Graphical Interpretation of the Charge Sheet Model

  • Paul G. A. JespersEmail author
Part of the Analog Circuits and Signal Processing book series (ACSP)


An interesting representation of the drain current can be obtained when the expression below is used for the drain current (Tsividis 1999):
$${I}_{D} = \mu {C}_{ox}^{{\prime}}\frac{W} {L} \cdot {\int \nolimits }_{{V }_{S}}^{{V }_{D} }\left (- \frac{{Q}_{i}^{{\prime}}} {{C}_{ox}^{{\prime}}}\right )\,\mathit{dV }\,$$
The equation is derived from, the proportionality of the minority carrier density to the exponential function acknowledged by Boltzmann statistics:
$${Q}_{i}^{{\prime}}\propto \exp \left (\frac{{\psi }_{S} - 2{\phi }_{B} - V } {{U}_{T}} \right )$$


  1. Cand M, Lardy JL, Demoulin E, Senn P (1986) Conception des circuits integers. Annexe 1, Eyrolles, Paris, pp 163–169Google Scholar
  2. Enz CC, Vittoz EA (2006) Charge-based MOS Transistor Modeling. The EKV model for low-power RF IC design. Wiley, ChichesterGoogle Scholar
  3. Jespers PGA, Jusseret C, Leduc Y (June 1977) A fast sample and hold charge-sensing circuit for photodiode arrays. IEEE JSSC SC-12(3):232–237Google Scholar
  4. Tsividis Y (1999) Operation and modelling of the MOS transistor, EE series. Mc-Graw Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations