Skip to main content

Cytonemes as Cell-Cell Channels in Human Blood Cells

  • Chapter
Cell-Cell Channels

Abstract

Human blood cells similar to embryonic and nerve cells can project thin and very long extensions having the same diameter along the entire length called cytonemes. Cytonemes were shown to connect blood cells over a distance of several cell diameters and transport membrane proteins, lipids and ions from one of connected cells to another one, thus executing long range intercellular communications. Formation and breakage of cytonemes upon neutrophil rolling along the vessel walls regulate rolling velocity and control neutrophil adhesion to the endothelium. Direct interaction of neutrophils with platelets over a distance seems to be of great importance in thrombosis. Cytonemes of B cells, peripheral NK cells, monocytes and dendritic cells can play a critical role in long range cellular signalling upon antigen presentation and formation of immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gustafson T, Wolpert L. Cellular movement and contact in sea urchin morphogenesis. Biol Rev Camb Philos Soc 1967; 42:442–498.

    PubMed  CAS  Google Scholar 

  2. Karp GC, Solursh M. Dynamic activity of the filopodia of sea urchin embryonic cells and their role in directed migration of the primary mesenchyme in vitro. Dev Biol 1985; 112:276–283.

    Article  PubMed  CAS  Google Scholar 

  3. Solursh M, Lane MC. Extracellular matrix triggers a directed cell migratory response in sea urchin primary mesenchyme cells. Dev Biol 1988; 130:397–401.

    Article  PubMed  CAS  Google Scholar 

  4. Malinda KM, Fisher GW, Ettensohn CA. Four-dimensional microscopic analysis of the filopodial behaviour of primary mesenchyme cells during gastrulation in the sea urchin embryo. Dev Biol 1995; 172:552–566.

    Article  PubMed  CAS  Google Scholar 

  5. Miller J, Fraser SE, McClay D. Dynamics of thin filopodia during sea urchin gastrulation. Development 1995; 121:2501–2511.

    PubMed  CAS  Google Scholar 

  6. Ramirez-Weber FA, Kornberg TB. Cytonemes: cellular processes that project to the principle signaling centre in Drosophila imaginal discs. Cell 1999; 97:599–607.

    Article  PubMed  CAS  Google Scholar 

  7. Hsiung F, Ramirez-Weber FA, Iwaki DD et al. Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 2005; 437:560–563.

    Article  PubMed  CAS  Google Scholar 

  8. Goode S. Germ cell cytonemes? Trends Cell Biol 2000; 10:89–90.

    Article  PubMed  CAS  Google Scholar 

  9. Schmidtke DW, Diamond SL. Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J Cell Biol 2000; 149:719–729.

    Article  PubMed  CAS  Google Scholar 

  10. Park EY, Smith MJ, Stropp ES et al. Comparison of PSGL-1 microbead and neutrophil rolling: Microvillus elongation stabilizes P-selectin bond clusters. Biophys J 2002; 82:1835–1847.

    Article  PubMed  CAS  Google Scholar 

  11. Ramachandran V, Williams M, Yago T et al. Dynamic alterations of membrane tether stabilize leukocyte rolling on P-selectin. Proc Natl Acad Sci USA 2004; 101:13519–13524.

    Article  PubMed  CAS  Google Scholar 

  12. Galkina SI, Sudina GF, Ullrich V. Inhibition of neutrophil spreading during adhesion to fibronectin reveals formation of long tubulovesicular cell extensions (cytonemes). Exp Cell Res 2001; 66:222–228.

    Article  CAS  Google Scholar 

  13. Galkina SI, Molotkovsky JG, Ullrich V et al. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide. Exp Cell Res 2005; 304:620–629.

    Article  PubMed  CAS  Google Scholar 

  14. Gupta N, DeFranco AL. Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation. Mol Biol Cell 2003; 14:432–444.

    Article  PubMed  CAS  Google Scholar 

  15. Onfelt B, Nedvetzki S, Yanagi K et al. Cutting edge: Membrane nanotubes connect immune cells. J Immunol 2004; 173:1511–1513.

    PubMed  Google Scholar 

  16. Watkins SC, Salter RD. Functional connectivity between immune cells mediated by tunnelling nanotubules. Immunity 2005; 23:309–318.

    Article  PubMed  CAS  Google Scholar 

  17. Erlandsen SL, Hasslen SR, Nelson RD. Detection and spatial distribution of the beta 2 integrin (Mac-1) and L-selectin (LECAM-1) adherence receptors on human neutrophils by high-resolution field emission SEM. J Histochem Cytochem 1993; 41:327–333.

    PubMed  CAS  Google Scholar 

  18. von Andrian UH, Hasslen SR, Nelson RD et al. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 1995; 82:989–999.

    Article  Google Scholar 

  19. Moore KL, Patel KD, Bruehl RE et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 1995; 128:661–667.

    Article  PubMed  CAS  Google Scholar 

  20. Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43:109–142.

    PubMed  CAS  Google Scholar 

  21. Kubes P, Kurose I, Granger DN. NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am J Physiol 1994; 267:H931–H937.

    PubMed  CAS  Google Scholar 

  22. Raghunathan A, Sivakamasundari R, Wolenski J et al. Functional analysis of B144/LST1: A gene in the tumor necrosis factor cluster that induces formation of long filopodia in eukaryotic cells. Exp Cell Res 2001; 268:230–244.

    Article  PubMed  CAS  Google Scholar 

  23. Shao JY, Ting-Beall HP, Hochmuth RM. Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci USA 1998; 95:6797–6802.

    Article  PubMed  CAS  Google Scholar 

  24. Marcus WD, Hochmuth RM. Experimental studies of membrane tethers formed from human neutrophils. Ann Biomed Eng 2002; 30:1273–1280.

    Article  PubMed  Google Scholar 

  25. Karlsson A, Karlsson R, Karlsson M et al. Networks of nanotubes and containers. Nature 2001; 409:150–152.

    Article  PubMed  CAS  Google Scholar 

  26. Buys SS, Keogh EA, Kaplan J. Fusion of intracellular membrane pools with cell surfaces of macrophages stimulated by phorbol esters and calcium ionophores. Cell 1984; 38:569–576.

    Article  PubMed  CAS  Google Scholar 

  27. Gagnon E, Dudos S, Rondeau C et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 2002; 110:119–131.

    Article  PubMed  CAS  Google Scholar 

  28. Miyake K, McNeil PL. Vesicle accumulation and exocytosis at sites of plasma membrane disruption. J Cell Biol 1995; 131:1737–1745.

    Article  PubMed  CAS  Google Scholar 

  29. Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 2001; 106:157–169.

    Article  PubMed  CAS  Google Scholar 

  30. Borregaard N, Kjeldsen L, Lollike K et al. Granules and vesicles of human neutrophils. The role of endomembranes as source of plasma membrane proteins. Eur J Haematol 1993; 51:318–322.

    Article  PubMed  CAS  Google Scholar 

  31. Lippincott-Schwartz J, Yuan L, Tipper C et al. Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 1991; 67:601–616.

    Article  PubMed  CAS  Google Scholar 

  32. Jena BP. Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J Cell Mol Med 2004; 8:1–21.

    Article  PubMed  CAS  Google Scholar 

  33. Lollike K, Lindau M, Calafat J et al. Compound exocytosis of granules in human neutrophils. J Leukoc Biol 2002; 71:973–980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Ivanovna Galkina .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Galkina, S.I., Bogdanov, A.G., Davidovich, G.N., Sud’ina, G.F. (2006). Cytonemes as Cell-Cell Channels in Human Blood Cells. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_17

Download citation

Publish with us

Policies and ethics