Graphical Interpretation of the Charge Sheet Model
Chapter
First Online:
- 1 Citations
- 2.7k Downloads
Abstract
An interesting representation of the drain current can be obtained when the expression below is used for the drain current (Tsividis 1999): The equation is derived from, the proportionality of the minority carrier density to the exponential function acknowledged by Boltzmann statistics:
$${I}_{D} = \mu {C}_{ox}^{{\prime}}\frac{W} {L} \cdot {\int \nolimits }_{{V }_{S}}^{{V }_{D} }\left (- \frac{{Q}_{i}^{{\prime}}} {{C}_{ox}^{{\prime}}}\right )\,\mathit{dV }\,$$
(3.1)
$${Q}_{i}^{{\prime}}\propto \exp \left (\frac{{\psi }_{S} - 2{\phi }_{B} - V } {{U}_{T}} \right )$$
(3.2)
References
- Cand M, Lardy JL, Demoulin E, Senn P (1986) Conception des circuits integers. Annexe 1, Eyrolles, Paris, pp 163–169Google Scholar
- Enz CC, Vittoz EA (2006) Charge-based MOS Transistor Modeling. The EKV model for low-power RF IC design. Wiley, ChichesterGoogle Scholar
- Jespers PGA, Jusseret C, Leduc Y (June 1977) A fast sample and hold charge-sensing circuit for photodiode arrays. IEEE JSSC SC-12(3):232–237Google Scholar
- Tsividis Y (1999) Operation and modelling of the MOS transistor, EE series. Mc-Graw Hill, New YorkGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2010