Skip to main content

Atmospheric Aerosol and Cloud Condensation Nuclei Formation: A Possible Influence of Cosmic Rays?

  • Chapter
Solar Variability and Planetary Climates

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 23))

  • 1076 Accesses

Abstract

A physical mechanism which may have a potential to connect climate with cosmic rays (CR) involves aerosol particle formation by CR generated atmospheric ions followed by new particle growth. Only grown particles can scatter sunlight efficiently and can eventually act as cloud condensation nuclei (CCN) and thereby may influence climate. Moreover grown particles live longer as they are less rapidly scavenged by pre-existing larger particles. The present paper discusses aerosol particle formation and growth in the light of new measurements recently made by our MPIK Heidelberg group. Emphasis is placed upon the upper troposphere where very low temperatures tend to facilitate new particle formation by nucleation. The new measurements include: laboratory measurements of cluster ions, aircraft measurements of ambient atmospheric ions, and atmospheric measurements of the powerful nucleating gas H2SO4 and its precursor SO2. The discussion also addresses model simulations of aerosol formation and growth. It is concluded that in the upper troposphere new aerosol formation by CR generated ions is a frequent process with relatively large rates. However new particle formation by homogeneous nucleation (HONU) which is not related to CR also seems to be efficient. The bottleneck in the formation of upper troposphere aerosol particles with sizes sufficiently large to be climate relevant is not nucleation but growth of small particles. Our recent upper troposphere SO2 measurements suggest that particle growth by gaseous sulphuric acid condensation is at least occasionally efficient. If so CR mediated formation of CCN sized particles should at least occasionally be operative in the upper troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, F.: 1980a, ‘Multi-ion complexes in the stratosphere — Implications for trace gases and aerosol’, Nature 284, 610–611.

    Article  ADS  Google Scholar 

  • Arnold, F.: 1980b, ‘Ion-induced nucleation of atmospheric water vapour at the mesopause’, Planet Space Sci. 28, 1003.

    Article  ADS  Google Scholar 

  • Arnold, F.: 1981a, ‘Solvated electrons in the upper atmosphere’, Nature 294, 732.

    Article  ADS  Google Scholar 

  • Arnold, F.: 1981b, ‘Ion nucleation — a potential source for stratospheric aerosols’, Nature 299, 134.

    Article  ADS  Google Scholar 

  • Arnold, F. and Fabian, R.: 1980, ‘First measurements of gas phase sulfuric acid in the stratosphere’, Nature 282, 55.

    Article  ADS  Google Scholar 

  • Arnold, F., Wilhelm, S., and Pirjola, L.: 2006, ‘Cosmic ray induced formation of aerosol particles and cloud condensation nuclei: First detection of large negative and positive cluster ions in the upper troposphere’, manuscript in preparation.

    Google Scholar 

  • Bates, D. R.: 1985, ‘Ion-ion recombination in an ambient gas, Adv. Atom. Molec. Phys. 20.

    Google Scholar 

  • Carslaw, K. S., Harrison, R. G., and Kirkby, J.: 2002, ‘Cosmic rays, clouds and climate’, Science 298, 1732–1737.

    Article  ADS  Google Scholar 

  • Chen, Y. and Penner, J. E.: 2005, ‘Uncertainty analysis of the first indirect aerosol effect’, Atmos. Chem. Phys. 5, 2935–2948.

    Article  ADS  Google Scholar 

  • Curtius, J., Froyd, K. D., and Lovejoy, E. R.: 2001, ‘Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO −4 (H2SO4)x(HNO3)y’, J. Phvs. Chem. A 105, 10,867–10,873.

    Article  Google Scholar 

  • Eichkorn, S.: 2001, ‘Development of an aircraft-based ion mass spectrometer with a large mass range: Measurements in the laboratory, aircraft exhaust plumes and the upper troposphere’, Ph. D. thesis, Univ. Heidelberg.

    Google Scholar 

  • Eichkorn, S., Wilhelm, S., Aufmhoff, H., Wohlfrom, K. H., and Arnold, F.: 2002, ‘Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere’, Geophys. Res. Lett. 29, 10.1029/2002GL015044.

    Google Scholar 

  • Fiedler, V., Dal Maso, M., Boy, M., Aufmhoff, H., Hoffmann, J., Schuck, T., Birmili, W., Arnold, F., and Kulmala, M.: 2005, ‘The contribution of suphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe’, Atmos. Chem. Phys. Disc. 5, 1–33.

    Google Scholar 

  • Froyd, K. D., and Lovejoy, E. R.: 2003, ‘Experimental thermodynamics of cluster ions composed of H2SO4 and H2O. 2. Negative ion measurements and ab initio structures’, J. Phvs. Chem. A 107, 9812–9824.

    Article  Google Scholar 

  • Harrison, R. G., and Carslaw, K. S.: 2003, ‘Ion-aerosol-cloud processes in the lower atmosphere’, Rev. Geophys. 41, 1012, doi:10.1029/2002RG000114.

    Article  ADS  Google Scholar 

  • Harrison, R. G. and Stephenson, D. B.: 2006, ‘Empirical evidence for a nonlinear effect of cosmic rays on clouds’, Proc. R. Soc. A, in press.

    Google Scholar 

  • Heitmann, H. and Arnold, F.: 1983, ‘Composition measurements of tropospheric ions’, Nature 306, 747.

    Article  ADS  Google Scholar 

  • Kazil, J. and Lovejoy, E. R.: 2004, ‘Tropospheric ionization and aerosol production: A model study’, J. Geophys. Res. 109, 10.1029/2004JD004852.

    Google Scholar 

  • Kolb, C. E., Jayne, J. T., Wornshop, D. R., Molina, M. J., Meads, R. F., and Viggiano, A. A.: 1994, ‘Gas phase reaction of sulfur trioxide with water vapour’, J. Atmos. Chem. Soc. 116, 10,314–10,315.

    Article  Google Scholar 

  • Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and McMurry, P. H.: 2004, ‘Formation and growth rates of ultrafine atmospheric particles: A review of observations’, J. Aerosol Sci. 35, 10.1016/j.jaerosci.2003.10.003.

    Google Scholar 

  • Laaksonen, A., Talanquer, V., and Oxtoby, D. W.: 1995, ‘Nucleation: Measurements, Theory, and Atmospheric Applications’, Ann. Rev. Phys. Chem. 46, 489–524.

    Article  ADS  Google Scholar 

  • Lee, S. H., et al.: 2003, ‘Particle formation by ion nucleation in the upper troposphere and lower stratosphere’, Science 301, 1886–1889.

    Article  ADS  Google Scholar 

  • Lohmann U. and Feichter, J.: 2005, ‘Global indirect aerosol effects: a review’, Atmos. Chem. Phys. Discuss. 5, 715–737.

    ADS  Google Scholar 

  • Lovejoy, E. R. and Curtius, J.: 2001, ‘Cluster Ion Thermal Decomposition (II): Master Equation Modeling in the Low Pressure Limit and Fall-Off Regions. Bond Energies for HSO −4 (H2SO4)x (HNO3)y’, J. Phys. Chem. A 105, 10,874–10,883.

    Article  Google Scholar 

  • Lovejoy, E. R., Hanson, D. R., and Huey, G. G.: 1996, ‘Kinetics and products of gas-phase reactions of SO3 with water’, J. Phys. Chem. 100, 19.911–19.916.

    Google Scholar 

  • Lovejoy, E. R., Curtius, J., and Froyd, K. D.: 2004, ‘Atmospheric ion-induced nucleation of sulphuric acid and water’, J. Geophys. Res. 109, 10.1029/2003JD004460.

