Skip to main content

Cell-Cell Channels and Their Implications for Cell Theory

  • Chapter
Cell-Cell Channels

Abstract

Cells show diverse appearances and sizes, ranging from some 30 nanometers up to several meters in length. Besides the classical prokaryotic and eukaryotic cells, there are also very bizarre cells such as the highly reduced symbiotic mitosomes which lack DNA. Other examples of extremely small cells in the nanometre range are the mycosomes and nanobacteria. On the other hand, there are huge eukaryotic cells, the size of which can reach up to several meters. Most of these are multinucleate (coenocytic) due to mitotic divisions not having been followed by cytokinesis. Moreover, cells at all levels of cellular complexity show an inherent tendency to form cell-cell channels. The most conspicuous example is the plant’ supercell’ where all the cells of the plant body are permanently connected via plasmodesmata. In the last year, the first reports of similar cell-cell channels between animal cells have been published. Moreover, fungal cells fuse together into supracellular mycelia, even exchanging their motile nuclei. This phenomenon is also known for plant cells. Intriguingly, transcellularly moving fungal nuclei communicate with their mating partners via pheromone-like signaling mechanisms.

Already in 1892 Julius Sachs was aware of most of the problems associated with the Cell Theory, which in fact survive until the present. Sachs proposed the Energide concept, postulating that it is the nucleus and its protoplasm which represent the vital unit of living matter within a supracellular construction, while the cell periphery is only a secondary structure generated by the active Energide for its shelter and protection. Recently, we elaborated the Cell Body concept which explains how and why the nucleus and the microtubular cytoskeleton have become merged together to build a coherent and universal unit of eukaryotic life which is autonomous and can synthesize the rest of the cell. However, there are several problems with the term Cell Body as it is sometimes used in other meanings. Here we show that the Energide concept of Sachs can be united with the Cell Body concept. Moreover, we agree with Julius Sachs that the term Energide better invokes the unique properties of this universal unit of supracellular living matter endowed with the vital energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hooke R. Of the schematisme or texture of cork, and of the cells and pores of some other such frothy bodies. Micrographia, Observation 18. London: 1665:112–116.

    Google Scholar 

  2. Harris H. The Birth of the Cell. New Haven: Yale University Press 1999.

    Google Scholar 

  3. Lodish H, Baltimore D, Berk A et al. Molecular Cell Biology, 3rd ed. New York: W.H. Freeman and Company, 1995.

    Google Scholar 

  4. Mazzarello P. A unifying concept: the history of cell theory. Nat Cell Biol 1999; 1:E13–E15.

    Article  PubMed  CAS  Google Scholar 

  5. Alberts B, Bray D, Hopkin K et al. Essential Cell Biology. 2nd ed. New York: Taylor & Francis Group: Garland Science, 2004.

    Google Scholar 

  6. Kleinig H, Sitte P. Zellbiologie. Stuttgart, New York: Gustav Fischer Verlag, 1984.

    Google Scholar 

  7. Pollard TD, Earnshaw WC. Cell Biology. Philadelphia, London, New York, St. Louis, Sydney, Toronto: Saunders, Elsevier Science, 2002.

    Google Scholar 

  8. Richmond ML. T.H. Huxley’s criticism of German Cell Theory: an epigenetic and physiological interpretation of cell structure. J Hist Biol 2000; 33:247–289.

    Article  PubMed  CAS  Google Scholar 

  9. Baluska F, Volkmann D, Barlow PW. Eukaryotic cells and their Cell Bodies: Cell Theory revisited. Ann Bot 2004; 94:9–32.

    Article  PubMed  CAS  Google Scholar 

  10. Forterre P, Philippe H. Where is the root of the universal tree of life. BioEssays 1999; 21:871–879.

    Article  PubMed  CAS  Google Scholar 

  11. Poole A, Jeffares D, Penny D. Early evolution: prokaryotes, the new kids on the block. BioEssays 1999; 21:880–889.

    Article  PubMed  CAS  Google Scholar 

  12. Baluska F, Hlavacka A, Volkmann D et al. Getting connected: actin-based cell-to-cell channel in plants and animals. Trends Cell Biol 2004; 14:404–408.

    Article  PubMed  CAS  Google Scholar 

  13. Rustom A, Saffrich R, Markovic I et al. Nanotubular highways for intercellular organelle transport. Science 2004; 303:1007–1110.

    Article  PubMed  CAS  Google Scholar 

  14. Rivera MC, Lake JA. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 2004; 431:152–155.

    Article  PubMed  CAS  Google Scholar 

  15. Margulis L. Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes. Microbiol Today 2004; 31:172–174.

    Google Scholar 

  16. Margulis L, Dolan MF, Guerrero R. The chimeric eukaryote: origin of the nucleus from karyomastigont in amitochondriate protist. Proc Natl Acad Sci USA 2000; 97:6954–6999.

    Article  PubMed  CAS  Google Scholar 

  17. Horiike T, Hamada K, Kanaya S et al. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol 2001; 3:210–214

    Article  PubMed  CAS  Google Scholar 

  18. Horiike T, Hamada K, Shinozawa T. Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria supported by the newly clarified origin of functional genes. Genes Genet Syst 2002; 77:369–376.

    Article  PubMed  CAS  Google Scholar 

  19. Dolan MF, Melnitsky H, Margulis L et al. Motility proteins and the origin of the nucleus. Anat Rec 2002; 268:290–301.

    Article  PubMed  CAS  Google Scholar 

  20. Hartman H, Fedorov A. The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 2002; 99:1420–1425.

    Article  PubMed  CAS  Google Scholar 

  21. Baluska F, Volkmann D, Barlow PW. Cell bodies in a cage. Nature 2004; 428:371.

    Article  PubMed  CAS  Google Scholar 

  22. Sachs J. Beiträge zur Zellentheorie. Energiden und Zellen. Flora 1892; 75:57–67.

    Google Scholar 

  23. Sachs J. Weitere Betrachtungen über Energiden und Zellen. Flora 1892; 81:405–434.

    Google Scholar 

  24. Cavalier-Smith T. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 2003; 358:109–133.

    Article  PubMed  CAS  Google Scholar 

  25. Keeling PJ. Diversity and evolutionary history of plastids and their hosts. Am J Bot 2004; 91:1481–1493.

    Google Scholar 

  26. Shepherd VA, Beilby MJ, Bisson MA. When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa). Protoplasma 2004; 223:79–91.

    Article  PubMed  CAS  Google Scholar 

  27. Embley TM, van der Giezen M, Horner DS et al. Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 2003; 55:387–395.

    PubMed  CAS  Google Scholar 

  28. Leon-Avila G, Tovar J. Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiology 2004; 150:1245–1250.

    Article  PubMed  CAS  Google Scholar 

  29. Tovar J, Leon-Avila G, Sanchez LB et al. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 2003; 426:172–176.

    Article  PubMed  CAS  Google Scholar 

  30. Atsatt PR. Fungus propagules in plastids: the mycosome hypothesis. Int Microbiol 2003; 6:17–26.

    PubMed  Google Scholar 

  31. Maniloff J, Nealson KH, Psenner R et al. Nanobacteria: size limits and evidence. Science 1997; 276:1773–1776

    Article  Google Scholar 

  32. Kürner J, Frangakis AS, Baumeister W. Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 2005; 307:436–438.

    Article  PubMed  CAS  Google Scholar 

  33. Raoult D, Audic S, Robert C et al. The 1.2-megabase genome sequence of Mimivirus. Science 2004; 306:1344–1350.

    Article  PubMed  CAS  Google Scholar 

  34. Benirschke K. Remarkable placenta. Clin Anat 1997; 11:194–205.

    Article  Google Scholar 

  35. Baluska F, Liners F, Hlavacka A et al. Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 2005; In press.

    Google Scholar 

  36. Dhonuksche P. Visualizing microtubule dynamics and membrane trafficking in live and dividing plant cells. Ph.D. Thesis. University of Amsterdam, 2005.

    Google Scholar 

  37. Burgess DR, Chang F. Site selection for the cleavage furrow at cytokinesis. Trends Cell Biol 2005; 15:156–165.

    Article  PubMed  CAS  Google Scholar 

  38. Onishi M, Koga T, Morita R et al. Role of phosphatidylinositol 3-phosphate in formation of forespore membrane in Schizosaccharomyces pombe. Yeast 2003; 20:193–206.

    Article  PubMed  CAS  Google Scholar 

  39. Shimoda C. Forespore membrane assembly in yeast: coordinating SPBs and membrane trafficking. J Cell Sci 2004; 117:389–396.

    Article  PubMed  CAS  Google Scholar 

  40. de Duve C. The birth of complex cells. Scient Amer 1996; 274(4):38–45.

    Article  Google Scholar 

  41. de Duve C. The onset of selection. Nature 2005; 433:581–582.

    Article  PubMed  CAS  Google Scholar 

  42. Ingber DE. The origin of cellular life. BioEssays 2002; 22:1160–1170.

    Article  Google Scholar 

  43. Hartwell LH, Hopfield JJ, Leibler S et al. From molecular to modular cell biology. Nature 1999; 402(suppl):C47–C52.

    Article  PubMed  CAS  Google Scholar 

  44. Altman R. Die Elementarorganismen und Ihre Beziehungen zur den Zellen. Leipzig: Verlag von Veit, 1890.

    Google Scholar 

  45. Margulis L. Origin of Eukaryotic Cells. New Haven: Yale University Press, 1970.

    Google Scholar 

  46. Margulis L. Symbiosis in Cell Evolution. Life and Its Environment on the Early Earth. San Francisco: W. H. Freeman, 1981.

    Google Scholar 

  47. Margulis L. Symbiosis in Cell Evolution. San Francisco: W. H. Freeman, 1993.

    Google Scholar 

  48. Margulis L, Sagan D. Acquiring Genomes: a Theory of the Origin of Species. New York: Basic Books, 2002.

    Google Scholar 

  49. Martin W, Embley TM. Early evolution comes full circle. Science 2004; 431:134–137.

    CAS  Google Scholar 

  50. López-García P, Moreira D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 1999; 24:88–93.

    Article  PubMed  Google Scholar 

  51. Moreira D, López-García P. Symbiosis between methanogenic Archaea and Proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 1998; 47:517–530.

    Article  PubMed  CAS  Google Scholar 

  52. Pennisi E. The birth of the nucleus. Science 2004; 305:766–768.

    Article  PubMed  CAS  Google Scholar 

  53. Hernandez LD, Hoffman LR, Wolfsberg TG et al. Virus-cell and cell-cell fusion. Annu Rev Dev Biol 1996; 12:627–661.

    Article  CAS  Google Scholar 

  54. Lee J-Y, Yoo B-C, Lucas WJ. Parallels between nuclear-pore and plasmodesmal trafficking of information molecules. Planta 2000; 210:177–187.

    Article  PubMed  CAS  Google Scholar 

  55. Carr DJ. Historical perspectives on plasmodesmata. In: Gunning BES, Robards AW, eds. Intercellular Communication in Plants: Studies on Plasmodesmata. Berlin, Heidelberg, New York: Springer Verlag, 1976:291–295.

    Google Scholar 

  56. Önfelt B, Nedvetzki S, Yanagi K et al. Membrane nanotubes connect immune cells. J Immunol 2004; 173:1511–1513.

    PubMed  Google Scholar 

  57. Önfelt B, Davis DM. Can membrane nanotubes facilitate communication between immune cells? Biochem Soc Trans 2004; 32:676–678.

    Article  PubMed  Google Scholar 

  58. Vidulescu C, Clejan S, O’Connor KC. Vesicle traffic through intercellular bridges in DU 145 human prostate cancer cells. J Cell Mol Med 2004; 8:388–396.

    Article  PubMed  Google Scholar 

  59. Errington J, Bath J, Wu LJ. DNA transport in bacteria. Nat Rev Mol Cell Biol 2001; 2:538–544.

    Article  PubMed  CAS  Google Scholar 

  60. Gauthier A, Thomas NA, Finlay BR. Bacterial injection machines. J Biol Chem 2003; 278:25273–25276.

    Article  PubMed  CAS  Google Scholar 

  61. Kumar RB, Das A. Polar location and functional domains of the Agrobacterium turnefaciens DNA transfer protein VirD4. Mol Microbiol 2002; 43:1523–1532.

    Article  PubMed  CAS  Google Scholar 

  62. Judd PK, Kumar RB, Das A. The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 2005; 55:115–124.

    Article  PubMed  CAS  Google Scholar 

  63. Rohde M, Püls J, Buhrdorf R et al. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol 2003; 49:219–234.

    Article  PubMed  CAS  Google Scholar 

  64. Grohmann E, Muth G, Espinosa M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Molec Biol Rev 2003; 67:277–301.

    Article  CAS  Google Scholar 

  65. Kaiser D. Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol 2003; 1:45–54.

    Article  PubMed  CAS  Google Scholar 

  66. Skerker JM, Berg HC. Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA 2001; 98:6901–6904.

    Article  PubMed  CAS  Google Scholar 

  67. Wall D, Kaiser D. Alignment enhances the cell-to-cell transfer of pilus phenotype. Proc Natl Acad Sci USA 1998; 95:3054–3058.

    Article  PubMed  CAS  Google Scholar 

  68. Wolgemuth C, Hoiczyk E, Kaiser D et al. How myxobacteria glide. Curr Biol 2002; 12:369–377.

    Article  PubMed  CAS  Google Scholar 

  69. Baluska F, Wojtaszek P, Volkmann D et al. The architecture of polarized cell growth: the unique status of elongating plant cells. BioEssays 2003; 25:569–576.

    Article  PubMed  CAS  Google Scholar 

  70. Hoiczyk E, Baumeister W. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr Biol 1998; 8:1161–1168.

    Article  PubMed  CAS  Google Scholar 

  71. Heinlein M, Wood MR, Thiel T et al. Targeting and modification of prokaryotic cell-cell junctions by tobacco mosaic virus cell-to-cell movement protein. Plant J 1998; 14:345–351.

    Article  PubMed  CAS  Google Scholar 

  72. Menzel D. An interconnected plastidom in Acetabularia: implications for the mechanism of chloroplast motility. Protoplasma 1994; 179:166–171

    Article  Google Scholar 

  73. Köhler RH, Cao J, Zipfel WR et al. Exchange of protein molecules through connections between higher plant plastids. Science 1997; 276:2039–2042.

    Article  PubMed  Google Scholar 

  74. Köhler RH, Schwille P, Webb WW et al. Active protein transport through plastid tubules: velocity quantified by fluorescence correlation spectroscopy. J Cell Sci 2000; 113:3921–3930.

    PubMed  Google Scholar 

  75. Kwok EY, Hanson MR. Plastids and stromules interact with the nucleus and cell membranes in vascular strands. Plant Cell Rep 2004; 23:188–195.

    Article  PubMed  CAS  Google Scholar 

  76. Kwok EY, Hanson MR. GFP-labeled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J Exp Bot 2004; 55:595–604.

    Article  PubMed  CAS  Google Scholar 

  77. Natesan SKA, Sullivan JA, Gray JC. Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 2005; 56:787–797.

    Article  PubMed  CAS  Google Scholar 

  78. Gunning BES. Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, an choring, branching, bridging and tip growth. Protoplasma 2005; 225:33–42.

    Article  PubMed  Google Scholar 

  79. Bereiter-Hahn J, Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 1994; 27:198–219.

    Article  PubMed  CAS  Google Scholar 

  80. van Gestel K, Verbelen J-P. Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotiana tabacum L.). J Exp Bot 2002; 53:1215–1218.

    Article  PubMed  Google Scholar 

  81. Logan DC. Mitochondrial dynamics. New Phytol 2003; 160:463–478.

    Article  CAS  Google Scholar 

  82. Westermann B. Merging mitochondria matters. Cellular role and molecular machinery of mitochondrial fusion. EMBO Rep 2002; 3:527–531.

    Article  PubMed  CAS  Google Scholar 

  83. Mozdy AD, Shaw JM. A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol 2003; 4:468478.

    Article  CAS  Google Scholar 

  84. Boukh-Viner T, Guo T, Alexandrian A et al. Dynamic ergosterol-and ceramide-rich domains in the peroxisomal membrane serve as an organizing platform for peroxisome fusion. J Cell Biol 2005; 168:761–773.

    Article  PubMed  CAS  Google Scholar 

  85. Jahn R, Lang T, Südhof TC. Membrane fusion. Cell 2003; 112:519–533.

    Article  PubMed  CAS  Google Scholar 

  86. Staehelin LA. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 1991; 11:1151–1165.

    Article  Google Scholar 

  87. Gamalei YuV. Supercellular plant organization. Russ J Plant Physiol 1997; 44:706–730.

    CAS  Google Scholar 

  88. Holthuis JC, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 2005; 6:209–220.

    Article  PubMed  CAS  Google Scholar 

  89. Faulkner C, Brandom J, Maule A et al. Plasmodesmata 2004. Surfing the symplasm. Plant Physiol 2005; 137:607–610.

    Article  PubMed  CAS  Google Scholar 

  90. Fahrenkrog B, Köser J, Aebi U. The nuclear pore complex: a jack of all trades? Trends Biochem Sci 2005; 29:175–182.

    Article  CAS  Google Scholar 

  91. Timney BL, Rout MP. Robbing from the pore. Nat Cell Biol 2004; 6:177–179.

    Article  PubMed  CAS  Google Scholar 

  92. Sheldrake AR. Effects of osmotic stress on polar auxin transport in Avena mesocotyl sections. Planta 1979;145:113–117.

    Article  CAS  Google Scholar 

  93. Baluska F, Samaj J, Hlavacka A et al. Myosin VIII and F-actin enriched plasmodesmata in maize root inner cortex cells accomplish fluid-phase endocytosis via an actomyosin-dependent process. J Exp Bot 2004;55:463–473.

    Article  PubMed  CAS  Google Scholar 

  94. Haupt S, Cowan GH, Ziegler A et al. Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 2005;17:164–181.

    Article  PubMed  CAS  Google Scholar 

  95. Oparka KJ. Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 2004;9:33–41.

    Article  PubMed  CAS  Google Scholar 

  96. Devos D, Dokudovskaya S, Alber F et al. Components of coated vesicles and nuclear pore com plexes share a common molecular architecture. PloS Biol 2004;2(12):e380.

    Article  PubMed  CAS  Google Scholar 

  97. Antonin W, Mattaj IW. Nuclear pore complexes: round the bend? Nat Cell Biol 2005;7:10–12.

    Article  PubMed  CAS  Google Scholar 

  98. Guyader M, Kiyokawa E, Abrami L et al. Role for human immunodeficiency virus type 1 membrane cholesterol in viral internalization. J Virol 2002;76:10356–10364.

    Article  PubMed  CAS  Google Scholar 

  99. Manunta M, Tan PH, Sagoo P et al. Gene delivery by dendrimers operates via a cholesterol de pendent pathway. Nucl Acids Res 2004; 32:2730–2739.

    Article  PubMed  CAS  Google Scholar 

  100. Vecchi M, Polo S, Poupon V et al. Nucleocytoplasmic shuttling of endocytic proteins. J Cell Biol 2001;153:1511–1517.

    Article  PubMed  CAS  Google Scholar 

  101. Benmerah A, Scott M, Poupon V et al. Nuclear function for plasma membrane-associated pro teins? Traffic 2003;4:503–511.

    PubMed  CAS  Google Scholar 

  102. Benmerah A. Endocytosis: signalling from endocytic membranes to the nucleus. Curr Biol 2004;14:R314–R316.

    Article  PubMed  CAS  Google Scholar 

  103. Ramalho-Santos J, Schatten G, Moreno RD. Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol Reprod 2002;67:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  104. Redecker P, Kreutz MR, Bockmann J et al. Brain synaptic junctional proteins at the acrosome of rat testicular germ cells. J Histochem Cytochem 2003;51:809–819.

    PubMed  CAS  Google Scholar 

  105. Giovannetti M, Fortuna P, Citernesi AS et al. The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 2001;151:717–724.

    Article  Google Scholar 

  106. Giovannetti M, Sbrana C, Avio L. Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 2004;164:175–181.

    Article  Google Scholar 

  107. Glass NL, Kaneko I. Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2003;2:1–8.

    Article  PubMed  CAS  Google Scholar 

  108. Glass NL, Rasmussen C, Roca MG et al. Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 2004;12:135–141.

    Article  PubMed  CAS  Google Scholar 

  109. Xiang X, Fischer R. Nuclear migration and positioning in filamentous fungi. Fung Gen Biol 2004;41:411–419.

    Article  CAS  Google Scholar 

  110. Wang XY, Yu CH, Li X et al. Ultrastructural aspects and possible origin of cytoplasmic channels providing intercellular connection in vegetative tissues of anthers. Russ J Plant Physiol 2004;51:97–106.

    Article  CAS  Google Scholar 

  111. Guo G-Q, Zheng G-C. Hypotheses for the functions of intercellular bridges in male germ cell development and its cellular mechanisms. J Theor Biol 2004;229:139–146.

    Article  PubMed  CAS  Google Scholar 

  112. Guzicka M, Wozny A. Cytomixis in shoot apex of Norway spruce (Picea abies L. Karst.). Trees 2005;18:722–724.

    Article  Google Scholar 

  113. Zhang WC, Yan WM, Lou CH. Intercellular movement of protoplasm in vivo in developing en dosperm of wheat caryopses. Protoplasma 1990;153:193–203.

    Article  Google Scholar 

  114. van Bel A. The phloem, a miracle of ingenuity. Plant Cell Environm 2003;26:125–149.

    Article  Google Scholar 

  115. Telfer WH. Development and physiology of the oocyte-nurse cell syncytium. Adv Insect Physiol 1975;11:223–319.

    Google Scholar 

  116. Spradling A. Germline cysts: communes that work. Cell 1993;72:649–651.

    Article  PubMed  CAS  Google Scholar 

  117. Robinson DN, Cooley L. Stable intercellular bridges in development: the cytoskeleton lining the tunnel. Trends Cell Biol 1996;6:474–479.

    Article  PubMed  CAS  Google Scholar 

  118. Kramerova IA, Kramerov AA. Mucinoprotein is a universal constituent of stable intercellular bridges in Drosophila melanogaster germ line and somatic cells. Dev Dyn 1999;216:349–360.

    Article  PubMed  CAS  Google Scholar 

  119. Haynh J-R, St Johnston D. The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr Biol 2004;14:R438–R449.

    Article  CAS  Google Scholar 

  120. Snapp EL, Iida T, Frescas D et al. The fusome mediates intercellular endoplasmic reticulum con nectivity in Drosophila ovarian cysts. Mol Biol Cell 2004;15:4512–4521.

    Article  PubMed  CAS  Google Scholar 

  121. Cavalier-Smith T. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 2005;95:147–175.

    Article  PubMed  CAS  Google Scholar 

  122. Baluska F, Volkmann D, Barlow PW. Motile plant cell body: a ‘bug’ within a ‘cage’. Trends Plant Sci 2001;6:104–111.

    Article  PubMed  CAS  Google Scholar 

  123. Baluska F, Volkmann D, Barlow PW. Nuclear components with microtubule organizing properties in multicellular eukaryotes: functional and evolutionary considerations. Int Rev Cytol 1997;175:91–135.

    Article  PubMed  CAS  Google Scholar 

  124. Baroux C, Fransz P, Grossniklaus U. Nuclear fusions contribute to polyploidization of the gigantic nuclei in the chalazal endosperm of Arabidopsis. Planta 2004;220:38–46.

    Article  PubMed  CAS  Google Scholar 

  125. Guitton AE, Page DR, Chambrier P et al. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 2004;131:2971–2981.

    Article  PubMed  CAS  Google Scholar 

  126. Baluska F, Volkmann D, Barlow PW. Actin-based domains of the ‘cell periphery complex’ and their associations with polarized ‘cell bodies’ in higher plants. Plant Biol 2000;2:253–267

    Article  CAS  Google Scholar 

  127. Ketelaar T, Faivre-Moskalenko C, Esseling JJ et al. Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 2002;14:2941–2955.

    Article  PubMed  CAS  Google Scholar 

  128. Freitag M, Hickey PC, Raju NB et al. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 2004;41:897–910.

    Article  PubMed  CAS  Google Scholar 

  129. Martin R, Walther A, Wendland J. Deletion of the dynein heavy-chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. Eukaryot Cell 2004;3:1574–1588.

    Article  PubMed  CAS  Google Scholar 

  130. Orias JD, Hamilton EP, Orias E. A microtubule meshwork associated with gametic pronucleus transfer across a cell-cell junction. Science 1983;222:181–184.

    Article  PubMed  CAS  Google Scholar 

  131. Janetopoulos C, Cole E, Smothers JF et al. The conjusome: a novel structure in Tetrahymena found only during sexual reorganization. J Cell Sci 1999;112:1003–1011.

    PubMed  CAS  Google Scholar 

  132. Goff LJ, Coleman AW. Transfer of nuclei from a parasite to its host. Proc Natl Acad Sci USA 1984;81:5420–5424.

    Article  PubMed  Google Scholar 

  133. Saupe SJ. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Molec Biol Rev 2000;64:489–502.

    Article  CAS  Google Scholar 

  134. Kuhn G, Hijri M, Sanders IR. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 2001;414:745–748.

    Article  PubMed  CAS  Google Scholar 

  135. Shiu PKT, Glass NL. Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr Opin Microbiol 2000;3:183–188.

    Article  PubMed  CAS  Google Scholar 

  136. Schuurs TA, Dalstra HJP, Scheer LML et al. Positioning of nuclei in the secondary mycelium of Schizophyllum commune in relation to differential gene expression. Fung Genet Biol 1998;23:150–161.

    Article  CAS  Google Scholar 

  137. Debuchy R. Internuclear recognition: a possible connection between Euascomycetes and Homobasidiomycetes. Fung Genet Biol 1999;27:218–223.

    Article  CAS  Google Scholar 

  138. Thompson-Coffe C, Zickler D. How the cytoskeleton recognizes and sorts nuclei of opposite mating type during the sexual cycle in filamentous ascomycetes. Dev Biol 1994;165:257–271

    Article  PubMed  CAS  Google Scholar 

  139. Wilmut I, Beaujean N, de Sousa PA et al. Somatic cell nuclear transfer. Nature 2002;419:583–586.

    Article  PubMed  CAS  Google Scholar 

  140. Gurdon JB, Byrne JA, Simonsson S. Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci USA 2003;100:11819–11822.

    Article  PubMed  CAS  Google Scholar 

  141. Fujita N, Wade PA. Nuclear transfer: epigenetics pay a visit. Nat Cell Biol 2004;6:912–922.

    Article  CAS  Google Scholar 

  142. Woese CR. On the evolution of cells. Proc Natl Acad Sci USA 2002;99:8742–8747.

    Article  PubMed  CAS  Google Scholar 

  143. Woese CR. A new biology for a new century. Microbiol Mol Biol Rev 2004;68:173–186.

    Article  PubMed  CAS  Google Scholar 

  144. Koch AL Development and diversification of the Last Universal Ancestor. J Theor Biol 1994;168:269–280.

    Article  PubMed  CAS  Google Scholar 

  145. Koch AL. The bacterium’s way for safe enlargement and division. Appl Environm Microbiol 2000;66:3657–3663.

    Article  CAS  Google Scholar 

  146. Simpson AGB, Roger AJ. The real ‘kingdoms’ of eukaryotes. Curr Biol 2004; 14:693–R696.

    Article  CAS  Google Scholar 

  147. Walsh DA, Doolittle WF. The real ‘domains ‘of life. Curr Biol 2005;15:R237–R240.

    Article  PubMed  CAS  Google Scholar 

  148. Sharp MD, Pogliano K. An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci USA 1999;96:14553–14559.

    Article  PubMed  CAS  Google Scholar 

  149. Abanes-De Mello A, Sun Y-L, Aung S et al. A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes Dev 2002;16:3253–3264.

    Article  PubMed  CAS  Google Scholar 

  150. Timmis JN, Ayliffe MA, Huang CY et al. Endosymbiotic gene transfer: organelles genomes forge eukaryotic chromosomes. Nat Rev Genet 2004;5:123–135.

    Article  PubMed  CAS  Google Scholar 

  151. Hoiczyk E, Hansel A. Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 2000;182:1191–1199.

    Article  PubMed  CAS  Google Scholar 

  152. Valentine L. Agrobacterium tumefaciens and the plant: the David and Goliath of modern genetics. Plant Physiol 2003;133:948–955.

    Article  PubMed  CAS  Google Scholar 

  153. Hannon GJ. RNA interference. Nature 2002;418:244–251.

    Article  PubMed  CAS  Google Scholar 

  154. Baulcombe D. RNA silencing in plants. Nature 2004;431:356–363.

    Article  PubMed  CAS  Google Scholar 

  155. McManus MT. Small RNAs and immunity. Immunity 2004; 21:7.

    Article  Google Scholar 

  156. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806–811.

    Article  PubMed  CAS  Google Scholar 

  157. Feinberg EH, Hunter CP. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 2003;301:1545–1547.

    Article  PubMed  CAS  Google Scholar 

  158. Vignery A. Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 2005;15:In press

    Google Scholar 

  159. Vassilopoulos G, Russell DW. Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 2003;13:480–485.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frantisek Baluska .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Baluska, F., Volkmann, D., Barlow, P.W. (2006). Cell-Cell Channels and Their Implications for Cell Theory. In: Cell-Cell Channels. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46957-7_1

Download citation

Publish with us

Policies and ethics