Skip to main content

Mechanical fatigue of Sn-rich Pb-free solder alloys

  • Chapter
  • First Online:

Abstract

Recent fatigue studies of Sn-rich Pb-free solder alloys are reviewed to provide an overview of the current understanding of cyclic deformation, cyclic softening, fatigue crack initiation, fatigue crack growth, and fatigue life behavior in these alloys. Because of their low melting temperatures, these alloys demonstrated extensive cyclic creep deformation at room temperature. Limited amount of data have shown that the cyclic creep rate is strongly dependent on stress amplitude, peak stress, stress ratio and cyclic frequency. At constant cyclic strain amplitudes, most Sn-rich alloys exhibit cycle-dependent and cyclic softening. The softening is more pronounced at larger strain amplitudes and higher temperatures, and in fine grain structures. Characteristic of these alloys, fatigue cracks tend to initiate at grain and phase boundaries very early in the fatigue life, involving considerable amount of grain boundary cavitation and sliding. The growth of fatigue cracks in these alloys may follow both transgranular and intergranular paths, depending on the stress ratio and frequency of the cyclic loading. At low stress ratios and high frequencies, fatigue crack growth rate correlates well with the range of stress intensities or J-integrals but the time-dependent C* integral provides a better correlation with the crack velocity at high stress ratios and low frequencies. The fatigue life of the alloys is a strong function of the strain amplitude, cyclic frequency, temperature, and microstructure. While a few sets of fatigue life data are available, these data, when analyzed in terms of the Coffin-Mason equation, showed large variations, with the fatigue ductility exponent ranging from − 0.43 to − 1.14 and the fatigue ductility from 0.04 to 20.9. Several approaches have been suggested to explain the differences in the fatigue life behavior, including revision of the Coffin-Mason analysis and use of alternative fatigue life models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Frear, W.B. Jones, K.R. Kinsman (eds.), Solder Mechanics-A State of the Art Assessment (TMS Publication, Warrendale PA, 1991)

    Google Scholar 

  2. J.H. Lau (ed.), Solder Joint Reliability: Theory and Applications (Van Nostrand Reinhold, New York, NY, 1991)

    Google Scholar 

  3. D.R. Frear, S.N. Burchett, H.S. Morgan, J.H. Lau (eds.), The Mechanics of Solder Alloy Interconnects (Van Nostrand Reinhold, New York, NY, 1994)

    Google Scholar 

  4. R.N. Wild, Welding J.: Welding Res. Suppl. 51, 521-s–526-s (1972)

    Google Scholar 

  5. E.R. Bangs, R.E. Beal, Welding J.: Welding Res. Suppl. 54, 377s–383s (1975)

    Google Scholar 

  6. D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 17, 171–180 (1988)

    Google Scholar 

  7. D.R. Frear, D. Grivas, J.W. Morris Jr., J. Metals 40(6), 18–22 (1988)

    Google Scholar 

  8. D.R. Frear, D. Grivas, J.W. Morris Jr., J. Electron. Mater. 18, 671–680 (1989)

    Google Scholar 

  9. D.R. Frear, IEEE Trans. Comp. Hybrids, Manuf. Technol., 12, 492–501 (1989)

    Article  Google Scholar 

  10. D. Tribula, D. Grivas, D.R. Frear, J.W. Morris Jr., ASME J. Electron. Packag. 111, 83–89 (1989)

    Article  Google Scholar 

  11. R. Satoh, K. Arakawa, M. Harada, K. Matsui, IEEE Trans. Comp. Hybrids, Manuf. Technol. 14, 224–232 (1991)

    Article  Google Scholar 

  12. J. Seyyedi, ASME J. Electron. Packag. 115, 305–311 (1993)

    Google Scholar 

  13. N.F. Enke, T.J. Kilinski, S.A. Schroeder, J.R. Lesniak, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 459–468 (1989)

    Article  Google Scholar 

  14. T.S.E. Summers, J.W. Morris Jr., ASME J. Electron. Packag. 112, 94–99 (1990)

    Google Scholar 

  15. Z. Mei, J.W. Morris Jr., ASME J. Electron. Packag. 114, 104–108 (1992)

    Google Scholar 

  16. Z. Guo, A. F. Sprecher, H. Conrad, ASME J. Electron. Packag. 114, 112–117 (1992)

    Google Scholar 

  17. Z. Guo, H. Conrad, ASME J. Electron. Packag. 115, 159–164 (1993)

    Google Scholar 

  18. W. Engelmaier, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-6, 232–237 (1983)

    Article  Google Scholar 

  19. R. Subrahmanyan, J. R. Wilcox, C.-Y. Li, IEEE Trans. Comp. Hybrids, Manuf. Technol. 12, 480–491 (1989)

    Article  Google Scholar 

  20. Y.-H. Pao, IEEE Trans. Comp. Hybrids, Manuf. Technol. 15, 559–570 (1992)

    Article  Google Scholar 

  21. H.D. Solomon, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-9, 423–432 (1986)

    Article  Google Scholar 

  22. E.C. Cutiongco, S. Waynman, M.E. Fine, D.A. Jeannnotte, ASME J. Electron. Packag. 112, 110–114 (1990)

    Google Scholar 

  23. W.A. Logsdon, P.K. Liaw, M.A. Burke, Eng. Fract. Mech. 36, 183–218 (1990)

    Article  Google Scholar 

  24. P.K. Liaw, M.A. Burke, Scripta Metall. 23, 747–752 (1989)

    Article  Google Scholar 

  25. S.-M. Lee, D.S. Stone, ASME J. Electron. Packag. 114, 118–121 (1992)

    Google Scholar 

  26. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)