    Google Scholar 

  • Marsh, N. D. and Svensmark, H.: 2000, ‘Low cloud properties influenced by cosmic rays’, Phys. Rev. Lett. 85, doi:10.1103/PhysRevLett.85.5004.

    Google Scholar 

  • Möhler, O. and Arnold, F.: 1992, ‘Gaseous sulphuric acid and sulfur dioxide measurements in the arctic troposphere and lower stratosphere: Implications for hydroxyl radical abundances’, Geophys. Res. Lett. 19, 1763–1766.

    Article  ADS  Google Scholar 

  • Neff, U., et al.: 2001, ‘Strong coincidence between solar variability and the monsoon in Oman between 9 and 6 kyr ago’, Nature 411, 290–293.

    Article  ADS  Google Scholar 

  • Ney, E. P.: 1959, ‘Cosmic radiation and the weather’, Nature 183, 451–452.

    Article  ADS  Google Scholar 

  • Reiner, T. and Arnold, F.: 1993, ‘Laboratory flow reactor measurements of the reaction SO2 + H2O + M → H2SO4 + M: Implications for gaseous H2SO4 and aerosol formation in the plume of jet aircraft’, Geophys. Res. Lett. 20, 2659–2662.

    Article  ADS  Google Scholar 

  • Reiner, T. and Arnold, F.: 1994, ‘Laboratory investigations of gaseous sulfuric acid formation via SO2 + H2O + M → H2SO4 + M: Measurements of the rate constant and products identification’, J. Chem. Phys. 101, 7399–7407.

    Article  ADS  Google Scholar 

  • Shaviv, N. J.: 2002, ‘Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection’, Phys. Rev. Lett. 89, doi: 10.1103/PhysRevLett.89.051102.

    Google Scholar 

  • Shaviv, N. R. and Veizer, J.: 2004, ‘Celestial driver of phanerozoic climate?’, GSA Today 13, 7.

    Google Scholar 

  • Sorokin, A., Arnold, F., and Wiedner, D.: 2006, ‘Flow reactor experiments and model calculations of sulfuric acid-water cluster ion formation and ion-induced nucleation’, Atmos. Env., in press.

    Google Scholar 

  • Speidel et al.: 2006, ‘Sulfur dioxide measurements in the lower, middle and upper troposphere: Deployment of an aircraft-based chemical ionization mass spectrometer with permanent in-flight calibration’, manuscript in preparation.

    Google Scholar 

  • Viggiano, A. A. and Arnold, F.: 1995, Ion Chemistry and Composition of the Atmosphere, Handbook of Atmospheric Electrodynamics, Vol. 1, CRC Press.

    Google Scholar 

  • Wiedner, D.: 2000, ‘Flow reactor investigations of aerosol particle formation by ion induced nucleation: The H2SO4/H2O system’, Diploma thesis, Univ. Heidelberg.

    Google Scholar 

  • Wilhelm, S., Eichkorn, S., Wiedner, D., Pirjola, L., and Arnold, F.: 2004, ‘Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO −4 (H2SO4)a(H2O)w and H+ (H2SO4)a(H2O)w’, Atmos. Env. 38, 1735–1744.

    Article  Google Scholar 

  • WMO: 2001, in J. T. Houghton, et al. (eds.), Climate change 2001: The Scientific Basis, Cambridge University Press.

    Google Scholar 

  • Yu, F. and Turco, R. P.: 2001, ‘From molecular clusters to nanoparticles: Role of ambient ionisation in tropospheric aerosol formation’, J. Geophys. Res. 106, doi: 10.1029/2000JD900539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Arnold, F. (2007). Atmospheric Aerosol and Cloud Condensation Nuclei Formation: A Possible Influence of Cosmic Rays?. In: Calisesi, Y., Bonnet, R.M., Gray, L., Langen, J., Lockwood, M. (eds) Solar Variability and Planetary Climates. Space Sciences Series of ISSI, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48341-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48341-2_14

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48339-9

  • Online ISBN: 978-0-387-48341-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics