type of cement and failure of total hip replacements. J Bone Joint Surg Br 84:832

    Article  CAS  Google Scholar 

  • Geertman ME, Boerrigter EM, Van’t Hof MA, Van Waas MA, van Oort RP, Boering G, Kalk W (1996) Two-center clinical trial of implant-retained mandibular overdentures versus complete dentures-chewing ability. Community Dent Oral Epidemiol 24:79

    Article  CAS  Google Scholar 

  • Goransson A, Arvidsson A, Currie F, Franke-Stenport V, Kjellin P, Mustafa K, Sul YT, Wennerberg A (2009) An in vitro comparison of possibly bioactive titanium implant surfaces. J Biomed Mater Res A 88(4):1037–1047

    CAS  Google Scholar 

  • Henderson MA, White JM, Uetsuka H, Onishi H (2006) Selectivity changes during organic photooxidation on TiO2: Role of O-2 pressure and organic coverage. J Catal 238:153

    Article  CAS  Google Scholar 

  • Heydecke G, McFarland DH, Feine JS, Lund JP (2004) Speech with maxillary implant prostheses: ratings of articulation. J Dent Res 83:236

    Article  CAS  Google Scholar 

  • LeGeros RZ, Craig RG (1993) Strategies to affect bone remodeling: osteointegration. J Bone Miner Res 8(Suppl 2):S583

    Google Scholar 

  • Masuda T, Yliheikkila PK, Felton DA, Cooper LF (1998) Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int J Oral Maxillofac Implants 13:17

    CAS  Google Scholar 

  • Meirelles L, Melin L, Peltola T, Kjellin P, Kangasniemi I, Currie F, Andersson M, Albrektsson T, Wennerberg A (2008a) Effect of Hydroxyapatite and Titania Nanostructures on Early In Vivo Bone Response. Clin Implant Dent Relat Res 10(4):245–254

    Google Scholar 

  • Meirelles L, Albrektsson T, Kjellin P, Arvidsson A, Franke-Stenport V, Andersson M, Currie F, Wennerberg A (2008b) Bone reaction to nano hydroxyapatite modified titanium implants placed in a gap-healing model. J Biomed Mater Res A 87(3):624–631

    Google Scholar 

  • Melas F, Marcenes W, Wright PS (2001) Oral health impact on daily performance in patients with implant-stabilized overdentures and patients with conventional complete dentures. Int J Oral Maxillofac Implants 16:700

    CAS  Google Scholar 

  • Nevins ML, Karimbux NY, Weber HP, Giannobile WV, Fiorellini JP (1998) Wound healing around endosseous implants in experimental diabetes. Int J Oral Maxillofac Implants 13:620

    CAS  Google Scholar 

  • Nowjack-Raymer RE, Sheiham A (2003) Association of edentulism and diet and nutrition in US adults. J Dent Res 82:123

    Article  CAS  Google Scholar 

  • Ogawa T, Nishimura I (2003) Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants 18:200

    Google Scholar 

  • Ogawa T, Nishimura I (2006) Genes differentially expressed in titanium implant healing. J Dent Res 85:566

    Article  CAS  Google Scholar 

  • Ogawa T, Ozawa S, Shih JH, Ryu KH, Sukotjo C, Yang JM, Nishimura I (2000) Biomechanical evaluation of osseous implants having different surface topographies in rats. J Dent Res 79:1857

    Article  CAS  Google Scholar 

  • Ogawa T, Sukotjo C, Nishimura I (2002) Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J Prosthodont 11:241

    Article  CAS  Google Scholar 

  • Ogawa T, Saruwatari L, Takeuchi K, Aita H, Ohno N (2008) Ti nano-nodular structuring for bone integration and regeneration. J Dent Res 87:751

    Article  CAS  Google Scholar 

  • Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420

    Article  CAS  Google Scholar 

  • Ozawa S, Ogawa T, Iida K, Sukotjo C, Hasegawa H, Nishimura RD, Nishimura I (2002) Ovariectomy hinders the early stage of bone-implant integration: histomorphometric, biomechanical, and molecular analyses. Bone 30:137

    Article  CAS  Google Scholar 

  • Pera P, Bassi F, Schierano G, Appendino P, Preti G (1998) Implant anchored complete mandibular denture: evaluation of masticatory efficiency, oral function and degree of satisfaction. J Oral Rehabil 25:462

    Article  CAS  Google Scholar 

  • Pilliar RM (2005) Cementless implant fixation–toward improved reliability. Orthop Clin North Am 36:113

    Article  Google Scholar 

  • Puleo DA, Nanci A (1999) Understanding and controlling the bone-implant interface. Biomaterials 20:2311

    Article  CAS  Google Scholar 

  • Ray NF, Chan JK, Thamer M, Melton LJ 3rd (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24

    Article  CAS  Google Scholar 

  • Saruwatari L, Aita H, Butz F, Nakamura HK, Ouyang J, Yang Y, Chiou WA, Ogawa T (2005) Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. J Bone Miner Res 20:2002

    Article  CAS  Google Scholar 

  • Siddhanti SR, Quarles LD (1994) Molecular to pharmacologic control of osteoblast proliferation and differentiation. J Cell Biochem 55:310

    Article  CAS  Google Scholar 

  • Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424

    CAS  Google Scholar 

  • Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD (2000) Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 15:675

    CAS  Google Scholar 

  • Takeshita F, Murai K, Ayukawa Y, Suetsugu T (1997) Effects of aging on titanium implants inserted into the tibiae of female rats using light microscopy, SEM, and image processing. J Biomed Mater Res 34:1

    Article  CAS  Google Scholar 

  • Takeuchi K, Saruwatari L, Nakamura HK, Yang JM, Ogawa T (2005) Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J Biomed Mater Res A 72A:296

    Article  CAS  Google Scholar 

  • Tsukimura N, Kojima N, Kubo K, Att W, Takeuchi K, Kameyama Y, Maeda H, Ogawa T (2008) The effect of superficial chemistry of titanium on osteoblastic function. J Biomed Mater Res A 84:108

    Google Scholar 

  • Uetsuka H, Onishi H, Henderson MA, White JM (2004) Photoinduced redox reaction coupled with limited electron mobility at metal oxide surface. J Phys Chem B 108:10621

    Article  CAS  Google Scholar 

  • van Kampen FM, van der Bilt A, Cune MS, Fontijn-Tekamp FA, Bosman F (2004) Masticatory function with implant-supported overdentures. J Dent Res 83:708

    Article  Google Scholar 

  • van Steenberghe D, Jacobs R, Desnyder M, Maffei G, Quirynen M (2002) The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage. Clin Oral Implants Res 13:617

    Article  Google Scholar 

  • Variola F, Yi JH, Richert L, Wuest JD, Rosei F, Nanci A (2008) Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 29:1285

    Article  CAS  Google Scholar 

  • Weinlaender M, Kenney EB, Lekovic V, Beumer J 3rd, Moy PK, Lewis S (1992) Histomorphometry of bone apposition around three types of endosseous dental implants. Int J Oral Maxillofac Implants 7:491

    CAS  Google Scholar 

  • Zhang H, Lewis CG, Aronow MS, Gronowicz GA (2004) The effects of patient age on human osteoblasts’ response to Ti-6Al-4V implants in vitro. J Orthop Res 22:30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JIADS, JAMSEA, and Implant-Perio Study Group. The author would like to express special appreciation to Drs. Masato Takeuchi and Masakazu Anpo (Osaka Prefecture University) for their dedicated support and help with the data collection, analysis, and interpretation of titanium surface characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Ogawa, T. (2010). Photofunctionalization of TiO2 for Optimal Bone-titanium Integration: A Novel Phenomenon of Super Osseointegration. In: Anpo, M., Kamat, P. (eds) Environmentally Benign Photocatalysts. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48444-0_29

Download citation

Publish with us

Policies and ethics