Skip to main content

Molecular Components of Neural Sensory Transduction

DEG/ENaC Proteins in Baro- and Chemoreceptors

  • Chapter
  • 810 Accesses

Abstract

For several decades, our attempt to characterize afferent signals from cardiovascular or peripheral sensory nerves has focused on the description of action potentials in single fibers classified according to their thickness, their conduction velocity, or the degree of their myelination.We are now at the point where we need to define the molecular components of the ion channels and associated proteins that are responsible for mechano-chemo transduction, nociception, temperature, and touch sensitivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landgren, S., On the excitation mechanism of the carotid baroceptors, Acta. Physiol. Scand. 26, 1–34 (1952).

    Article  PubMed  CAS  Google Scholar 

  2. Kirchheim, H.R., Systemic arterial baroreceptor reflexes, Physiol. Rev. 56, 100–176 (1976).

    PubMed  CAS  Google Scholar 

  3. Brown, A.M., Receptors under pressure: an update on baroreceptors, Circ. Res. 46, 1–10 (1980).

    PubMed  CAS  Google Scholar 

  4. Chapleau, M.W., Li, Z., Meyrelles, S.S., Ma, X., and Abboud, F.M., Mechanisms determining sensitivity of baroreceptor afferents in health and disease, Annals NY Acad. Sci. 940, 1–19 (2001).

    Article  CAS  Google Scholar 

  5. Kellenberger, S., and Schild, L., Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure, Physiol. Rev. 82, 735–767 (2002).

    PubMed  CAS  Google Scholar 

  6. Benson, C.J., Xie, J., Wemmie, J.A., Price, M.P., Henss, J.M., Welsh, M.J., and Snyder, P.M., Heteromultimers of DEG/ENaC subunits from H+-gated channels in mouse sensory neurons, Proc. Natl. Acad. Sci. USA 99, 2338–2343 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Drummond, H.A., Meyrelles, S.S., Price, M.P., Adams, C.M., Welsh, M.J., and Abboud, F.M., A molecular component of the arterial baroreceptor mechanotransducer, Neuron 21, 1435–1441 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. Price, M.P., Lewin, G.R., Mcllwrath, S.L., Cheng, C., Xie, J., Heppenstall, P.A., Stucky, C.L., Mannsfeldt, A.G., Brennan, T.J., Drummond, H.A., Qiao, J., Benson, C.J., Tarr, D.E., Hrstka, R., Yang, B., Williamson, R.A., and Welsh, M.J., The mammalian sodium channel BNC1 is required for normal touch sensation, Nature 407, 1007–1011 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. Hamill, O.P., and Martinac, B., Molecular basis of mechanotransduction in living cells Physiol. Rev. 81, 685–740 (2001).

    PubMed  CAS  Google Scholar 

  10. Welsh, M.J., Price, M.P., and Xie, J., Biochemical basis of touch perception: mechanosensory function of degenerin/epithelial Na+ channels, J. Biol. Chem. 277, 2369–2372 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. Price, M.P., Mcllwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R., and Welsh, M.J., The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice, Neuron 32, 1071–1083 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Snitsarev, V., Whiteis, C.A., Abboud, F., and Chapleau, M.W., Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture, Auton. Neurosci. 98, 59–63 (2002).

    Article  PubMed  Google Scholar 

  13. Tavernarakis, N., and Driscoll, M., Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans, Annu. Rev. Physiol. 59, 659–689 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Lu, Y., Whiteis, C.A., Tan, Z-Y., Chapleau, M.W., and Abboud, F.M., Differential expression of acid-sensing ion channel (ASIC) subunits in rat carotid body (abstract), FASEB J. 20 (Pt. 2), A1230 (2006).

    Google Scholar 

  15. Guharay, F., and Sachs, F., Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal-muscle, J. Physiol. (London) 352, 685–701 (1984).

    CAS  Google Scholar 

  16. Hajduczok, G., Chapleau, M.W., Ferlic, R.J., Mao, H.Z., and Abboud, F.M., Gadolinium inhibits mechanoelectrical transduction in rabbit carotid baroreceptors, J. Clin. Invest. 94, 2392–2396 (1994).

    PubMed  CAS  Google Scholar 

  17. Driscoll, M., and Chalfie, M., The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degradation, Nature 349, 588–593 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. Ma, X.Y., Abboud, F.M., and Chapleau, M.W., Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice, Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1033–R1040 (2002).

    PubMed  Google Scholar 

  19. Cunningham, J.T., Wachtel, R.E., and Abboud, F.M., Mechanical stimulation of neurites generates as inward current in putative aortic baroceptor neurons in vitro, Brain Res. 757, 149–154 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. Sullivan, M.J., Sharma, R.V., Wachtel, R.E., Chapleau, M.W., Waite, L.J., Bhalla, R.C., and Abboud, F.M., Non-voltage-gated Ca2+ influx through mechanosensitive ion channels in aortic baroceptor neurons, Circ. Res. 80, 861–867 (1997).

    PubMed  CAS  Google Scholar 

  21. Sharma, R.V., Chapleau, M.W., Hajduczok, G., Wachtel, R.E., Waite, L.J., Bhalla, R.C., and Abboud, F.M., Mechanical stimulation increases intracellular calcium concentration in nodose sensory neurons, Neurosci. 66, 433–441 (1995).

    Article  CAS  Google Scholar 

  22. Kraske, S., Cunningham, J.H., Hajduczok, G., Chapleau, M.K., Abboud, F.M., and Wachtel, R.E., Mechanosensitive ion channels in putative aortic baroreceptor neurons, Am. J. Physiol. Heart. Circ. Physiol. 275, H1497–H1501 (1998).

    CAS  Google Scholar 

  23. Cunningham, J.T., Wachtel, R.E., and Abboud, F.M., Mechanosensitive currents in putative aortic baroreceptor neurons in vitro, J. Neurophysiol. 73, 2094–2098 (1995).

    PubMed  CAS  Google Scholar 

  24. Chalfie, M., and Sulston, J., Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans, Dev. Biol. 82, 358–370 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. Canessa, C.M., Horisberger, J.D., and Rossier, B.C., Epithelial sodium channel related to proteins involved in neurodegeneration, Nature 361, 467–470 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M., and Barbry, P., Expression cloning of an epithelial amiloride-sensitive Na+ channel: a new channel type with homologies to Caenorhabditis elegans degenerins, FEBS Lett. 318, 95–99 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. Canessa, C.M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J.D., and Rossier, B.C., Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits, Nature 367, 463–466 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. McDonald, F.J., Price, M.P., Snyder, P.M., and Welsh, M.J., Cloning and expression of the beta- and gamma-subunits of the human epithelial sodium channel, Am. J. Physiol. 268, C1157–1163 (1995).

    PubMed  CAS  Google Scholar 

  29. Garbers, D.L., and Dubois, S.K., The molecular basis of hypertension, Annu. Rev. Biochem. 68, 127–155 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. Pathak, B.G., Shaughnessy, J.D., Meneton, P., Greeb, J., Shull, G.E., Jenkins, N.A., and Copeland, N.G., Mouse chromosomal location of three epithelial sodium channel subunit genes and an apical sodium chloride cotransporter gene, Genomics 33, 124–127 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. de la Rosa, D.A., Canessa, C.M., Fyfe, G.K., and Zhang, P., Structure and regulation of amiloride-sensitive sodium channels, Annu. Rev. Physiol. 62, 573–594 (2000).

    Article  Google Scholar 

  32. Chen, C.C., England, S., Akopian, A.N., and Wood, J.N., A sensory neuron-specific, proton-gated ion channel, Proc. Natl. Acad. Sci. 95, 10240–10245 (1998).

    Article  PubMed  CAS  Google Scholar 

  33. Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I., and Lazdunski, M., The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhadbditis elegans, J. Biol. Chem. 271, 10433–10436 (1996).

    Article  PubMed  CAS  Google Scholar 

  34. Adams, C.M., Price, M.P., Snyder, P.M, and Welsh, M.J., Tetraethylammonium block of BNC1 channel, Biophys. J. 76, 1377–1383 (1999).

    PubMed  CAS  Google Scholar 

  35. Bassilana, F., Champigny, G., Waldmann, R., deWeille, J.R., Heurteaux, C., and Lazdunski, M., The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties, J. Biol. Chem. 272, 28819–28822 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. Price, M.P., Snyder, P.M, and Welsh, M.J., Cloning and expression of a novel human brain Na+ channel, J. Biol. Chem. 271, 7879–7882 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. Garcia-Anoveros, J., Derfler, B., Neville-Golden, J., Hyman, B.T., and Corey, D.P, BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels, Proc. Natl. Acad. Sci. USA 94, 1459–1464 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., and Lazdunski, M., A proton-gated cation channel involved in acid-sensing, Nature 386, 173–177 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. Waldmann, R., Bassilana, F., deWeille, J., Champigny, G., Heurteaux, C., and Lazdunski, M., Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons, J. Biol. Chem. 272, 20975–20978 (1997).

    Article  PubMed  CAS  Google Scholar 

  40. Lingueglia, E., deWeille, J.R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann, R., and Lazdunski, M., A modulatory subunit of acid-sensing ion channels in brain and dorsal root ganglion cells, J. Biol. Chem. 272, 29778–29783 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. Waldmann, R., and Lazdunski, M., H+-gated cation channels: neuronal acid sensors in the ENaC/DEG family of ion channels, Curr. Opin. Neurobiol. 8, 418–424 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. Grunder, S., Geissler, H.S., Bassler, E.L., and Ruppersberg, J.P., A new member of acid-sensing ion channels from pituitary gland, Neuroreport 11, 1607–1611 (2000).

    Article  PubMed  CAS  Google Scholar 

  43. Bassler, E.L., Ngo-Ann, T.J., Geisler, H.S., Ruppersberg, J.P., Grunder, S., Molecular and functional characterization of acid-sensing ion channel (ASIC)1b, J. Biol. Chem. 276, 33782–33787 (2001).

    Article  PubMed  CAS  Google Scholar 

  44. Firsov, D., Gautschi, I., Merillat, A-M., Rossier, B.C., and Schild, L., The heterotetrameric architecture of the epithelial sodium channel (ENaC), EMBO J. 17, 344–352 (1998).

    Article  PubMed  CAS  Google Scholar 

  45. Kosari, F., Sheng, S.H., Li, J.Q., Mak, D.O.D., Foskett, J.K., and Kleyman, T.R., Subunit stoichiometry of the epithelial sodium channel, J. Biol. Chem. 273, 13469–13474 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. Mano, I., and Driscoll, M., DEG/ENaC channels: a touchy superfamily that watches its salts, Bioessays 21, 568–578 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. Schild, L., Lu, Y., Gautschi, I., Schneeberger, E., Lifton, R.P., and Rossier, B.C., Identification of PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome, EMBO J. 15, 2381–2387 (1996).

    PubMed  CAS  Google Scholar 

  48. Snyder, P.M., Cheng, C., Prince, L.S., Rogers, J.C., and Welsh, M.J., Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits, J. Biol. Chem. 273, 681–684 (1998).

    Article  PubMed  CAS  Google Scholar 

  49. Eskandari, S., Snyder, P.M., Kreman, M., Zampighi, G.A., Welsh, M.J., and Wright, E.M., Number of subunits comprising the epithelial sodium channel, J. Biol. Chem. 274, 27281–27286 (1999).

    Article  PubMed  CAS  Google Scholar 

  50. Ernstrom, G.G., and Chalfie, M., Genetics of sensory mechanotransduction, Ann. Rev. Genet. 36, 411–453 (2002).

    Article  PubMed  CAS  Google Scholar 

  51. Hughey, R.P., Bruns, J.B., Kinlough, C.L., Harkleroad, K.L., Tong, Q., Carattino, M.D., Johnson, J.P., Stockand, J.D., and Kleyman, T.R., Epithelial sodium channels are activated by furin-dependent proteolysis, J. Biol. Chem. 279, 18111–18114 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Wang, N., Butler, J.P., and Ingber, D.E., Mechanotransduction across the cell surface and through the cytosleton, Science 260, 1124–1127 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. Hamill, O.P., and McBride, D.W., Jr., The cloning of a mechano-gated membrane ion channel, Trends Neurosci. 17, 439–443 (1994).

    Article  PubMed  CAS  Google Scholar 

  54. Grady, R.M., Zhou, H., Cunningham, J.M., Henry, M.D., Campbell, K.P., and Sanes, J.R., Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin-glycoprotein complex, Neuron 25, 279–293 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. Fricke, B., Lints, R., Stewart, G., Drummond, H., Dodt, G., Driscoll, M., and von During, M., Epithelial Na+ channels and stomatin are expressed in rat trigeminal mechanosensory neurons, Cell Tissue Res. 299, 327–334 (2000).

    PubMed  CAS  Google Scholar 

  56. Mannsfeldt, A.G., Carroll, P., Stucky, C.L., and Lewin, G.R., Stomatin, a MEC-5 like protein, is expressed by mammalian sensory neurons, Mol. Cell. Neurosci. 13, 391–404 (1999).

    Article  PubMed  CAS  Google Scholar 

  57. Leonard, A.S., Yermolaieva, O., Hruska-Hageman, A., Askwith, C.C., Price, M.P., Wemmie, J.A., and Welsh, M.J., cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1, Proc. Natl. Acad. Sci. USA 100, 2029–2034 (2003).

    Article  PubMed  CAS  Google Scholar 

  58. Khalsa, P.S., Ge, W., Uddin, M.Z., and Hadjiargyrou, M., Integrin α2β1 affects mechano-transduction in slowly and rapidly adapting cutaneous mechanoreceptors in rat hairy skin, Neurosci. 129, 447–459 (2004).

    Article  CAS  Google Scholar 

  59. Patel, A.J., Lazdunski, M., and Honore, D., Lipid and mechano-gated 2P domain K+ channels, Curr. Opin. Cell. Biol. 13, 422–427(2001).

    Article  PubMed  CAS  Google Scholar 

  60. Drummond, H.A., Welsh, M.J., and Abboud, F.M., ENaC subunits are molecular components of the arterial baroreceptor complex, Ann. NY Acad. Sci. 940, 42–47 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. de la Rosa, D.A., Zhang, P., Shao, D., White, F., and Canessa, C.M., Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system, Proc. Natl. Acad. Sci. USA 99, 2326–2331 (2002).

    Article  CAS  Google Scholar 

  62. Lu, Y., Whiteis, C.A., Benson, C.J., Chapleau, M.W., and Abboud, F.M., Expression and localization of acid-sensing ion channels in mouse nodose ganglia (abstract), FASEB J. 20 (Pt. 1), A775 (2006).

    Google Scholar 

  63. Deval, E., Baron, A., Lingueglia, E., Mazarguil, H., Zajac, J.M., Lazdunski, M., Effects of neuropeptide SF and related peptides on acid-sensing ion channel 3 and sensory neuron excitability. Neuropharmacology 44, 662–671(2003).

    Article  PubMed  CAS  Google Scholar 

  64. Tan, Z-Y., Whiteis, C.A., Lu, Y., Chapleau, M.W., and Abboud, F.M., Role of BK and ASIC in the activation of glomus cells by extracellular acidosis and hypoxia (abstract), FASEB J. 20 (Pt. 2), A1230 (2006).

    Google Scholar 

  65. Babinski, K., Catarsi, S., Biagini, G., and Seguela, P., Mammalian ASIC2a and ASIC3 subunits coassemble into heteromultimeric proton-gated channels sensitive to Gd3+, J. Biol. Chem. 275, 28519–28525 (2000).

    Article  PubMed  CAS  Google Scholar 

  66. Xie, J.H., Price, M.P., Berger, A.L., and Welsh, M.J., DRASIC contributes to pH-gated currents in large dorsal root ganglion sensory neurons by forming heteromultimeric channels, Neurophysiol. 87, 2835–2843 (2002).

    CAS  Google Scholar 

  67. Hesselager, M., Timmermann, D.B., and Ahring, P.K., pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits, J. Biol. Chem. 279, 11006–11015 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. Krishtal, O.A., and Pidoplichko, V.I., A receptor for protons in the nerve cell membrane, Neurosci. 5, 2325–2327 (1980).

    Article  CAS  Google Scholar 

  69. Krishtal, O.A., and Pidoplichko, V.I., A receptor for protons in the membrane of sensory neurons may participate in nociception, Neurosci. 6, 2599–2601 (1981).

    Article  CAS  Google Scholar 

  70. Bevan, S., and Yeats, J., Protons activate a cation conductance in a subpopulation of rat dorsal root ganglion neurons, J. Physiol. (London) 433, 145–161 (1991).

    CAS  Google Scholar 

  71. Garcia-Anoveros, J., Samad, T.A., Woolf, C.J., and Corey, D.P., Transport and localization of the DEG/ENaC ion channel BNC1a to peripheral mechanosensory terminals of dorsal root ganglia neurons, J. Neurosci. 21, 2678–2686 (2001).

    PubMed  CAS  Google Scholar 

  72. Benson, C.J., Eckert, S.P., and McCleskey, E.W., Acid-evoked currents in cardiac sensory neurons: A possible mediator of myocardial ischemic sensation, Circ. Res. 84, 921–928 (1999).

    PubMed  CAS  Google Scholar 

  73. Sutherland, S.P., Benson, C.J., Adelman, J.P., and McCleskey, E.W., Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons, Proc. Natl. Acad. Sci. USA 98, 711–716 (2001).

    Article  PubMed  CAS  Google Scholar 

  74. Meller, S.T., and Gebhart, G.F., A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain, Neuroscience 48, 501–524 (1992).

    Article  PubMed  CAS  Google Scholar 

  75. Schultz, H.D., Cardiac vagal chemosensory afferents. Function in pathophysiological states, Ann. NY Acad. Sci. 940, 59–73 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. Snitsarev, V., Whiteis, C.A., Chapleau, M.W., and Abboud, F.M., Effect of prostacyclin analog on mechanosensitive vs. voltage-gated ion channels in nodose neurons (abstract), Soc. Neurosc. 27, 1812 (2001).

    Google Scholar 

  77. Hummler, E., Barker, P., Gatzy, J., Beermann, F., Verdumo, C., Schmidt, A., Boucher, R., and Rossier, B.C., Early death due to defective neonatal lung liquid clearance in αENaC-deficient mice, Nat. Genet. 12, 325–328 (1996).

    Article  PubMed  CAS  Google Scholar 

  78. Barker, P.M., Nguyen, M.S., Gatzy, J.T., Grubb, B., Norman, H., Hummler, E., Rossier, B., Boucher, R.C., and Koller, B., Role of γ ENaC subunit in lung liquid clearance and electrolyte balance in newborn mice, J. Clin. Invest. 102, 1634–1640 (1998).

    Article  PubMed  CAS  Google Scholar 

  79. McDonald, F.J., Yang, B.L., Hrstka, R.F., Drummond, H.A., Tarr, D.E., McCray, P.B., Stokes, J.B., Welsh, M.J., and Williamson, R.A., Disruption of β subunit of the epithelial Na+ channel in mice: hyper-kalemia and neonatal death associated with a pseudohypoaldosteronism phenotype, Proc. Natl. Acad. Sci. USA 96, 1727–1731 (1999).

    Article  PubMed  CAS  Google Scholar 

  80. Ma, X.Y., Price, M.P., Drummond, H.A., Welsh, M.J., Chapleau, M.W., and Abboud, F.M., The DEG/ENaC ion channel family member BNC1 mediates mechanical transduction of arterial baroreceptor nerve activity in vivo (abstract), FASEB 15, A1146 (Pt. 2) (2001).

    Google Scholar 

  81. Sabharwal, R., Stauss, H.M., Lazartigues, E., Whiteis, C.A., Davisson, R.L., Price, M.P., Welsh, M.J., Abboud, F.M., and Chapleau, M.W., Abnormalities in baroreflex sensitivity and autonomic control in conscious ASIC2−/− mice (abstract), FASEB J. 20 (Pt. 2) A1186 (2006).

    Google Scholar 

  82. Sun, W., Abboud, F.M., and Chapleau, M.W., Evaluation of baroreflex and chemoreflex by carotid artery occlusion in mice a method for phenotypic analysis of deletion of candidate sensory molecules (abstract), Circulation, 102(18), II-700 (2000).

    Google Scholar 

  83. Sabharwal, R., Chapleau, M.W., Price, M.P., Welsh, M.J., and Abboud, F.M., Molecular mechanisms of baro- and chemoreceptor activation: evidence that ASIC1 and ASIC3 contribute to chemoreceptor activation (abstract), Circulation 112(17), II-156 (2005).

    Google Scholar 

  84. Drew, L.J., Rohrer, D.K., Price, M.P., Blaver, K.E., Cockayne, D.A., Cesare, P., Wood, J.N., Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurons, J. Physiol. (London) 556, 691–710 (2004).

    Article  CAS  Google Scholar 

  85. Roza, C., Puel, J.L., Kress, M., Baron, A., Diochot, S., Lazdunski, M., and Waldmann, R., Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception, and hearing, J. Physiol. (London) 558, 659–669 (2004).

    Article  CAS  Google Scholar 

  86. Hildebrand, M.S., Silva, M.G., Klockars, T., Rose, E., Price, M., Smith, R.J.H., McGuirt, W.T., Christopoulos, H., Petit, C., and Dahl, H.H.M., Characterization of DRASIC in the mouse inner ear, Hear. Res. 190, 149–160 (2004).

    Article  PubMed  CAS  Google Scholar 

  87. Peng, B.G., Ahmad, S., Chen, S.P., Chen, P., Price, M.P., and Lin, X., Acid-sensing ion channel 2 contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons and plays a role in noise susceptibility of mice, J. Neurosci. 24, 10167–10175 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. Snitsarev, V., Whiteis, C.A., Chapleau, M.W., and Abboud, F.M., Neuronal prostacyclin is an autocrine regulator of arterial baroreceptor activity, Hypertension 4, 540–546 (2005).

    Article  Google Scholar 

  89. Li, Z., Lee, H.C., Bielefeldt, K., Chapleau, M.W., and Abboud, F.M., The prostacyclin analogue carbacyclin inhibits Ca2+-activated K+ current in aortic baroreceptor neurones of rats, J. Physiol. 501, 275–287 (1997).

    Article  PubMed  CAS  Google Scholar 

  90. Snitsarev, V., Sullivan, M.J., Whiteis, C.A., Chapleau, M.W., and Abboud, F.M., Molecular basis of mechanotransduction in baroreceptor neurons: roles of calcium-activated K current (I-KCa) and actin (abstract), Circulation 108, 57-IV (2003).

    Google Scholar 

  91. Li, Z., Mao, H., Abboud, F.M., and Chapleau, M.W., Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits, Circ. Res. 79, 802–811 (1996).

    PubMed  CAS  Google Scholar 

  92. Li, Z., Chapleau, M.W., Bates, J.N., Bielefeld, K., Lee, H.C., and Abboud, F.M., Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons, Neuron 20, 1039–1049 (1998).

    Article  PubMed  CAS  Google Scholar 

  93. Snitsarev, V., Yermolaieva, O., Whiteis, C. A., Abboud, F. M., Heinemann, S. H., Hoshi, T., and Chapleau, M. W., Reactive oxygen species generated during action potential discharge mediate “activity-dependent resetting” of baroreceptor and vagal afferent neurons in culture (abstract), Circulation 106, 66 (2002).

    Google Scholar 

  94. Francis, J., Weiss, R.M., Wei, S.G., Johnson, A.K., and Felder, R.B., Progression of heart failure after myocardial infarction in the rat, Am. J. Physiol. Regul. Inter. Comp. Physiol. 281, R1734–1745 (2001).

    CAS  Google Scholar 

  95. Meyrelles, S.S., Mao, H.Z., Heistad, D.D., and Chapleau, M.W., Gene transfer to carotid sinus in vivo—a novel approach to investigation of baroreceptors, Hypertension (Pt. 2) 30, 708–713 (1997).

    PubMed  CAS  Google Scholar 

  96. Kasparov, S., Teschemacher, A.G., Hwang, D.Y., Kim, K.S., Lonergan, T., and Paton, J.F.R., Viral vectors as tools for studies of central cardiovascular control, Progr. Biophys. Mol. Biol. 84, 251–277 (2004).

    Article  CAS  Google Scholar 

  97. Phillips, M.I., Gene therapy for hypertension: sense and antisense strategies, Expert Opin. Biol. Therapy 1, 655–662 (2001).

    Article  CAS  Google Scholar 

  98. Stewart, S.A., Dykxhoorn, D.M., Palliser, D., Mizuno, H., Yu, E.Y., An, D.S., Sabatini, D.M., Chen, I.S.Y., Hahn, W.C., Sharp, P.A., Weinberg, R.A., and Novina, C.D., Lentivirus-delivered stable gene silencing by RNAi in primary cells, RNA-A Pub. RNA Soc. 9, 493–501 (2003).

    CAS  Google Scholar 

  99. Novina, C.D., and Sharp, P.A., The RNAi revolution, Nature 430, 161–164 (2004).

    Article  PubMed  CAS  Google Scholar 

  100. Krug, U., Ganser, A., and Koeffler, H.P., Tumor suppressor genes in normal and malignant, Oncogene 21, 3475–3495 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Abboud, F.M., Lu, Y., Chapleau, M.W. (2007). Molecular Components of Neural Sensory Transduction. In: Wang, D.H. (eds) Molecular Sensors for Cardiovascular Homeostasis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47530-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47530-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47528-8

  • Online ISBN: 978-0-387-47530-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics