Skip to main content

Cytoplasmic Bridges as Cell-Cell Channels of Germ Cells

  • Chapter
Cell-Cell Channels

Abstract

Transient intercellular bridges are seen between a wide variety of cells before the completion of cytokinesis.1 However, these are distinct from stable intercellular bridges that remain persistent after incomplete cytokinesis.2 The diameter of the cytoplasmic bridges is rather big, 1–10 µm, compared with the very tiny gap junctions which allow passage of only small molecules or peptides (< 1–2 kDa). Among somatic cells there are a number of examples of intercellular bridges, for instance in muscle cells and neurons. The best studied entity at both functional and molecular level is cytoplasmic bridges connecting germ cells. Many conserved features exist in cytoplasmic bridge formation and function during germ cell development: the diameters of the bridges increase during gametogenesis and is 1–10 µm in Drosophila oogenesis and 1–3 urn in mammalian spermatogenesis depending on the developmental stage of the gametes. The transportation mechanisms, e.g., the importance of cytoskeleton during transportation, are quite similar in both sexes from insects to mammals. Obviously the function of cytoplasmic bridges is to facilitate the sharing of cytoplasmic constituents between neighbouring cells.3 This is probably most energy-efficient way and allows germ cell differentiation to be directed by the products of both parental chromosomes. In this article special features and recent investigations of cytoplasmic bridges as cell-cell channels during gametogenesis are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanders SL, Field CM. Cell division. Septins in common? Curr Biol 1994; 4:907–910.

    Article  PubMed  CAS  Google Scholar 

  2. Robinson DN, Cooley L. Stable intercellular bridges in development: The cytoskeleton lining the tunnel. Trends Cell Biol 1996; 6:474–479.

    Article  PubMed  CAS  Google Scholar 

  3. Erickson RP. Haploid gene expression versus meiotic drive: The relevance of intercellular bridges during spermatogenesis. Nat New Biol 1973; 243:210–212.

    Article  PubMed  CAS  Google Scholar 

  4. de Cuevas M, Lilly MA, Spradling AC. Germline cyst formation in Drosophila. Annu Rev Genet 1997; 31:405–428.

    Article  PubMed  Google Scholar 

  5. Gumienny TL, Lambie E, Hartwieg E et al. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 1999; 126:1011–1022.

    PubMed  CAS  Google Scholar 

  6. Pepling ME, Spradling AC. Female mouse germ cells form synchronously dividing cysts. Development 1998; 125:3323–3328.

    PubMed  CAS  Google Scholar 

  7. Alexandrova O, Schade M, Bottger A et al. Oogenesis in Hydra: Nurse cells transfer cytoplasm directly to the growing oocyte. Dev Biol 2005; 281:91–101.

    Article  PubMed  CAS  Google Scholar 

  8. Cooley L, Verheyen E, Ayers K. Chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992; 69:173–184.

    Article  PubMed  CAS  Google Scholar 

  9. Telfer W. Development and physiology of the oocyte-nurse cell syncytium. Adv Insect Physiol 1975; 11:223–319.

    Article  Google Scholar 

  10. Burgos MH, Fawcett DW. Studies on the fine structure of the mammalian testis. J Biophys Biochem Cytol 1955; 1:287–300.

    Article  PubMed  CAS  Google Scholar 

  11. Fawcett DW, Ito S, Slautterback DL. The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol 1959; 5:453–460.

    PubMed  CAS  Google Scholar 

  12. Braun RE, Behringer RR, Peschon JJ et al. Genetically haploid spermatids are phenotypically diploid. Nature 1989; 337:373–376.

    Article  PubMed  CAS  Google Scholar 

  13. Pereira LA, Tanaka H, Nagata Y et al. Characterization and expression of a stage specific antigen by monoclonal antibody TRA 54 in testicular germ cells. Int J Androl 1998; 21:34–40.

    Article  PubMed  CAS  Google Scholar 

  14. Koch EA, King RC. The origin and early differentiation of the egg chamber of Drosophila melanogaster. J Morphol 1966; 119:283–303.

    Article  PubMed  CAS  Google Scholar 

  15. King RC, Storto PD. The role of the otu gene in Drosophila oogenesis. Bioessays 1988; 8:18–24.

    Article  PubMed  CAS  Google Scholar 

  16. Kramerov AA, Mikhaleva EA, Rozovsky Ya M et al. Insect mucin-type glycoprotein: Immunodetection of the O-glycosylated epitope in Drosophila melanogaster cells and tissues. Insect Biochem Mol Biol 1997; 27:513–521.

    Article  PubMed  CAS  Google Scholar 

  17. Yue L, Spradling AC. hu-li tai shao, a gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dev 1992; 6:2443–2454.

    Article  PubMed  CAS  Google Scholar 

  18. Sokol NS, Cooley L. Drosophila filamin encoded by the cheerio locus is a component of ovarian ring canals. Curr Biol 1999; 9:1221–1230.

    Article  PubMed  CAS  Google Scholar 

  19. Li MG, Serr M, Edwards K et al. Filamin is required for ring canal assembly and actin organization during Drosophila oogenesis. J Cell Biol 1999; 146:1061–1074.

    Article  PubMed  CAS  Google Scholar 

  20. Dodson GS, Guarnieri DJ, Simon MA. Src64 is required for ovarian ring canal morphogenesis during Drosophila oogenesis. Development 1998; 125:2883–2892.

    PubMed  CAS  Google Scholar 

  21. Roulier EM, Panzer S, Beckendorf SK. The Tec29 tyrosine kinase is required during Drosophila embryogenesis and interacts with Src64 in ring canal development. Mol Cell 1998; 1:819–829.

    Article  PubMed  CAS  Google Scholar 

  22. Xue F, Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 1993; 72:681–793.

    Article  PubMed  CAS  Google Scholar 

  23. Robinson DN, Cooley L. Examination of the function of two kelch proteins generated by stop codon suppression. Development 1997; 124:1405–1417.

    PubMed  CAS  Google Scholar 

  24. Tilney LG, Tilney MS, Guild GM. Formation of actin filament bundles in the ring canals of developing Drosophila follicles. J Cell Biol 1996; 133:61–74.

    Article  PubMed  CAS  Google Scholar 

  25. Weber J, Russel L. A study of intercellular bridges during spermatogenesis in the rat. Am J Anat 1987; 180:1–24.

    Article  PubMed  CAS  Google Scholar 

  26. Russell LD, Vogl AW, Weber JE. Actin localization in male germ cell intercellular bridges in the rat and ground squirrel and disruption of bridges by cytochalasin D. Am J Anat 1987; 180:25–40.

    Article  PubMed  CAS  Google Scholar 

  27. Tres LL, Rivkin E, Kierszenbaum AL. Sak 57, an intermediate filament keratin present in intercellular bridges of rat primary spermatocytes. Mol Reprod Dev 1996; 45:93–105.

    Article  PubMed  CAS  Google Scholar 

  28. Alastalo TP, Lönnström M, Leppä S et al. Stage-specific expression and cellular localization of the heat shock factor 2 isoforms in the rat seminiferous epithelium. Exp Cell Res 1998; 240:16–27.

    Article  PubMed  CAS  Google Scholar 

  29. Robinson DN, Smith-Leiker TA, Sokol NS et al. Formation of the Drosophila ovarian ring canal inner rim depends on cheerio. Genetics 1997; 145:1063–1072.

    PubMed  CAS  Google Scholar 

  30. Bohrmann J, Biber K. Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of drosophila: Time-lapse analysis using video-enhanced contrast microscopy. J Cell Sci 1994; 107:849–858.

    PubMed  Google Scholar 

  31. Theurkauf WE, Hazelrigg TI. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: Characterization of a multi-step anterior localization pathway. Development 1998; 125:3655–3666.

    PubMed  CAS  Google Scholar 

  32. Ventelä S, Toppari J, Parvinen M. Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: Mechanisms of haploid gene product sharing. Mol Biol Cell 2003; 14:2768–2780.

    Article  PubMed  CAS  Google Scholar 

  33. Mahajan-Miklos S, Cooley L. Intercellular cytoplasm transport during Drosophila oogenesis. Dev Biol 1994; 165:336–351.

    Article  PubMed  CAS  Google Scholar 

  34. Cooley L, Theurkauf WE. Cytoskeletal functions during Drosophila oogenesis. Science 1994; 266:590–596.

    Article  PubMed  CAS  Google Scholar 

  35. Cheung HK, Serano TL, Cohen RS. Evidence for a highly selective RNA transport system and its role in establishing the dorsoventral axis of the Drosophila egg. Development 1992; 114:653–661.

    PubMed  CAS  Google Scholar 

  36. Theurkauf WE, Hazelrigg TI. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: Characterization of a multi-step anterior localization pathway. Development 1998; 125:3655–3666.

    PubMed  CAS  Google Scholar 

  37. Cox RT, Spradling AC. A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 2003; 130:1579–1590.

    Article  PubMed  CAS  Google Scholar 

  38. Wilsch-Bräuninger M, Schwarz H, Nusslein-Volhard C. A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis. J Cell Biol 1997; 139:817–829.

    Article  PubMed  Google Scholar 

  39. Hertig AT, Adams EC. Studies on the human oocyte and its follicle. I. Ultrastructural and histochemical observations on the primordial follicle stage. J Cell Biol 1967; 34:647–675.

    Article  PubMed  CAS  Google Scholar 

  40. Figueroa J, Burzio LO. Polysome-like structures in the chromatoid body of rat spermatids. Cell Tissue Res 1998; 291:575–579.

    Article  PubMed  CAS  Google Scholar 

  41. Werner G, Werner K. Immunocytochemical localization of histone H4 in the chromatoid body of rat spermatids. J Submicrosc Cytol Pathol 1995; 27:325–330.

    PubMed  CAS  Google Scholar 

  42. Oko R, Korley R, Murray MT et al. Germ cell-specific DNA and RNA binding proteins p48/52 are expressed at specific stages of male germ cell development and are present in the chromatoid body. Mol Reprod Dev 1996; 44:1–13.

    Article  PubMed  CAS  Google Scholar 

  43. Biggiogera M, Fakan S, Leser G et al. Immunoelectron microscopical visualization of ribonucleoproteins in the chromatoid body of mouse spermatids. Mol Reprod Dev 1990; 26:150–158.

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka SS, Toyooka Y, Akasu R et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 2000; 14:841–853.

    PubMed  CAS  Google Scholar 

  45. Toyooka YN, Tsunekawa Y, Takahashi Y et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 2000; 93:139–149.

    Article  PubMed  CAS  Google Scholar 

  46. Walt H, Armbruster BL. Actin and RNA are components of the chromatoid bodies in spermatids of the rat. Cell Tissue Res 1984; 236:487–490.

    Article  PubMed  CAS  Google Scholar 

  47. Parvinen M, Parvinen LM. Active movements of the chromatoid body: A possible transport mechanism for haploid gene products. J Cell Biol 1979; 80:621–628.

    Article  PubMed  CAS  Google Scholar 

  48. Parvinen M, Salo J, Toivonen M et al. Computer analysis of living cells: Movements of the chromatoid body in early spermatids compared with ultrastructure in snap-frozen preparations. Histochem Cell Biol 1997; 108:77–81.

    Article  PubMed  CAS  Google Scholar 

  49. Cremer T, Kurz A, Zirbel R et al. Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 1993; 58:777–792.

    PubMed  CAS  Google Scholar 

  50. Parvinen M. The chromatoid body in spermatogenesis. Int J Androl 2005; 28:189–201.

    Article  PubMed  Google Scholar 

  51. Styhler S, Nakakamura A, Swan A et al. Vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 1998; 125:1569–1578.

    PubMed  CAS  Google Scholar 

  52. Theurkauf WE, Alberts BM, Jan YN et al. A central role for microtubules in the differentiation of Drosophila oocytes. Development 1993; 118:1169–1180.

    PubMed  CAS  Google Scholar 

  53. Pokrywka NJ, Stephenson EC. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev Biol 1995; 167:363–370.

    Article  PubMed  CAS  Google Scholar 

  54. Mathe E, Inoue YH, Palframan W et al. Orbit/Mast, the CLASP orthologue of Drosophila, is required for asymmetric stem cell and cystocyte divisions and development of the polarised microtubule network that interconnects oocyte and nurse cells during oogenesis. Development 2003; 130:901–915.

    Article  PubMed  CAS  Google Scholar 

  55. Theurkauf WE, Smiley S, Wong ML et al. Reorganization of the cytoskeleton during Drosophila oogenesis: Implications for axis specification and intercellular transport. Development 1992; 115:923–936.

    PubMed  CAS  Google Scholar 

  56. Robinson DN, Cant K, Cooley L. Morphogenesis of Drosophila ovarian ring canals. Development 1994; 120:2015–2025.

    PubMed  CAS  Google Scholar 

  57. Theurkauf WE. Premature microtubule-dependent cytoplasmic streaming in cappuccino and spire mutant oocytes. Science 1994; 265:2093–2096.

    Article  PubMed  CAS  Google Scholar 

  58. Huynh JR, St Johnston D. The role of BicD, Egl, Orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development 2000; 127:785–794.

    Google Scholar 

  59. Ornelles DA, Fey EG, Penman S. Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis. Mol Cell Biol 1986; 6:1650–1662.

    PubMed  CAS  Google Scholar 

  60. Jansen RP. RNA-cytoskeletal associations. FASEB J 1999; 13:455–466.

    PubMed  CAS  Google Scholar 

  61. Lippincott-Schwartz J, Roberts TH, Hirschberg K. Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 2000; 16:557–589.

    Article  PubMed  CAS  Google Scholar 

  62. Moreno RD, Ramalho-Santos J, Sutovsky P et al. Vesicular traffic and golgi apparatus dynamics during mammalian spermatogenesis: Implications for acrosome architecture. Biol Reprod 2000; 63:89–98.

    Article  PubMed  CAS  Google Scholar 

  63. Hermo L, Rambourg A, Clermont Y. Three-dimensional architecture of the cortical region of the Golgi apparatus in rat spermatids. Am J Anat 1980; 157:357–373.

    Article  PubMed  CAS  Google Scholar 

  64. Moreno RD, Ramalho-Santos J, Chan EK et al. The Golgi apparatus segregates from the lysosomal/acrosomal vesicle during rhesus spermiogenesis: Structural alterations. Dev Biol 2000; 219:334–349.

    Article  PubMed  CAS  Google Scholar 

  65. Ventelä S, Mulari M, Okabe M et al. Regulation of acrosome formation in mice expressing green fluorescent protein as a marker. Tissue Cell 2000; 32:501–507.

    Article  PubMed  Google Scholar 

  66. Hamer G, Roepers-Gajadien HL, Gademan IS et al. Intercellular bridges and apoptosis in clones of male germ cells. Int J Androl 2003; 26:348–353.

    Article  PubMed  Google Scholar 

  67. Vidulescu C, Clejan S, O’Connor KC. Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med 2004; 8:388–396.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Ventelä, S. (2006). Cytoplasmic Bridges as Cell-Cell Channels of Germ Cells. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_15

Download citation

Publish with us

Policies and ethics