Skip to main content

ASICs Function as Cardiac Lactic Acid Sensors During Myocardial Ischemia

  • Chapter
  • 822 Accesses

Abstract

From the point of view of sensation, the heart is a curious organ. Sensory neurons innervate it, but we all hope never to be aware of them. The only conscious sensation they cause is pain and the only trigger for this is ischemia-when the heart gets insufficient oxygen. It is a sensation often felt only in the last minute of life. This raises two fundamental questions: (1) what purpose do these neurons serve besides mediating ischemic pain?; (2) what signal activates them? Lactic acid is an obvious candidate for the signal because it is released by muscle whenever there is insufficient oxygen. However, researchers have argued that lactic acid cannot be a trigger for ischemic pain because metabolic acidosis does not cause chest pain even though it can drop pH to levels equivalent to those that occur during myocardial infarction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The World Health Report, 2002. WHO Press.

    Google Scholar 

  2. Gibbons, R.J., Abrams, J., Chatterjee, K., Daley, J., Deedwania, P.C., Douglas, J.S., Ferguson, T.B., Jr., Fihn, S.D., Fraker, T.D., Jr., Gardin, J.M., O'Rourke, R.A., Pasternak, R.C., Williams, S.V., Alpert, J.S., Antman, E.M., Hiratzka, L.F., Fuster, V., Faxon, D.P., Gregoratos, G., Jacobs, A.K., and Smith, S.C., Jr., ACC/AHA 2002 guideline update for the management of patients with chronic stable angina—summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina), Circulation. 107, 149–58 (2003).

    Article  PubMed  Google Scholar 

  3. Cutler, E.C., Summary of experiences up-to-date in the surgical treatment of angina pectoris., Am. J. Med. Sci. 173, 613–624 (1927).

    Article  Google Scholar 

  4. Lingren, I., and Olivecrona, H., Surgical treatment of angina pectoris, J. Neurosurg. 4, 19–39 (1947).

    Google Scholar 

  5. White, J.C., Cardiac pain: anatomic pathways and physiologic mechanisms, Circulation. 16, 644–655 (1957).

    PubMed  CAS  Google Scholar 

  6. Kuo, D.C., Oravitz, J.J., and DeGroat, W.C., Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase, Brain Res. 321, 111–118. (1984).

    Article  PubMed  CAS  Google Scholar 

  7. Meller, S.T., and Gebhart, G.F., A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain, Neuroscience. 48, 501–24 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. Thames, M.D., Klopfenstein, H.S., Abboud, F.M., Mark, A.L., and Walker, J.L., Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog, Circ. Res. 43, 512–19 (1978).

    PubMed  CAS  Google Scholar 

  9. Miller, M.R., and Kasahara, M., Studies on the nerve endings in the heart, Am J Anat. 115, 217–33 (1964).

    Article  PubMed  CAS  Google Scholar 

  10. Barber, M.J., Mueller, T.M., Davies, B.G., and Zipes, D.P., Phenol topically applied to canine left ventricular epicardium interrupts sympathetic but not vagal afferents, Circ. Res. 55, 532–44 (1984).

    PubMed  CAS  Google Scholar 

  11. Huang, H.S., Pan, H.L., Stahl, G.L., Longhurst, J.C., Ischemia- and reperfusion-sensitive cardiac sympathetic afferents: influence of H2O2 and hydroxyl radicals, Am. J. Physiol. 269, H888–901 (1995).

    PubMed  CAS  Google Scholar 

  12. Pan, H.L., and Chen, S.R., Myocardial ischemia recruits mechanically insensitive cardiac sympathetic afferents in cats, J. Neurophysiol. 87, 660–8 (2002).

    PubMed  Google Scholar 

  13. Huang, M.H., Horackova, M., Negoescu, R.M., Wolf, S., and Armour, J.A., Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia, Cardiovasc. Res. 32, 503–15 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. Malliani, A., The elusive link between transient myocardial ischemia and pain, Circulation. 73, 201–4 (1986).

    PubMed  CAS  Google Scholar 

  15. Cervero, F., and Janig, W., Visceral nociceptors: a new world order?, Trends Neurosci. 15, 374–8 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. Colbeck, E.H., Angina pectoris: a criticism and a hypothesis, Lancet. 1, 793–95 (1903).

    Article  Google Scholar 

  17. Davies, G.J., Bencivelli, W., Fragasso, G., Chierchia, S., Crea, F., Crow, J., Crean, P.A., Pratt, T., Morgan, M., and Maseri, A., Sequence and magnitude of ventricular volume changes in painful and painless myocardial ischemia, Circulation. 78, 310–9 (1988).

    PubMed  CAS  Google Scholar 

  18. Lewis, T., Pain in muscular ischemia: its relation to anginal pain, Arch. Int. Med. 49, 713–27 (1932).

    Google Scholar 

  19. Baker, D.G., Coleridge, H.M., Coleridge, J.C., and Nerdrum, T., Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat, J. Physiol. (Lond). 306, 519–36 (1980).

    CAS  Google Scholar 

  20. Lombardi, F., Della Bella, P., Casati, R., and Malliani, A., Effects of intracoronary administration of bradykinin on the impulse activity of afferent sympathetic unmyelinated fibers with left ventricular endings in the cat, Circ. Res. 48, 69–75 (1881).

    Google Scholar 

  21. Thames, M.D., Kinugawa, T., and Dibner-Dunlap, M.E., Reflex sympathoexcitation by cardiac sympathetic afferents during myocardial ischemia. Role of adenosine, Circulation. 87, 1698–704 (1993).

    PubMed  CAS  Google Scholar 

  22. James, T.N., A cardiogenic hypertensive chemoreflex, Anesth. Analg. 69, 633–46 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. Nishi, K., Sakanashi, M., and Takenaka, F., Activation of afferent cardiac sympathetic nerve fibers of the cat by pain-producing substances and by noxious heat, Pflugers Arch. 372, 53–61 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. Armour, J.A., Huang, M.H., Pelleg, A., Sylven, C., Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli, Cardiovasc. Res. 28, 1218–25 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. Ustinova, E.E., and Schultz, H.D., Activation of cardiac vagal afferents in ischemia and reperfusion: Prostaglandins versus oxygen-derived free radicals, Circ. Res. 74, 904–11 (1994).

    PubMed  CAS  Google Scholar 

  26. Ustinova, E.E., and Schultz, H.D., Activation of cardiac vagal afferents by oxygen-derived free radicals in rats, Circ. Res. 74, 895–903 (1994).

    PubMed  CAS  Google Scholar 

  27. Uchida, Y., and Murao, S., Acid-induced excitation of afferent cardiac sympathetic nerve fibers, Am. J. Physiol. 228, 27–33 (1975).

    PubMed  CAS  Google Scholar 

  28. Pan, H.L., Longhurst, J.C., Eisenach, J.C., and Chen, S.R., Role of protons in activation of cardiac sympathetic C-fibre afferents during ischaemia in cats, J. Physiol. (Lond). 518, 857–66 (1999).

    Article  CAS  Google Scholar 

  29. Vaughan-Jones, R.D., Eisner, D.A., and Lederer, W.J., Effects of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers, J. Gen. Physiol. 89, 1015–32 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. Halestrap, A.P., Wang, X., Poole, R.C., Jackson, V.N., and Price, N.T., Lactate transport in heart in relation to myocardial ischemia, Am. J. Cardiol. 80, 17A–25A (1997).

    Article  PubMed  CAS  Google Scholar 

  31. Jacobus, W.E., Taylor, G.J.I., Hollis, D.P., and Nunnally, R.L., Phosphorus nuclear magnetic resonance of perfused working rat hearts, Nature. 265, 756–58 (1977).

    Article  PubMed  CAS  Google Scholar 

  32. Yan, G.X., and Kleber, A.G., Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle, Circ. Res. 71, 460–70 (1992).

    PubMed  CAS  Google Scholar 

  33. Hirsch, H.J., Franz, C.H.R., Bos, L., Bissig, R., Lang, R., and Schramm, M., Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs, J. Mol. Cell Cardiol. 12, 579–93 (1980).

    Article  Google Scholar 

  34. Cobbe, S.M., and Poole-Wilson, P.A., The time of onset and severity of acidosis in myocardial ischaemia, J. Mol. Cell Cardiol. 12, 745–60 (1980).

    Article  PubMed  CAS  Google Scholar 

  35. Remme, W.J., van den Berg, R., Mantel, M., Cox, P.H., van Hoogenhuyze, D.C., Krauss, X.H., Storm, C.J., and Kruyssen, D.A., Temporal relation of changes in regional coronary flow and myocardial lactate and nucleoside metabolism during pacing-induced ischemia, Am. J. Cardiol. 58, 1188–94 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. Sylven, C., Angina pectoris: Clinical characteristics, neurophysiological and molecular mechanisms, Pain. 36, 145–67 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. Kress, M., and Reeh, P.W., More sensory competence for nociceptive neurons in culture, Proc. Natl. Acad. Sci. USA. 93, 14995–97 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. Benson, C.J., Eckert, S.P., and McCleskey, E.W., Acid-evoked currents in cardiac sensory neurons: A possible mediator of myocardial ischemic sensation, Circ. Res. 84, 921–28 (1999).

    PubMed  CAS  Google Scholar 

  39. Krishtal, O.A., and Pidoplichko, V.I., Receptor for protons in the membrane of sensory neurons, Brain Res. 214, 150–54 (1981).

    Article  PubMed  CAS  Google Scholar 

  40. Krishtal, O.A., and Pidoplichko, V.I., A receptor for protons in the membrane of sensory neurons may participate in nociception, Neuroscience. 6, 2599–601 (1981).

    Article  PubMed  CAS  Google Scholar 

  41. Bevan, S., and Yeats, J., Protons activate a cation conductance in a subpopulation of rat dorsal root ganglion neurones, J. Physiol. (Lond). 433, 145–61 (1991).

    CAS  Google Scholar 

  42. Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D., The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature. 389, 816–24 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D., Impaired nociception and pain sensation in mice lacking the capsaicin receptor [see comments], Science. 288, 306–13 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A., and Sheardown, S.A., Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia, Nature. 405, 183–7 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., Basbaum, A.I., and Julius, D., The cloned capsaicin receptor integrates multiple pain-producing stimuli [see comments], Neuron. 21, 531–43 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. Zygmunt, P.M., Petersson, J., Andersson, D.A., Chuang, H., Sorgard, M., Di Marzo, V., Julius, D., and Hogestatt, E.D., Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide, Nature. 400, 452–57 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V., Nilius, B., The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels, Nature. 430, 748–54 (2004).

    Article  PubMed  CAS  Google Scholar 

  48. Garty, H., Palmer, L.G., Epithelial sodium channels: function, structure, and regulation, Physiol. Rev. 77, 359–96 (1997).

    PubMed  CAS  Google Scholar 

  49. Tavernarakis, N., and Driscoll, M., Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans, Annu. Rev. Physiol. 59, 659–89 (1997).

    Article  PubMed  CAS  Google Scholar 

  50. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., and Lazdunski, M., A proton-gated cation channel involved in acid-sensing, Nature. 386, 173–77 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. Garcia-Anoveros, J., Derfler, B., Neville-Golden, J., Hyman, B.T., and Corey, D.P., BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels, Proc. Natl. Acad. Sci. USA. 94, 1459–64 (1997).

    Article  PubMed  CAS  Google Scholar 

  52. Price, M.P., Snyder, P.M., and Welsh, M.J., Cloning and expression of a novel human brain Na+ channel, J. Biol. Chem. 271, 7879–82 (1996).

    Article  PubMed  CAS  Google Scholar 

  53. Waldmann, R., Bassilana, F., de Weille, J., Champigny, G., Heurteaux, C., and Lazdunski, M., Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons, J. Biol. Chem. 272, 20975–78 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. Akopian, A.N., Chen, C.C., Ding, Y., Cesare, P., and Wood, J.N., A new member of the acid-sensing ion channel family, Neuroreport. 11, 2217–22 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. Grunder, S., Geissler, H.S., Bassler, E.L., and Ruppersberg, J.P., A new member of acid-sensing ion channels from pituitary gland, Neuroreport. 11, 1607–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. Lingueglia, E., de Weille, J.R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann, R., and Lazdunski, M., A modulatory subunit of acid-sensing ion channels in brain and dorsal root ganglion cells, J. Biol. Chem. 272, 29778–83 (1997).

    Article  PubMed  CAS  Google Scholar 

  57. Bassilana, F., Champigny, G., Waldmann, R., de Weille, J.R., Heurteaux, C., and Lazdunski, M., The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties, J. Biol. Chem. 272, 28819–22 (1997).

    Article  PubMed  CAS  Google Scholar 

  58. Babinski, K., Catarsi, S., Biagini, G., and Seguela, P., Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3 +, J. Biol. Chem. 275, 28519–25 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. Waldmann, R., and Lazdunski, M., H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels, Curr. Opin. Neurobiol. 8, 418–24 (1998).

    Article  PubMed  CAS  Google Scholar 

  60. Chen, C.C., England, S., Akopian, A.N., and Wood, J.N., A sensory neuron-specific, proton-gated ion channel, Proc. Natl. Acad. Sci. USA. 95, 10240–45 (1998).

    Article  PubMed  CAS  Google Scholar 

  61. Price, M.P., Lewin, G.R., McIlwrath, S.L., Cheng, C., Xie, J., Heppenstall, P.A., Stucky, C.L., Mannsfeldt, A.G., Brennan, T.J., Drummond, H.A., Qiao, J., Benson, C.J., Tarr, D.E., Hrstka, R.F., Yang, B., Williamson, R.A., and Welsh, M.J., The mammalian sodium channel BNC1 is required for normal touch sensation, Nature. 407, 1007–11 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. Garcia-Anoveros, J., Samad, T.A., Woolf, C.J., and Corey, D.P., Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons, J. Neurosci. 21, 2678–86 (2001).

    PubMed  CAS  Google Scholar 

  63. Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R., and Welsh, M.J., The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice, Neuron. 32, 1071–83 (2001).

    Article  PubMed  CAS  Google Scholar 

  64. Krishtal, O.A., and Pidoplichko, V.I., A receptor for protons in the nerve cell membrane, Neuroscience. 5, 2325–27 (1980).

    Article  PubMed  CAS  Google Scholar 

  65. Zahner, M.R., Li, D.P., Chen, S.R., and Pan, H.L., Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats, J. Physiol. 551, 515–23. Epub 2003 Jun 26 (2003).

    Article  PubMed  CAS  Google Scholar 

  66. Pan, H.L., and Chen, S.R., Sensing tissue ischemia: another new function for capsaicin receptors?, Circulation. 110, 1826–31. Epub 2004 Sep 13 (2004).

    Article  PubMed  Google Scholar 

  67. Sutherland, S.P., Benson, C.J., Adelman, J.P., and McCleskey, E.W., Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons, Proc. Natl. Acad. Sci. USA. 98, 711–716 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. Benson, C.J., Xie, J., Wemmie, J.A., Price, M.P., Henss, J.M., Welsh, M.J., and Snyder, P.M., Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons, Proc. Natl. Acad. Sci. USA. 99, 2338–43 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. Stahl, G.L., and Longhurst, J.C., Ischemically sensitive visceral afferents: importance of H+ derived from lactic acid and hypercapnia, Am. J. Physiol. 262, H748–53 (1992).

    PubMed  CAS  Google Scholar 

  70. Hong, J.L., Kwong, K., and Lee, L.Y., Stimulation of pulmonary C fibres by lactic acid in rats: contributions of H+ and lactate ions, J. Physiol. 500, 319–29 (1997).

    PubMed  CAS  Google Scholar 

  71. Cohen, R., and Woods, H., Lactic acidosis revisited, Diabetes. 32, 181–91 (1983).

    PubMed  CAS  Google Scholar 

  72. Aresta, F., Gerstenblith, G., and Weiss, R.G., Repeated, transient lactate exposure does not “precondition” rat myocardium, Can. J. Physiol. Pharmacol. 75, 1262–66 (1997).

    Article  PubMed  CAS  Google Scholar 

  73. Immke, D.C., and McCleskey, E.W., Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons, Nat. Neurosci. 4, 869–70 (2001).

    Article  PubMed  CAS  Google Scholar 

  74. Immke, D.C., and McCleskey, E.W., Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade, Neuron. 37, 75–84 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Euchner-Wamser, I., Meller, S.T., and Gebhart, G.F., A model of cardiac nociception in chronically instrumented rats: behavioral and electrophysiological effects of pericardial administration of algogenic substances, Pain. 58, 117–28 (1994).

    Article  PubMed  CAS  Google Scholar 

  76. Kessler, W., Kirchhoff, C., Reeh, P.W., and Handwerker, H.O., Excitation of cutaneous afferent nerve endings in vitro by a combination of inflammatory mediators and conditioning effect of substance P, Exp. Brain Res. 91, 467–76 (1992).

    Article  PubMed  CAS  Google Scholar 

  77. Steen, K.H., Steen, A.E., and Reeh, P.W., A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro, J. Neurosci. 15, 3982–89 (1995).

    PubMed  CAS  Google Scholar 

  78. Mamet, J., Baron, A., Lazdunski, M., and Voilley, N., Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels, J. Neurosci. 22, 10662–70 (2002).

    PubMed  CAS  Google Scholar 

  79. Voilley, N., de Weille, J., Mamet, J., and Lazdunski, M., Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors, J. Neurosci. 21, 8026–33 (2001).

    PubMed  CAS  Google Scholar 

  80. Mamet, J., Lazdunski, M., and Voilley, N., How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons, J. Biol. Chem. 278, 48907–13. Epub 2003 Sep 30 (2003).

    Article  PubMed  CAS  Google Scholar 

  81. Deval, E., Salinas, M., Baron, A., Lingueglia, E., and Lazdunski, M., ASIC2b-dependent regulation of ASIC3, an essential acid-sensing ion channel subunit in sensory neurons via the partner protein PICK-1, J. Biol. Chem. 279, 19531–9. Epub 2004 Feb 19 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. Baron, A., Deval, E., Salinas, M., Lingueglia, E., Voilley, N., and Lazdunski, M., Protein kinase C stimulates the acid-sensing ion channel ASIC2a via the PDZ domain-containing protein PICK1, J. Biol Chem. 277, 50463–8. Epub 2002 Oct 23 (2002).

    Article  PubMed  CAS  Google Scholar 

  83. Burgess, G.M., Mullaney, I., McNeill, M., Dunn, P.M., and Rang, H.P., Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture, J. Neurosci. 9, 3314–25 (1989).

    PubMed  CAS  Google Scholar 

  84. Barbas, D., DesGroseillers, L., Castellucci, V.F., Carew, T.J., and Marinesco, S., Multiple serotonergic mechanisms contributing to sensitization in aplysia: evidence of diverse serotonin receptor subtypes, Learn. Mem. 10, 373–86 (2003).

    Article  PubMed  Google Scholar 

  85. Nicholson, R., Small, J., Dixon, A.K., Spanswick, D., and Lee, K., Serotonin receptor mRNA expression in rat dorsal root ganglion neurons, Neurosci. Lett. 337, 119–22 (2003).

    Article  PubMed  CAS  Google Scholar 

  86. Leonard, A.S., Yermolaieva, O., Hruska-Hageman, A., Askwith, C.C., Price, M.P., Wemmie, J.A., and Welsh, M.J., cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1, Proc. Natl. Acad. Sci. USA. 100, 2029–34 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. Aley, K.O., Levine, J.D., Role of protein kinase A in the maintenance of inflammatory pain, J. Neurosci. 19, 2181–86 (1999).

    PubMed  CAS  Google Scholar 

  88. Julius, D., and Basbaum, A.I., Molecular mechanisms of nociception, Nature. 413, 203–10 (2001).

    Article  PubMed  CAS  Google Scholar 

  89. Atzori, M., Lau, D., Tansey, E.P., Chow, A., Ozaita, A., Rudy, B., and McBain, C.J., H2 histamine receptor-phosphorylation of Kv3.2 modulates interneuron fast spiking, Nat. Neurosci. 3, 791–98 (2000).

    Article  PubMed  CAS  Google Scholar 

  90. England, S., Bevan, S., and Docherty, R.J., PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurons via the cyclic AMP-protein kinase A cascade, J. Physiol. 495, 429–40 (1996).

    PubMed  CAS  Google Scholar 

  91. Taiwo, Y.O., Heller, P.H., and Levine, J.D., Mediation of serotonin hyperalgesia by the cAMP second messenger system, Neuroscience. 48, 479–83 (1992).

    Article  PubMed  CAS  Google Scholar 

  92. Taiwo, Y.O., and Levine, J.D., Direct cutaneous hyperalgesia induced by adenosine, Neuroscience. 38, 757–62 (1990).

    Article  PubMed  CAS  Google Scholar 

  93. Deanfield, J.E., Shea, M.J., and Selwyn, A.P., Clinical evaluation of transient myocardial ischemia during daily life, Am. J. Med. 79, 18–24 (1985).

    Article  PubMed  CAS  Google Scholar 

  94. Malliani, A., Significance of experimental models in assessing the link between myocardial ischemia and pain, Adv. Cardiol. 37, 126–41 (1990).

    PubMed  CAS  Google Scholar 

  95. Rosen, S.D., Paulesu, E., Nihoyannopoulos, P., Tousoulis, D., Frackowiak, R.S., Frith, C.D., Jones, T., and Camici, P.G., Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia [see comments], Ann. Intern. Med. 124, 939–49 (1996).

    PubMed  CAS  Google Scholar 

  96. Schang, S.J., Jr. and Pepine, C.J., Transient asymptomatic S-T segment depression during daily activity, Am. J. Cardiol. 39, 396–402 (1977).

    Article  PubMed  Google Scholar 

  97. Malliani, A., Schwartz, P.J., and Zanchetti, A., A sympathetic reflex elicited by experimental coronary occlusion, Am. J. Physiol. 217, 703–9 (1969).

    PubMed  CAS  Google Scholar 

  98. Minisi, A.J., and Thames, M.D., Activation of cardiac sympathetic afferents during coronary occlusion: Evidence for reflex activation of sympathetic nervous system during transmural myocardial ischemia in the dog, Circulation. 84, 357–67 (1991).

    PubMed  CAS  Google Scholar 

  99. Webb, S.W., Adgey, A.A., and Pantridge, J.F., Autonomic disturbance at onset of acute myocardial infarction, Br. Med. J. 3, 89–92 (1972).

    Article  PubMed  CAS  Google Scholar 

  100. Gottlieb, S.S., McCarter, R.J., and Vogel, R.A., Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction, N. Engl. J. Med. 339, 489–97 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Benson, C.J., McCleskey, E.W. (2007). ASICs Function as Cardiac Lactic Acid Sensors During Myocardial Ischemia. In: Wang, D.H. (eds) Molecular Sensors for Cardiovascular Homeostasis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47530-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-47530-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-47528-8

  • Online ISBN: 978-0-387-47530-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics