Skip to main content

Solar Variability Over the Past Several Millennia

  • Chapter
Solar Variability and Planetary Climates

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 23))

Abstract

The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth’s position relative to the Sun induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (∼100,000 years), the obliquity (angle between the equator and the orbital plane) (∼40,000 years) and the precession of the Earth’s axis (∼20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the emitted energy from the Sun, the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field on the 10Be production rate, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot, C. G.: 1910, ‘The solar constant of radiation’, Annual Report of the Smithsonian Institution, 319 pp.

    Google Scholar 

  • Beer, J., Blinov, A., Bonani, G., Finkel, R. C., Hofmann, J. J., et al.: 1990, ‘Use of 10Be in polar ice to trace the 11-year cycle of solar activity’, Nature 347, 164–166.

    Article  ADS  Google Scholar 

  • Beer, J., Baumgartner, S., Hannen-Dittrich, B., Hauenstein, J., Kubik, P., et al.: 1994, ‘Solar Variability Traced by Cosmogenic Isotopes’, in J. M. Pap, C. Fröhlich, H. S. Hudson, and S. K. Solanki (eds.), The Sun as a Variable Star: Solar and Stellar Irradiance Variations, Cambridge University Press, Cambridge, pp. 291–300.

    Google Scholar 

  • Berger, A.: 1978, ‘Long-term variations of daily insolation and quaternary climatic changes’, J. Atmos. Sci. 35, 2362–2367.

    Article  ADS  Google Scholar 

  • Bertrand, C., Loutre, M.-F., and Berger, A.: 2002, ‘High frequency variations of the Earth’s orbital parameters and climate change’, Geophys. Res. Lett. 29, doi:10.1029/2002GL015622.

    Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., et al.: 2001, ‘Persistent solar influence on north Atlantic climate during the Holocene’, Science 294, 2130–2136.

    Article  ADS  Google Scholar 

  • Broecker, W. S.: 1997, ‘Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance?’, Science 278, 1582–1588.

    Article  ADS  Google Scholar 

  • Cubasch, U. and Voss, R.: 2000, ‘The influence of total solar irradiance on climate’, Space Sci. Rev. 94, 185–198.

    Article  ADS  Google Scholar 

  • Denton, G. H. and Karlén, W.: 1973, ‘Holocene climatic variations — their pattern and possible cause’, Quat. Res. 3, 155–205.

    Article  Google Scholar 

  • Eddy, J. A.: 1976, ‘The maunder minimum’, Science 192, 1189–1201.

    Article  ADS  Google Scholar 

  • Fröhlich, C.: 2006, ‘Solar irradiance variability since 1978’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9046-5.

    Google Scholar 

  • Gleeson, L. J. and Axford, W. I.: 1967, ‘Cosmic rays in the interplanetary medium’, Astrophys. J. 149, L115–L118.

    Article  ADS  Google Scholar 

  • Haigh, J.: 2006, ‘Solar influences on dynamical coupling between the stratosphere and troposphere’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9067-0.

    Google Scholar 

  • Holzhauser, H.: 1997, ‘Gletscherschwankungen innerhalb der letzten 3200 Jahre am Beispiel des grossen Aletsch-und des Gornergletschers. Neue Ergebnisse’, in B. Salm (ed.), Gletscher im ständigen Wandel, VDF-Hochschulverlag AG, Zürich.

    Google Scholar 

  • Johnsen, S. J., Clausen, H. B., Dansgaard, W., Gundestrup, N. S., Hammer, C. U., et al.: 1997, ‘The δ 18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability’, J. Geophys. Res. 102, 26,397–26,410.

    Article  ADS  Google Scholar 

  • Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: 2004, ‘A long-term numerical solution for the insolation quantities of the Earth’, Astron. Astrophys. 428, 261–285.

    Article  ADS  Google Scholar 

  • Lockwood, M.: 2006, ‘What do cosmogenic isotopes tell us about past solar forcing of climate?’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9049-2.

    Google Scholar 

  • Masarik, J. and Beer, J.: 1999, ‘Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere’, J. Geophys. Res. 104, 12,099–12,111.

    Article  ADS  Google Scholar 

  • McCracken, K. G.: 2004, ‘Geomagnetic and atmospheric effects upon the cosmogenic Be-10 observed in polar ice’, J. Geophys. Res. 109, doi:10.1029/2003JA010060.

    Google Scholar 

  • Milankovich, M.: 1930, ‘Mathematische Klimalehre und atsronomische Theorie der Klimaschwankungen’, in W. Köppen and R. Geiger (eds.), Handbuch der Klimatologie, Gebrüder Bornträger, Berlin, pp. 1–176.

    Google Scholar 

  • Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., et al.: 2004, ‘Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records’, Earth Planet. Sci. Let. 219, 325–340.

    Article  ADS  Google Scholar 

  • Neff, U., Burns, S., Mangini, A., Mudelsee, M., Fleitmann, D., and Matter, A.: 2001, ‘Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyrs ago’, Nature 411, 290–293.

    Article  ADS  Google Scholar 

  • Parker, E. N.: 1965, ‘The passage of energetic charged particles through interplanetary space’, Planet. Space Sci. 13, 9–49.

    Article  ADS  Google Scholar 

  • Radick, R. R.: 2001, ‘A brief survey of chromospheric and photometric variability among sunlike stars’, Adv. Space Res. 26, 1739–1745.

    Article  ADS  Google Scholar 

  • Rottman, G.: 2006, ‘Measurements of total and spectral solar irradiance’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9045-6.

    Google Scholar 

  • Solanki, S. K.: 2006,‘Solar variability of possible relevance for planetary climates’, Space Sci. Rev., this volume, doi: 10.1007/s11214-006-9044-7.

    Google Scholar 

  • Spahni, R., Chappellaz, J., Stocker, T. F., Loulergue, L., Hausammann, G., et al.: 2005, ‘Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores’, Science 310, 1317–1321.

    Article  ADS  Google Scholar 

  • Vonmoos, M., Beer, J., and Muscheler, R.: 2006, ‘Large variations in Holocene solar activity constraints from 10Be in the GRIP ice core’, J. Geophys. Res. 111, doi:10.1029/2005JA011500.

    Google Scholar 

  • Webber, W. R. and Higbie, P. R.: 2003, ‘Production of cosmogenic Be nuclei in the Earth’s atmosphere by cosmic rays: Its dependence on solar modulation and the interstellar cosmic ray spectrum’, J. Geophys. Res. 108, 1355–1365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Beer, J., Vonmoos, M., Muscheler, R. (2006). Solar Variability Over the Past Several Millennia. In: Calisesi, Y., Bonnet, R.M., Gray, L., Langen, J., Lockwood, M. (eds) Solar Variability and Planetary Climates. Space Sciences Series of ISSI, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48341-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48341-2_6

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48339-9

  • Online ISBN: 978-0-387-48341-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics