Skip to main content

Cell-Cell Movements of Transcription Factors in Plants

  • Chapter
Cell-Cell Channels

Abstract

In the last few years, the intercellular trafficking of regulatory proteins has emerged as a novel mechanism of cell-to-cell communication in plant development. Here I present a review of the documented cases of transcription factors movement in plants and examine the common themes underlying these different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van den Berg C, Willemsen V, Hage W et al. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 1995; 378:62–65.

    Article  PubMed  Google Scholar 

  2. Fletcher JC, Brand U, Running MP et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 1999; 283:1911–1914.

    Article  PubMed  CAS  Google Scholar 

  3. Heinlein M, Epel BL. Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 2004; 235:93–164.

    Article  PubMed  CAS  Google Scholar 

  4. Lucas WJ, Lee J-Y. Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 2004; 5:712.

    Article  PubMed  CAS  Google Scholar 

  5. Lucas WJ, Bouche-Pillon S, Jackson DP et al. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 1995; 270:1980–1983.

    Article  PubMed  CAS  Google Scholar 

  6. Kim JY, Yuan Z, Cilia M et al. Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci USA 2002; 99:4103–4108.

    Article  PubMed  CAS  Google Scholar 

  7. Kim JY, Yuan Z, Jackson D. Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 2003; 130:4351–4362.

    Article  PubMed  CAS  Google Scholar 

  8. Vollbrecht E, Veit B, Sinha N et al. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 1991; 350:241–243.

    Article  PubMed  CAS  Google Scholar 

  9. Jackson D, Hake S. Morphogenesis on the move: Cell-to-cell trafficking of plant regulatory proteins. Curr Opin Genet Dev 1997; 7:495–500.

    Article  PubMed  CAS  Google Scholar 

  10. Jackson D, Veit B, Hake S. Expression of maizel KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 1994; 120:405–413.

    CAS  Google Scholar 

  11. Kim JY, Rim Y, Wang J et al. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 2005; 19:788–793.

    Article  PubMed  CAS  Google Scholar 

  12. Kim M, Canio W, Kessler S et al. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 2001; 293:287–289.

    Article  PubMed  CAS  Google Scholar 

  13. Cassiday LA, Maher LJ. Having it both ways: Transcription factors that bind DNA and RNA. Nucl Acids Res 2002; 30:4118–4126.

    Article  PubMed  CAS  Google Scholar 

  14. Dubnau J, Struhl G. RNA recognition and translational regulation by a homeodomain protein. Nature 1996; 379:694–699.

    Article  PubMed  CAS  Google Scholar 

  15. Rivera-Pomar R, Niessing D, Schmiddt-ott U et al. RNA binding and translational regulation by Bicoid. Nature 1996; 379:746–748.

    Article  PubMed  CAS  Google Scholar 

  16. Chan SK, Struhl G. Sequence-specific RNA binding by bicoid. Nature 1997; 388:634.

    Article  PubMed  CAS  Google Scholar 

  17. Niessing D, Driever W, Sprenger F et al. Homeodomain position 54 specifies transcriptional versus translational control by Bicoid. Mol Cell 2000; 5:395–401.

    Article  PubMed  CAS  Google Scholar 

  18. Niessing D, Dostatni N, H Jc et al. Sequence interval within the PEST motif of Bicoid is important for translational repression of caudal mRNA in the anterior region of the Drosophila embryo. EMBO J 1999; 18:1966–1973.

    Article  PubMed  CAS  Google Scholar 

  19. Perbal MC, Haughn G, Saedler H et al. Noncell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 1996; 122:3433–3441.

    PubMed  CAS  Google Scholar 

  20. Sessions A, Yanofsky MF, Weigel D. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 2000; 289:779–782.

    Article  PubMed  CAS  Google Scholar 

  21. Weigel D, Alvarez J, Smyth DR et al. LEAFY controls floral meristem identity in Arabidopsis. Cell 1992; 69:843–859.

    Article  PubMed  CAS  Google Scholar 

  22. Lohmann JU, Weigel D. Building beauty: The genetic control of floral patterning. Dev Cell 2002; 2:135–142.

    Article  PubMed  CAS  Google Scholar 

  23. Wu X, Dinneny JR, Crawford KM et al. Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 2003; 130:3735–3745.

    Article  PubMed  CAS  Google Scholar 

  24. Helariutta Y, Fukaki H, Wysocka-Diller J et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 2000; 101:555–567.

    Article  PubMed  CAS  Google Scholar 

  25. Nakajima K, Sena G, Nawy T et al. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 2001; 413:307–311.

    Article  PubMed  CAS  Google Scholar 

  26. Gallagher KL, Paquette AJ, Nakajima K et al. Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol 2004; 14:1847.

    Article  PubMed  CAS  Google Scholar 

  27. Sena G, Jung JW, Benfey PN. A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development 2004; 131:2817–2826.

    Article  PubMed  CAS  Google Scholar 

  28. Pesch M, Hülskamp M. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr Opin Gen Dev 2004; 14:422–427.

    Article  CAS  Google Scholar 

  29. Wada T, Kurata T, Tominaga R et al. Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 2002; 129:5409–5419.

    Article  PubMed  CAS  Google Scholar 

  30. Esch JJ, Chen M, Sanders M et al. A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development 2003; 130:5885–5894.

    Article  PubMed  CAS  Google Scholar 

  31. Crawford KM, Zambryski PC. Subcellular localization determines the availability of nontargeted proteins to plasmodesmatal transport. Curr Biol 2000; 10:1032–1040.

    Article  PubMed  CAS  Google Scholar 

  32. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 2001; 409:525.

    Article  PubMed  CAS  Google Scholar 

  33. Gisel A, Barella S, Hempel FD et al. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 1999; 126:1879–1889.

    PubMed  CAS  Google Scholar 

  34. Kim I, Cho E, Crawford K et al. Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci USA 2005; 102:2227–2231.

    Article  PubMed  CAS  Google Scholar 

  35. Rinne PL, van der Schoot C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 1998; 125:1477–1485.

    PubMed  CAS  Google Scholar 

  36. Jenik PD, Irish VF. The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development. Development 2001; 128:13–23.

    PubMed  CAS  Google Scholar 

  37. Efremova N, Perbal M-C, Yephremov A et al. Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis. Development 2001; 128:2661–2671.

    PubMed  CAS  Google Scholar 

  38. Itoh H, Ueguchi-Tanaka M, Sato Y et al. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 2002; 14:57–70.

    Article  PubMed  CAS  Google Scholar 

  39. Lee J-Y, Yoo B-C, Lucas WJ. Parallels between nuclear-pore and plasmodesmal trafficking of information molecules. Planta 2000; 210:177.

    Article  PubMed  CAS  Google Scholar 

  40. Lee JY, Yoo BC, Rojas MR et al. Selective trafficking of noncell-autonomous proteins mediated by NtNCAPPl. Science 2003; 299:392–396.

    Article  PubMed  CAS  Google Scholar 

  41. Parcy F, Nilsson O, Busch MA et al. A genetic framework for floral patterning. Nature 1998; 395:561–566.

    Article  PubMed  CAS  Google Scholar 

  42. Yoo AS, Bais C, Greenwald I. Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 2004; 303:663–666.

    Article  PubMed  CAS  Google Scholar 

  43. Prochiantz A, Joliot A. Can transcription factors function as cell-cell signalling molecules? Nat Rev Mol Cell Biol 2003; 4:814–819.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Maizel, A. (2006). Cell-Cell Movements of Transcription Factors in Plants. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_12

Download citation

Publish with us

Policies and ethics