Skip to main content

Photocatalytic Application of TiO2 for Air Cleaning

  • Chapter
  • First Online:
  • 2292 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Photocatalytic process has been applied to the treatment of air pollutants. It is necessary to enhance the photocatalytic activity of TiO2 and design of photocatalytic system, for the practical application. The practical aspects for the application of TiO2 were discussed. Various species, such as transition metal ion, noble metal, metal oxide, and anion, could modify the surface of TiO2 and improve the photocatalytic activity. Photoelectrocatalytic (PEC) system was very effective for the enhancement of photoactivity by applying a high voltage onto TiO2 surface. It showed better photocatalytic activity for decomposition of various air pollutants and bacteria than TiO2 photocatalysts. To apply the photocatalysts in a real environment, the stable immobilization of the catalyst on various substrates, such as steal plate, membrane, glass fiber, and so on, was very important. Based on these modified and/or immobilized TiO2, photocatalysis has been widely used in air-cleaning systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J Phys Chem 99:9882–9885

    Article  CAS  Google Scholar 

  • Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J Phys Chem 91:4305–4310

    Article  CAS  Google Scholar 

  • Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216(2003):505

    Article  CAS  Google Scholar 

  • Arabatzis IM, Stergiopoulos T, Andreeva D, Kitova S, Neophytides GS, Falaras P (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135

    Article  CAS  Google Scholar 

  • Aronson BJ, Blanford CF, Stein A (1997) Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization. Chem Mater 9:2842–2851

    Article  CAS  Google Scholar 

  • Briz S, de Castro AJ, Diez S, Lopez F, Schafer K (2007) Remote sensing by open-path FTIR spectroscopy. Comparison of different analysis techniques applied to ozone and carbon monoxide detection. J Quant Spectrosc Radiat Transf 103:314–330

    Article  CAS  Google Scholar 

  • Candal RJ, Zeltner WA, Anderson MA (2000) Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ Sci Technol 34:3443–3451

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  CAS  Google Scholar 

  • Cho SM, Joo H, Kim HJ, Shul YG (2002) The photodecomposition of acetaldehyde in gas phase using immobilized TiO2 on porous alpha-Al2O3 tube. J Adv Oxid Technol 5:141–146

    CAS  Google Scholar 

  • Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  • Chu YH, Kim HJ, Song KY, Jung KT, Shul YG (2002) Preparation of mesoporous silica fiber matrix for VOC removal. Catal Today 74:249–256

    Article  CAS  Google Scholar 

  • Dagan G, Sampath S, Lev O (1995) Preparation and utilization of organically modified silica-titania photocatalysts for decontamination of aquatic environments. Chem Mater 7:446–453

    Article  CAS  Google Scholar 

  • Date M, Okumura M, Tsubota S, Haruta M (2004) Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed 43:2129–2132

    Article  CAS  Google Scholar 

  • Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966

    Article  CAS  Google Scholar 

  • Dumitriu E, Hulea V, Fechete I, Auroux A, Lacaze JF, Guimon C (2001) The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Microporous Mesoporous Mater 43:341–359

    Article  CAS  Google Scholar 

  • Fan L, Ichikuni N, Shimazu S, Uematsu T (2003) Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation. Appl Catal A Gen 246:87–95

    Article  CAS  Google Scholar 

  • Gao X, Wachs IE (1999) Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254

    Article  CAS  Google Scholar 

  • Grisel RJH, Weststrate CJ, Goossens A, Craje MWJ, van der Kraan AM, Nieuwenhuys BE (2002) Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment. Catal Today 72:123–132

    Article  CAS  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2005) (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Huang Y, Zhao B, Xie Y (1998) A novel way to prepare silica supported sulfated titania. Appl Catal A Gen 171:65–73

    Article  CAS  Google Scholar 

  • Idriss H, Barteau MA (1996) Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces. Catal Lett 40:147–153

    Article  CAS  Google Scholar 

  • Iizuka Y, Tode T, Takao T, Yatsu K, Takeuchi T, Tsubota S, Haruta M (1999) A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J Catal 187:50–58

    Article  CAS  Google Scholar 

  • Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. Nano Lett 3:353–358

    Article  CAS  Google Scholar 

  • Kim HJ, Shul YG, Han H (2004) TiO2 loaded mesoporous silica fiber for the photocatalytic application. Stud Surf Sci Catal 154:581

    Article  Google Scholar 

  • Kim HJ, Nam KH, Shul YG (2003) Preparation of TiO2 fiber and its photocatalytic properties. Mater Sci Forum 439:271–276

    Article  CAS  Google Scholar 

  • Kim HJ, Shul YG, Han H (2005) Photocatalytic properties of silica-supported TiO2. Top Catal 35:287

    Article  CAS  Google Scholar 

  • Kim HJ, Han MK, Lee SM, Hwang DK, Shul YG (2006) Top Catal (submitted)

    Google Scholar 

  • Kozolv DV, Paukshtis EA, Savinov EN (2000) The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method. Appl Catal B Environ 24:L7–L12

    Article  Google Scholar 

  • Kraeutler B, Bard A (1978) Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc 100:4317

    Article  CAS  Google Scholar 

  • Lassaletta G, Fernandez A, Espinos JP, Gonzalez-Elipe AR (1995) Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition. J Phys Chem 99:1484–1490

    Article  CAS  Google Scholar 

  • Lee SS, Kim HJ, Jung KT, Kim HS, Shul YG (2001) Photocatalytic activity of metal ion doped titania. Korean J Chem Eng 18:914–918

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surface: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Litter MI, Navio JA (1996) Photocatalytic properties of iron-doped titania semiconductors. J Photochem Photobiol A Chem 98:171–181

    Article  CAS  Google Scholar 

  • Luo S, Falconer JL (1999) Acetone and acetaldehyde oligomerization on TiO2 surfaces. J Catal 185:393–407

    Article  CAS  Google Scholar 

  • Martra G (2000) Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behavior. Appl Catal A Gen 200:275–285

    Article  CAS  Google Scholar 

  • Mills A, Lehunte S (1997) An overview of semiconductor photocatalylsis. J Photochem Photobiol A Chem 108:1–35

    Article  CAS  Google Scholar 

  • Naskar S, Pillay SA, Chanda M (1998) Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet. J Photochem Photobiol A Chem 113:257–264

    Article  CAS  Google Scholar 

  • Ollis DF, Pelizzetti E, Serpone N (1991) Photocatalyzed destruction of water contaminants. Environ Sci Technol 25:1522–1529

    Article  CAS  Google Scholar 

  • Shul YG, Kim HJ, Haam SJ, Han HS (2003) Photocatalytic characteristics of TiO2 supported on SiO2. Res Chem Intermed 29:849–859

    Article  CAS  Google Scholar 

  • Vinodgopal K, Hotchandani S, Kamat PV (1993) Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 97:9040–9044

    Article  CAS  Google Scholar 

  • Wood A, Giersig M, Mulvaney P (2001) Fermi level equilibration in quantum dot-metal nanojunctions. J Phys Chem B 105:8810–8815

    Article  CAS  Google Scholar 

  • Yang JC, Kim YC, Shul YG, Lee CH, Lee TK (1997) Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts. Appl Surf Sci 121–122:525–529

    Article  Google Scholar 

  • Yang JH, Henao JH, Raphulu MC, Wang Y, Caputo T, Groszek AJ, Kung M, Scurrell MS, Miller JT, Kung HH (2005) Activation of Au/TiO2 catalyst for CO oxidation. J Phys Chem B 109:10319–10326

    Article  CAS  Google Scholar 

  • Zou L, Luo Y, Hooper M, Hu E (2006) Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chem Eng Process 45:959–964

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gun Shul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Shul, YG., Kim, HS., Kim, HJ., Han, MK. (2010). Photocatalytic Application of TiO2 for Air Cleaning. In: Anpo, M., Kamat, P. (eds) Environmentally Benign Photocatalysts. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48444-0_17

Download citation

Publish with us

Policies and ethics