Skip to main content

The Tetrahymena Conjugation Junction

  • Chapter
Cell-Cell Channels

Abstract

Those who study ciliates have struggled over the years to establish a place in the pantheon of model organisms.1 Eukaryotic cell biologists have turned profitably to yeast models for the powerful genetic tools at their disposal, while developmental biologists have cultivated a gallery of metazoan embryos with contributions from the plant and fungal worlds. Yet ciliates continue to contribute to fundamental aspects of both cell biology and development, often by extreme example, and among the ciliates, Tetrahymena has emerged as one of the stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sapp J. Beyond the Gene: Cytoplasmic inheritance and the Struggle for Authority in Genetics. New York: Oxford University Press, 1987.

    Google Scholar 

  2. Lee JJ, Leedale GF, Bradbury PC. An Illustrated Guide to the Protozoa: Organisms Traditionally Referred to as Protozoa, or Newly Discovered Groups. 2nd ed. Lawrence: Society of Protozoologists, 2000.

    Google Scholar 

  3. Frankel J. Pattern Formation: Ciliate Studies and Models. New York: Oxford University Press, 1989.

    Google Scholar 

  4. Frankel J. Participation of the undulating membrane in the formation of oral replacement primordia in Tetrahymena pyriformis. J Protozool 1969; 16:26–35.

    PubMed  CAS  Google Scholar 

  5. Nelsen EM. Transformation in Tetrahymena pyriformis: Development of an inducible phenotype. Dev Biol 1978; 66:17–31.

    Article  PubMed  CAS  Google Scholar 

  6. Nelsen EM, DeBault LE. Transformation in Tetrahymena pyriformis—Description of an inducible phenotype. J Protozool 1978; 25:113–119.

    PubMed  CAS  Google Scholar 

  7. Bell G. Sex and death in protozoa: The history of an obsession. Cambridge: Cambridge University Press, 1988.

    Google Scholar 

  8. Wolfe J. Cytoskeletal reorganization and plasma membrane fusion in conjugation Tetrahymena. J Cell Sci 1985; 73:69–85.

    PubMed  CAS  Google Scholar 

  9. Wolfe J. The conjugation junction of Tetrahymena: Its structure and development. J Morphol 1982; 172:159–178.

    Article  Google Scholar 

  10. Bruns PJ, Brussard TB. Pair formation in Tetrahymena pyriformis, an inducible developmental system. J Exp Zool 1974; 188:337–344.

    Article  PubMed  CAS  Google Scholar 

  11. Nanney DL, Caughey PA. Mating type determination in Tetrahymena pyriformis. Proc Natl Acad Sci USA 1953; 39:1057–1053.

    Article  PubMed  CAS  Google Scholar 

  12. Lynch TJ, Brickner J, Nakano KJ et al. Genetic map of randomly amplified DNA polymorphisms closely linked to the mating type locus of Tetrahymena thermophila. Genetics 1995; 141:1315–1325.

    PubMed  CAS  Google Scholar 

  13. Elliot AM, Nanney DL. Conjugation in Tetrahymena. Science 1952; 116:33–34.

    Article  Google Scholar 

  14. Nanney DL, Caughey PA. An unstable nuclear condition in Tetrahymena pyriformis. Genetics 1955; 40:388–398.

    PubMed  CAS  Google Scholar 

  15. Bruns PJ, Palestine RF. Costimulation in Tetrahymena pyriformis: A developmental interaction between specially prepared cells. Dev Biol 1975; 42:75–83.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson GA. Studies of membrane formation in Tetrahymena pyriformis. I. Rates of phospholipid biosynthesis. Biochemistry 1967; 6:2015–2022.

    Article  PubMed  CAS  Google Scholar 

  17. Dryl S. Antigenic transformation in Paramecium aurelia after homologous antiserum treatment during autogamy and conjugation. J Protozool 1959; 6(Suppl):25.

    Google Scholar 

  18. Bruns PJ, Brussard TB. Positive selection for mating with functional heterokaryons in Tetrahymena pyriformis. Genetics 1974; 81:831–841.

    Google Scholar 

  19. Bruns PJ, Cassidy-Hanley D. Biolistic transformation of macro-and micronuclei. Meth Cell Biol 2000; 62:501–512.

    CAS  Google Scholar 

  20. Wellnitz WR, Bruns PJ. The prepairing events in Tetrahymena thermophila. Analysis of blocks imposed by high concentrations of Tris-HCl. Exp Cell Res 1979; 119:175–180.

    Article  PubMed  CAS  Google Scholar 

  21. Wellnitz WR, Bruns PJ. The prepairing events in Tetrahymena. II. Partial loss of developmental information upon refeeding starved cells. Exp Cell Res 1982; 137:317–328.

    Article  PubMed  CAS  Google Scholar 

  22. Allewell JM, Oles J, Wolfe J. A physicochemical analysis of conjugation in Tetrahymena pyriformis. Exp Cell Res 1976; 97:394–405.

    Article  PubMed  CAS  Google Scholar 

  23. Finley MJ, Bruns PJ. Costimulation in Tetrahymena. II. A nonspecific response to heterotypic cell-cell interactions. Dev Biol 1980; 79:81–94.

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi M. Does fluid have any function for mating in Tetrahymena? Scient Rep Tohoku Univ 1973; 36:223–229.

    Google Scholar 

  25. Adair WS, Barker R, Turner Jr RS et al. Demonstration of a cell-free factor involved in cell inter actions during mating in Tetrahymena. Nature 1978; 274:54–55.

    Article  PubMed  CAS  Google Scholar 

  26. Wolfe J, Turner R, Barker R et al. The need for an extracellular component for cell pairing in Tetrahymena. Exp Cell Res 1979; 121:27–30.

    Article  PubMed  CAS  Google Scholar 

  27. Wolfe J, Meal KJ, Soiffer R. Limiting conditions for conjugation in Tetrahymena: Cellular development and factor active in conjugation. J Exp Zool 1980; 212:37–46.

    Article  Google Scholar 

  28. Fujushima S, Tsuda M, Mikami Y et al. Costimulation-induced rounding in Tetrahymena thermophila: Early cell-shape transformation induced by sexual cell-to-cell collisions between complementary mating types. Dev Biol 1993; 155:198–205.

    Article  Google Scholar 

  29. Allewell NM, Wolfe J. A kinetic analysis of the memory of a developmental interaction: Mating interactions in Tetrahymena pyriformis. Exp Cell Res 1977; 109:15–24.

    Article  PubMed  CAS  Google Scholar 

  30. Kitamura A, Sugai T, Kitamura Y. Homotypic pair formation during conjugation in Tetrahymena thermophila. J Cell Sci 1986; 82:223–234.

    PubMed  CAS  Google Scholar 

  31. Virtue MA, Cole ES. A cytogenetic study of devolopment in mechanically disrupted pairs of Tetrahymena thermophila. J Euk Microbiol 1999; 46:597–605.

    Article  PubMed  CAS  Google Scholar 

  32. Kiersnowska M, Kaczanowski A, Morga J. Macronuclear development in conjugants of Tetrahymena thermophila, which were artificially separated at meiotic prophase. J Euk Microbiol 2000; 47:139–147.

    Article  PubMed  CAS  Google Scholar 

  33. Wolfe J, Grimes GW. Tip transformation in Tetrahymena: A morphogenetic response to interactions between mating types. J Protozool 1979; 26:82–89.

    Google Scholar 

  34. Kurz S, Tiedtke A. The Golgi apparatus of Tetrahymena thermophila. J Euk Microbiol 1993; 40:10–13.

    Article  PubMed  CAS  Google Scholar 

  35. Elliott AM. Biology of Tetrahymena. Dowden Hutchinson and Ross Inc, 1973.

    Google Scholar 

  36. Ofer L, Levkovits H, Loyter A. Conjugation in Tetrahymena pyriformis. The effect of polylysine, Con A, bivalent metals on the conjugation process. J Cell Biol 1976; 7:287–293.

    Article  Google Scholar 

  37. Frisch A, Loyter A. Inhibition of conjugation in Tetrahymena pyriformis by Con A. Localization of Con A binding sites. Exp Cell Res 1977; 110:337–346.

    Article  PubMed  CAS  Google Scholar 

  38. Watanabe S, Toyohara A, Suzaki T et al. The relation of concanavalin A receptor distribution to the conjugation process in Tetrahymena thermophila. J Protozool 1981; 28:171–175.

    CAS  Google Scholar 

  39. Wolfe J, Pagliaro L, Fortune H. Coordination of concanavalin-A-receptor distribution and surface differentiation in Tetrahymena. Differentiation 1986; 31:1–9.

    Article  CAS  Google Scholar 

  40. Pagliaro L, Wolfe J. Concanavalin A binding induces association of possible mating-type receptors with the cytoskeleton in Tetrahymena. Exp Cell Res 1987; 168:138–152.

    Article  PubMed  CAS  Google Scholar 

  41. Wolfe J, Feng S. Concanavalin A receptor “tipping” in Tetrahymena and its relationship to cell adhesion during conjugation. Development 1988; 102:699–708.

    Google Scholar 

  42. Suganuma Y, Yamamoto H. Conjugation in Tetrahymena: Its relation to concanavalin A receptor distribution on the cell surface. Zool Sci 1988; 5:323–330.

    Google Scholar 

  43. van Bell CT. An analysis of protein synthesis, membrane proteins, and concanavalin A-binding proteins during conjugation in Tetrahymena thermophila. Dev Biol 1983; 98:173–181.

    Article  PubMed  Google Scholar 

  44. Driscoll C, Hufnagel LA. Affinity-purification of concanavalin A-binding ciliary glycoconjugates of starved and feeding Tetrahymena thermophila. J Euk Microbiol 1999; 46:142–146.

    Article  PubMed  CAS  Google Scholar 

  45. Frisch A, Levkowitz H, Loyter A. Inhibition of conjugation and cell division in Tetrahymena pyriformis by tunicamycin: A possible requirement of glycoprotein synthesis for induction of conjugation. Biochem Biophys Res Commun 1976; 72:138–145.

    Article  PubMed  CAS  Google Scholar 

  46. Pagliaro L, Wolfe J. Concanavalin-A binding induces association of possible mating type receptors with the cytoskeleton of Tetrahymena. Exp Cell Res 1987; 168:138–152.

    Article  PubMed  CAS  Google Scholar 

  47. Wolfe J. Cytoskeletal reorganization and plasma membrane fusion in conjugating Tetrahymena. J Cell Sci 1985; 73:69–85.

    PubMed  CAS  Google Scholar 

  48. Orias E. Ciliate conjugation. In: Gall LG, ed. The Molecular Biology of Ciliated Protozoa. Orlando: Academic Press, 1986:45–94.

    Google Scholar 

  49. Orias JD, Hamilton EP, Orias E. A microtubular meshwork associated with gametic pronuclear transfer across a cell-cell junction. Science 1983; 222:181–184.

    Article  PubMed  CAS  Google Scholar 

  50. Allen RD. Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum. J Cell Biol 1971; 49:1–20.

    Article  PubMed  CAS  Google Scholar 

  51. Sibley JT, Hanson ED. Identity and function of a subcortical cytoskeleton in Paramecium. Arch Protistenk 1974; 116:221–235.

    Google Scholar 

  52. Vaudaux P. Isolation and identification of specific cortical proteins in Tetrahymena pyriformis GL. J Protozool 1976; 23:458–464.

    PubMed  CAS  Google Scholar 

  53. Williams NE, Honts JE, Jaeckel-Williams RF. Regional differentiation of the membrane skeleton in Tetrahymena. J Cell Sci 1987; 87:457–463.

    PubMed  Google Scholar 

  54. Williams NE, Honts JE. The assembly and positioning of cytoskeletal elements in Tetrahymena. Development 1987; 100:23–30.

    PubMed  CAS  Google Scholar 

  55. Williams NE, Honts JE. Isolation and fractionation of the Tetrahymena cytoskeleton and oral apparatus. Meth Cell Biol 1995; 47:301–306.

    CAS  Google Scholar 

  56. Williams NE, Honts JE, Dress VM et al. Monoclonal antibodies reveal complex structure in the membrane skeleton of Tetrahymena. J Eukar Microbiol 1995; 42:422–427.

    Article  CAS  Google Scholar 

  57. Honts JE, Williams NE. novel cytoskeletal proteins in the cortex of Tetrahymena. J Eukar Microbiol 2003; 50:9–14.

    Article  CAS  Google Scholar 

  58. Williams NE. The epiplasm gene EPC1 influences cell shape and cortical pattern in Tetrahymena thermophila. J Eukar Microbiol 2004; 51:201–206.

    Article  CAS  Google Scholar 

  59. McDonald BB. The exchange of RNA and protein during conjugation in Tetrahymena. J Protozool 1966; 13:277–285.

    PubMed  CAS  Google Scholar 

  60. Nanney DL. Nucleocytoplasmic interactions during conjugation in Tetrahymena. Biol Bull 1953; 105:133–148.

    Article  Google Scholar 

  61. Elliot AM, Hayes RE. Mating types in Tetrahymena. Biol Bull 1953; 105:269–284.

    Article  Google Scholar 

  62. Ray CJ. Meiosis and nuclear behavior in Tetrahymena pyriformis. J Protozool 1956; 3:604–610.

    Google Scholar 

  63. Martindale DW, Allis CD, Bruns PJ. Conjugation in Tetrahymena thermophila: A temporal analysis of cytological stages. Exp Cell Res 1982; 140:227–236.

    Article  PubMed  CAS  Google Scholar 

  64. Cole ES, Soelter TA. A mutational analysis of conjugation in Tetrahymena themophila 2. Phenotypes affecting middle and late development: Third prezygotic division, pronuclear exchange, pronuclear fusion and postzygotic development. Dev Biol 1997; 189:233–245.

    Article  PubMed  CAS  Google Scholar 

  65. Cole ES, Cassidy-Hanley D, Hemish J et al. A mutational analysis of conjugation in Tetrahymena themophila 1. Phenotypes affecting early development: Meiosis to nuclear selection. Dev Biol 1997; 189:215–232.

    Article  PubMed  CAS  Google Scholar 

  66. Cole ES, Virtue MA, Stuart KR. Development in electrofused conjugants of Tetrahymena thermophila. J Eukar Microb 2001; 48:266–279.

    Article  CAS  Google Scholar 

  67. Gaertig J, Fleury A. Spatiotemporal reorganization of intracytoplasmic microtubules is associated with nuclear selection and differentiation during developmental process in the ciliate Tetrahymena thermophila. Protoplasma 1992; 167:74–87.

    Article  Google Scholar 

  68. Numata O, Sugai T, Watanabe Y. Control of germ cell nuclear behavior at fertilization by Tet rahymena intermediate filament protein. Nature 1985; 314:192–193.

    Article  PubMed  CAS  Google Scholar 

  69. Takagi I, Numata O, Watanabe Y. Involvement of 14-nm filament-forming protein and tubulin in gametic pronuclear behavior during conjugation in Tetrahymena. J Eukar Microbiol 1991; 38:345–351.

    Article  CAS  Google Scholar 

  70. Hamilton EP. Dissection of fertilization and development in Tetrahymena using anti-microtubule drugs [Ph.D. dissertation]. Santa Barbara: Division of Biological Sciences, University of California Santa Barbara, 1984.

    Google Scholar 

  71. Hamilton EP, Suhr-Jessen PB. Autoradiographic evidence for self-fertilization in Tetrahymena thermophila. Exp Cell Res 1980; 126:391–396.

    Article  PubMed  CAS  Google Scholar 

  72. Hamilton EP, Suhr-Jessen PB, Orias E. Pronuclear fusion failure: An alternate conjugational path-way in Tetrahymena thermophila induced by vinblastine. Genetics 1988; 118:627–636.

    PubMed  CAS  Google Scholar 

  73. Kaczanowski A, Gaertig J, Kubiak J. Effect of the antitubulin drug nocodazole on meiosis and postmeiotic development in Tetrahymena thermophila. Induction of achiasmatic meiosis. Exp Cell Res 1985; 158:244–256.

    Article  PubMed  CAS  Google Scholar 

  74. Nelsen EM, Williams NE, Yi H et al. “Fenestrin” and conjugation in Tetrahymena thermophila. J Euk Microbiol 1994; 41:483–495.

    Article  PubMed  CAS  Google Scholar 

  75. Janetopoulos C, Cole E, Smothers JF et al. The conjusome: A novel structure in Tetrahymena found only during sexual reorganization. J Cell Sci 1999; 112:1003–1111.

    PubMed  CAS  Google Scholar 

  76. Smothers JF, Mizzen CA, Tubbert MM et al. Pdd1p associates with germline-restricted chromatin and a second novel anlagen-enriched protein in developmentally programmed DNA elimination structures. Development 1997; 124:4537–4545.

    PubMed  CAS  Google Scholar 

  77. Smothers JF, Madireddi MT, Warner FD et al. Programmed DNA degradation and nucleolar biogenesis occur in distinct organelles during macronuclear development in Tetrahymena. J Euk Microbiol 1997; 44:79–88.

    Article  PubMed  CAS  Google Scholar 

  78. Madireddi MT, Coyne RC, Smothers JF et al. Pdd1p, A novel chromodomain-containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 1996; 87:75–84.

    Article  PubMed  CAS  Google Scholar 

  79. Mochizuki K, Gorovsky MA. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev 2005; 19:77–89.

    Article  PubMed  CAS  Google Scholar 

  80. Mochizuki K, Gorovsky MA. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev 2004; 18:2068–2073.

    Article  PubMed  CAS  Google Scholar 

  81. Mochizuki K, Fine NA, Fujisawa T et al. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 2002; 110:689–699.

    Article  PubMed  CAS  Google Scholar 

  82. Ron A, Suhr-Jessen PB. Protein synthesis patterns in conjugating Tetrahymena thermophila. Exp Cell Res 1981; 133:325–330.

    Article  PubMed  CAS  Google Scholar 

  83. Garfinkel MD, Wolfe J. Alterations in gene expression induced by a specific cell interaction during mating in Tetrahymena thermophila. Exp Cell Res 1981; 133:317–324.

    Article  PubMed  CAS  Google Scholar 

  84. Suhr-Jessen PB. Stage-specific changes in protein synthesis during conjugation in Tetrahymena thermophila. Exp Cell Res 1984; 151:374–383.

    Article  PubMed  CAS  Google Scholar 

  85. van Bell CT, Williams NE. Membrane protein differences correlated with the development of mating competence in Tetrahymena thermophila. J Euk Microbiol 1984; 31:112–116.

    Article  Google Scholar 

  86. Suhr-Jessen P, Sailing L, Larsen HC. Polypeptides during early conjugation in Tetrahymena thermophila. Exp Cell Res 1986; 163:549–557.

    Article  PubMed  CAS  Google Scholar 

  87. Haga N. Transformation of sexual maturity to immaturity by microinjecting immature genomic DNA in Paramecium. Zool Sci 1991; 8:11–24.

    Google Scholar 

  88. Miwa I. Destruction of immaturin activity in early mature mutants of Paramecium caudatum. J Cell Sci 1984; 72:111–120.

    PubMed  CAS  Google Scholar 

  89. Joachimiak E, Sikora J, Kaczanowska J et al. Characterization of the fenestrin, a cytoskeletal pro tein involved in Tetrahymena cell polarity and of its coding gene. J Euk Microbiol 2005; 52:7S.

    Article  Google Scholar 

  90. Takemasa T, Ohnishi K, Kobayashi T et al. Cloning and sequencing of the gene for Tetrahymena calcium-binding 25-kDa protein (TCBP-25). J Biol Chem 1989; 264:19293–19301.

    PubMed  CAS  Google Scholar 

  91. Takemasa T, Takagi T, Kobayashi T et al. The third calmodulin family protein in Tetrahymena. Cloning of the cDNA for Tetrahymena calcium-binding protein of 23 kDa (TCBP-23). J Biol Chem 1990; 265:2514–2517.

    PubMed  CAS  Google Scholar 

  92. Hanyu K, Takemasa T, Numata O et al. Immunofluorescence localization of a 25-kDa Tetrahymena EF-hand Ca2+-binding protein, TCBP-25, in the cell cortex and possible involvement in conjugation. Exp Cell Res 1995; 219:487–493.

    Article  PubMed  CAS  Google Scholar 

  93. Hanyu K, Numata O, Takahashi M et al. Immunofluorescence localization of a 23-kDa Tetrahymena calcium-binding protein, TCBP-23, in the cell cortex. J Biochem (Tokyo) 1996; 119:914–919.

    PubMed  CAS  Google Scholar 

  94. Numata O, Hanyu K, Takeda T et al. Tetrahymena calcium-binding proteins, TCBP-25 and TCBP-23. Meth Cell Biol 2000; 62:455–465.

    Article  CAS  Google Scholar 

  95. Kim K, Son M, Peterson JB et al. Ca2+-binding proteins of cilia and infraciliary lattice of Paramecium tetraurelia: Their phosphorylation by purified endogenous Ca(2+)-dependent protein kinases. J Cell Sci 2002; 115:1973–1984.

    PubMed  CAS  Google Scholar 

  96. Numata O, Watanabe Y. In vitro assembly and disassembly of 14-nm filament from Tetrahymena pyriformis. The protein component of 14-nm filament is a 49,000-Dalton protein. J Biochem (Tokyo) 1982; 91:1563–1573.

    PubMed  CAS  Google Scholar 

  97. Numata O, Hirono M, Watanabe Y. Involvement of Tetrahymena intermediate filament protein, a 49K protein, in the oral morphogenesis. Exp Cell Res 1983; 148:207–220.

    Article  PubMed  CAS  Google Scholar 

  98. Numata O, Tomiyoshi T, Kurasawa Y et al. Antibodies against Tetrahymena 14-nm filament-forming protein recognize the replication band in Euplotes. Exp Cell Res 1991; 193:183–189.

    Article  PubMed  CAS  Google Scholar 

  99. Numata O, Takemasa T, Takagi I et al. Tetrahymena 14-NM filament-forming protein has citrate synthase activity. Biochem Biophys Res Commun 1991; 174:1023–1034.

    Article  Google Scholar 

  100. Numata O. Multifunctional proteins in Tetrahymena: 14nm filament protein/citrate synthase and translation elongation factor-1 alpha. Int Rev Cytol 1996; 164:1–35.

    PubMed  CAS  Google Scholar 

  101. Allen SL, File SK, Koch SL. Genomic exclusion in Tetrahymena. Genetics 1967; 55:823–837.

    PubMed  Google Scholar 

  102. Gaertig J, Kaczanowski A. Correlation between the shortened period of cell pairing during genomic exclusion and the block in post-transfer nuclear development in Tetrahymena thermophila. Dev Growth Diff 1987; 29:553–562.

    Article  Google Scholar 

  103. Cole ES, Frankel J, Jenkins LM. bcd: A mutation affecting the width of organelle domains in the cortex of Tetrahymena thermophila. Wilhelm Roux’s Arch Dev Biol 1987; 196:421–433.

    Article  Google Scholar 

  104. Cole ES. Conjugal blocks in Tetrahymena pattern mutants and their cytoplasmic rescue. I. Broad ened cortical domains (bcd). Dev Biol 1991; 148:403–419.

    Article  PubMed  CAS  Google Scholar 

  105. Frankel J, Nelsen EM. Positional reorganization in compound janus cells of Tetrahymena thermophila. Development 1987; 99:51–68.

    PubMed  CAS  Google Scholar 

  106. Cole ES, Frankel J. Conjugal blocks in Tetrahymena pattern mutants and their cytoplasmic rescue. II. Janus A. Dev Biol 1991; 148:420–428.

    Article  PubMed  CAS  Google Scholar 

  107. Kaczanowski A. Mutation affecting cell separation and macronuclear resorption during conjugation in Tetrahymena thermophila: Early expression of the zygotic genotype. Dev Genet 1992; 13:58–65.

    Article  PubMed  CAS  Google Scholar 

  108. Ward JG, Herrick G. Effects of the transcription inhibitor actinomycin D on postzygotic development of Tetrahymena thermophila conjugants. Dev Biol 1994; 173:174–184.

    Article  Google Scholar 

  109. Lansing TJ, Frankel J, Jenkins LM. Oral ultrastructure and oral development in the misaligned undulating membrane mutant of Tetrahymena thermophila. J Protozool 1985; 32:126–139.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Cole, E.S. (2006). The Tetrahymena Conjugation Junction. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_3

Download citation

Publish with us

Policies and ethics