    Article  Google Scholar 

  27. M. Abtew, G. Selvaduray, Mater. Sci. Eng. 27, 95–141 (2000)

    Article  Google Scholar 

  28. T. Siewert, S. Liu, D.R. Smith, J.C. Madeni, NIST Report “Database for Solder Properties with Emphasis on New Lead-Free Solders”. Sept. 2000

    Google Scholar 

  29. S. Vaynman, H. Mavoori, M.E. Fine, Advances in electronic packaging, Proc. international Intersociety electronic packaging Conf.—INTERPAC-95, American society of Mechanical engineers, 135–146 (1995)

    Google Scholar 

  30. J. Liang, N. Gollhardt, S.P. Lee, S.A. Schroeder, M.L. Morris, Fatigue Fract. Eng. Mater. Struc. 19, 1401–1409 (1996)

    Article  Google Scholar 

  31. Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 866 (1998)

    Article  Google Scholar 

  32. Y. Kariya, M. Otsuka, J. Electron. Mater. 27, 1229–1235 (1998)

    Article  Google Scholar 

  33. Y. Kariya, T. Morihata, E. Hazawa, M. Otsuka, J. Electron. Mater. 30, 1184–89 (2001)

    Google Scholar 

  34. C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 456–65 (2002)

    Article  Google Scholar 

  35. J.H.L. Pang, B.S. Xiong, T.H. Low, Int. J. Fatigue 26, 865–872 (2004)

    Article  Google Scholar 

  36. Q.L. Zeng, Z.G. Wang, A.P. Xian, J.K. Shang, J. Electron. Mater. 34, 62–67 (2005)

    Article  Google Scholar 

  37. V. Stolkarts, L.M. Keer, M.E. Fine, J. Mech. Phys. Solids 47, 2451 (1999)

    Article  MATH  Google Scholar 

  38. Q. Zeng, Z. G. Wang, A.P. Xian, J.K. Shang, Chin. J. Mater. Res. 18(1), 11–17 (2004)

    Google Scholar 

  39. C. Kanchanomai, Y. Mutoh, Mater. Sci. Eng. A 381, 113–120 (2004)

    Article  Google Scholar 

  40. C. Kanchanomai, Y. Miyashita, Y. Mutoh, S.L. Mannan, Mater. Sci. Eng. A 345, 90–98 (2003)

    Article  Google Scholar 

  41. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials (John Wiley & Sons, New York, 1996)

    Google Scholar 

  42. B. Budiansky, R.J. O’Connel, Int. J. Solids Struct. 12, 81(1976)

    Article  MATH  Google Scholar 

  43. L.M. Kachanov, Introduction to Continuum Damage Mechanics. (Kluwers Academic Publishers, 1986)

    Google Scholar 

  44. R. Zallen, The Physics of Amorphous Solids. (John Wiley & Sons, New York, 1983)

    Google Scholar 

  45. C. Kanchanomai, Y. Miyashita, Y. Mutoh, J. Electron. Mater. 31, 142–151 (2002)

    Article  Google Scholar 

  46. S. Choi, K.N. Subramanian, J.P. Lucas, T.R. Bieler, J. Electron. Mater. 29, 1249 (2000)

    Article  Google Scholar 

  47. M.A. Martin, E.W.C. Coenen, W.P. Vellinga, M.G.D. Geers, Sripta Mater. 53, 927–932 (2005)

    Article  Google Scholar 

  48. J. Zhao, Y. Miyashita, Y. Mutoh, Int. J. Fatigue 23, 723–31 (2001)

    Article  Google Scholar 

  49. Y. Mutoh, J. Zhao, Y. Miyashita, C. Kanchanomai, Soldering Surf. Mount Technol. 14/3, 37–45 (2002)

    Article  Google Scholar 

  50. J. Zhao, Y. Mutoh, Y. Miyashita, S.L. Mannan, J. Electron. Mater. 31, 879–886 (2002)

    Article  Google Scholar 

  51. J. Zhao, Y. Mutoh, Y. Miyashita, L. Wang, Eng. Fract. Mech. 70, 2187–21 (2003)

    Article  Google Scholar 

  52. C. Anderson, Z. Lai, J. Liu, H. Jiang, Y. Yu, Mater. Sci. Eng. A 394, 20–27 (2005)

    Article  Google Scholar 

  53. J.H.L. Pang, B.S. Xiong, T.H. Low, Thin Solid Films 462–463, 408–12 (2004)

    Article  Google Scholar 

  54. C. Kanchanomai, Y. Mutoh, J. Electron. Mater. 33, 329–333 (2004)

    Article  Google Scholar 

  55. X.Q. Shi, H.L.J. Pang, W. Zhou, Z.P. Wang, Int. J. Fatigue 22, 217 (2000)

    Article  Google Scholar 

  56. X.Q. Shi, H.L.J. Pang, W. Zhou, Z.P. Wang, Scripta Mater. 41, 289 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shang, J.K., Zeng, Q.L., Zhang, L., Zhu, Q.S. (2006). Mechanical fatigue of Sn-rich Pb-free solder alloys. In: Lead-Free Electronic Solders. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48433-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48433-4_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-48431-0

  • Online ISBN: 978-0-387-48433-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics