Skip to main content

Innovative Combinations of Atomistic and Continuum: Mechanical Properties of Nanostructured Materials

  • Chapter
  • First Online:
Atomistic and Continuum Modeling of Nanocrystalline Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 112))

Currently, due to advances in nanotechnology, many investigations are devoted to nanoscale science and developments of nanocomposites. Nanomaterials in general can be roughly classified into two categories. On one hand, if the characteristic length of the microstructure, such as the grain size of a polycrystal material, is in the nanometer range, it is called a nanostructured material. On the other hand, if at least one of the overall dimensions of a structural element is in the nanometer range, it may be called a nano-sized structural element. Thus, this may include nanoparticles, nanofilms, and nanowires [2, 10, 47].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboudi, J., Mechanics of composite materials: A unified micromechanical approach. Elsevier, Amsterdam, (1991)

    Google Scholar 

  2. Alymov, M.I. and M.K. Shorshorov, Surface tension of ultrafine particles. Nanostructured Materials 12, 365–368, (1999)

    Article  Google Scholar 

  3. Barhdadi, E.H., P. Lipinski and M. Cherkaoui, Four phase model: A new formulation to predict the effective elastic moduli of composites. Journal of Engineering Materials and Technology 129, 313–320, (2007)

    Article  CAS  Google Scholar 

  4. Chandrasekhar, S., Ellipsoidal figures of equilibrium. Yale University Press, New Haven, CT, (1969)

    Google Scholar 

  5. Chen, H., G. Hu and Z. Huang, Effective moduli for micropolar composite with interface effect. International Journal of Solids and Structures 44, 8106–8118, (2007)

    Article  Google Scholar 

  6. Cherkaoui, M., H. Sabar and M. Berveiller, Micromechanical approach of the coated inclusion problem and applications to composite materials. Journal of Engineering Materials and Technology 116, 274–278, (1994)

    Article  Google Scholar 

  7. Dingreville, R., Modeling and characterization of the elastic behavior of interfaces in nanostructured materials: from an atomistic description to a continuum approach. Ph.D. thesis, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, USA, (2007)

    Google Scholar 

  8. Dingreville, R. and J. Qu, Interfacial excess energy, excess stress and excess strain in elastic solids-planar interfaces. Journal of the Mechanics and Physics of Solids 56(5), 1944–1954 (2007a)

    Article  Google Scholar 

  9. Dingreville, R. and J. Qu, A semi-analytical method to compute surface elastic properties. Acta Materialia 55, 141–147, (2007b)

    Article  CAS  Google Scholar 

  10. Dingreville, R., J. Qu and M. Cherkaoui, Surface free energy and its effect on the elastic behavior of nano-sized particules, wires and films. Journal of the Mechanics and Physics of Solids 53, 1827–1854, (2005)

    Article  CAS  Google Scholar 

  11. Duan, H.L., J. Wang, Z.P. Huang and B.L. Karihaloo, Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society A 461, 3335–3353, (2005a)

    Google Scholar 

  12. Duan, H.L., J. Wang, Z.P. Huang and B.L. Karihaloo, Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids 53, 1574–1596, (2005b)

    Article  Google Scholar 

  13. Duan, H.L., J. Wang, Z.P. Huang and Z.Y. Luo, Stress concentration tensors of inhomogeneities with interface effects. Mechanics of Materials 37, 723–736, (2005c)

    Article  Google Scholar 

  14. Duan, H.L., X. Yi, Z.P. Huang and J. Wang, A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework. Mechanics of Materials 39, 81–93, (2007)

    Article  Google Scholar 

  15. Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society A 241, 376–396, (1957)

    Google Scholar 

  16. Eshelby, J.D., Elastic inclusions and inhomogeneities. Vol. 2 of Progress in Solid Mechanics. Amsterdam: North-Holland, (1961)

    Google Scholar 

  17. Faulk, F., Ginzburg-landau theory of static domain walls in shape memory alloys. Zeitschrift für Physik 51(B), 177–185, (1983)

    Article  Google Scholar 

  18. Ferrari, M., Nanomechanics, and biomedical nanomechanics: Eshelby’s inclusion and inhomogeneity problems at the discrete/continuum interface. Biomedical Microdevices 2(4), 273–281, (2000)

    Article  Google Scholar 

  19. Gibbs, J.W., The Scientific Papers of J. Willard Gibbs. Vol. 1. Longmans-Green, London, (1906)

    Google Scholar 

  20. Goodier, J.N., Concentration of stress around spherical and cylindrical inclusions and flaws. Journal of Applied Mechanics 55, 39–44, (1933)

    Google Scholar 

  21. Gurtin, M.E., J. Weissmuller and F. Larche, The general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A 78, 1093, (1998)

    Article  CAS  Google Scholar 

  22. Gurtin, M.E. and A.I. Murdoch, A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis 59, 389, (1975)

    Google Scholar 

  23. Hashin, Z., The elastic moduli of heterogeneous materials. Journal of Applied Mechanics 29, 143–150, (1962)

    Article  CAS  Google Scholar 

  24. Huang, Z.P. and J. Wang, A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mechanica 182, 195–210, (2006)

    Article  Google Scholar 

  25. Huang, Z.P. and L. Sun, Size-dependent effective properties of a heterogeneous material with interface energy effect: From finite deformation theory to infinitesimal strain analysis. Acta Mechanica 190, 151–163, (2007)

    Article  Google Scholar 

  26. Ibach, H., The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surface Science Reports 29, 193–263, (1997)

    Article  CAS  Google Scholar 

  27. Jaglinski, T. and R. Lakes, Anelastic instability in composites with negative stiffness inclusions. Philosophical Magazine Letters 84(12), 803–810, (2004)

    Article  CAS  Google Scholar 

  28. Johnson, R.A., Relationship between two-body interatomic potentials in a lattice model and elastic constants. Physical Review B 6(6), 2094–2100, (1972)

    Article  Google Scholar 

  29. Koutsawa, Y., M. Cherkaoui, J. Qu and E.M. Daya, Atomistic-continuum interphase model for effective properties of composite materials containing ellipsoidal nano-inhomogeneities. Journal of the Mechanics and Physics of Solids Under Review. February (2008)

    Google Scholar 

  30. Lakes, R.S., Extreme damping in compliant composites with a negative stiffness phase. Philosphical Magazine Letters 81, 95–100, (2001a)

    Article  CAS  Google Scholar 

  31. Lakes, R.S., Extreme damping in composite materials with a negative stiffness phase. Physical Review Letters 86, 2897–2900, (2001b)

    Article  CAS  Google Scholar 

  32. Lakes, R.S. and W.J., Drugan, Dramatically stiffer elastic composite materials due to a negative stiffness phase? Journal of the Mechanics and Physics of Solids 50, 979–1009, (2002)

    Article  Google Scholar 

  33. Lakes, R.S., T. Lee, A. Bersie and Y.C. Wang, Extreme damping in composite materials with negative stiffness inclusions. Nature 410, 565–567, (2001)

    Article  CAS  Google Scholar 

  34. Lennard-Jones, J.E. and B.M. Dent, Cohesion at a crystal surface. Transactions of the Farady Society 24, 0092–0107, (1928)

    Google Scholar 

  35. Le Quang, H. and Q.-C. He, Size-dependent effective thermoelastic properties of nanocomposites with spherically anisotropic phases. Journal of the Mechanics and Physics of Solids 55, 1889–1921, (2007)

    Article  Google Scholar 

  36. Lim, C.W., Z.R. Li and L.H. He, Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. International Journal of Solids and Structures 43, 5055–5065, (2006)

    Article  Google Scholar 

  37. Lipinski, P., E.H. Barhdadi and M. Cherkaoui, Micromechanical modeling of an arbitrary ellipsoidal multi-coated inclusion. Philosophical Magazine 86(10), 1305–1326, (2006)

    Article  CAS  Google Scholar 

  38. Love, A.E.H., Mathematical theory of elasticity. Dover Publications, New York, Netherlands, (1944)

    Google Scholar 

  39. Lur’e, A.I., Three-dimensional Problems of Theory of Elasticity. Interscience, New York, (1964)

    Google Scholar 

  40. Martin, J.W., Many-body forces in metals and the brugger elastic constants. Journal of Physics C 8(18), 2837–2857, (1975)

    Article  Google Scholar 

  41. Mi, C. and D.A. Kouris, Nanoparticles under the influence of surface/interface elasticity. Journal of Mechanics of Materials and Structures 1(4), 763–791, (2006)

    Article  Google Scholar 

  42. Miller, R.E. and V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147, (2000)

    Article  CAS  Google Scholar 

  43. Milton, G.W., The theory of composites. Cambridge University Press, Cambridge, (2002)

    Book  Google Scholar 

  44. Müller, P. and A. Saül, Elastic effects on surface physics. Surface Science Reports 54, 157–258, (2004)

    Article  Google Scholar 

  45. Mura, T., Micromechanics of defects in solids. Martinus-Nijhoff, Netherlands, (1987)

    Book  Google Scholar 

  46. Nemat-Nasser, S. and M. Hori, Micromechanics: overall properties of heterogeneous materials, second ed. Edition. Elsevier, Amsterdam, (1999)

    Google Scholar 

  47. Pei, Z.W. and H.L. Hwang, Formation of silicon nano-dots in luminescent silicon nitride. Applied Surface Science 212, 760–764, (2003)

    Article  Google Scholar 

  48. Povstenko, Y.Z., Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. Journal of the Mechanics and Physics of Solids 41, 1499–1514, (1993)

    Article  Google Scholar 

  49. Qu, J. and J.L. Bassani, Interfacial fracture-mechanics for anisotropic bimaterials. Journal of Applied Mechanics 60(2), 422–431, (1993)

    Article  Google Scholar 

  50. Qu, J. and M. Cherkaoui, Fundamentals of micromechanics of solids, Wiley Edition. John Wiley & Sons, Inc., Hoboken, NJ, (2006)

    Book  Google Scholar 

  51. Sander, D., Surface stress: implications and measurements. Current Opinion in Solid State and Materials Science 7, 51–57, (2003)

    Article  CAS  Google Scholar 

  52. Sharma, P. and S. Ganti, Interfacial elasticity corrections to size-dependent strain-state of embedded quantum dots. Physique Status Solida B 234, R10–R12, (2002)

    Article  CAS  Google Scholar 

  53. Sharma, P. and S. Ganti, Size-dependent eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. Journal of Applied Mechanics 71, 663–671, (2004)

    Article  Google Scholar 

  54. Sharma, P., S. Ganti and N. Bhate, Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters 82(4), 535–537, (2003)

    Article  CAS  Google Scholar 

  55. Sharma, P. and L.T. Wheeler, Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. Journal of Applied Mechanics 74, 447–454, (2007)

    Article  Google Scholar 

  56. Shuttleworth, R., The surface tension of solids. Proc. Phys. Soc. A 63, 444–457, (1950)

    Article  Google Scholar 

  57. Sun, L., Y.M. Wu, Z.P. Huang and J.X. Wang, Interface effect on the effective bulk modulus of a particle-reinforced composite. Acta Mechanica Sinica 20, 676–679, (2004)

    Article  Google Scholar 

  58. Teik-Cheng, L., Size-dependency of nano-scale inclusions. Journal of Materials Science Letters 40, 3841–3842, (2005)

    Google Scholar 

  59. Torquato, S., Random heterogeneous materials: Microstructure and macroscopic properties. Springer, New York, (2002)

    Google Scholar 

  60. Walpole, L.J., Elastic behavior of composite materials: theoretical foundations. Advances in Applied Mechanics 21, 169–242, (1981)

    Article  Google Scholar 

  61. Wang, J., H.L. Duan, Z. Zhang and Z.P. Huang, An anti-interpenetration model and connections between interphase and interface models in particle-reinforced composites. International Journal of Mechanical Sciences 47, 701–718, (2005)

    Article  Google Scholar 

  62. Wang, Y.C. and R.S. Lakes, Extreme thermal expansion, piezoelectricity, and other coupled field properties in composites with a negative stiffness phase. Journal of Applied Physics 90(12), 6458–6465, (2001)

    Article  CAS  Google Scholar 

  63. Yang, F.Q., Effect of interfacial stresses on the elastic behavior of nanocomposite materials. Journal of Applied Physics 99(5), 054306, (2006)

    Article  Google Scholar 

  64. Zeller, R. and P.H. Dederichs, Elastic constants of polycrystals. Physica Status Solidi B 55, 831–842, (1973)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Cherkaoui .

Appendices

Appendix 1: “T” Stress Decomposition

Consider an inhomogeneous, linearly elastic solid with strain energy density per unit undeformed volume defined by

$$w=w_0+\tau_{ij}\,\varepsilon_{ij}+\frac{1}{2}C_{ijkl}\, \varepsilon_{ij}\,\varepsilon_{kl},$$
((8.116))

where \(\varepsilon_{ij}\) is the Lagrangian strain tensor. The corresponding second Piola-Kirchhoff stress tensor is thus given by

$$\sigma_{ij}=\frac{\partial w}{\partial\varepsilon_{ij}}=\tau_{ij}+C_{ijkl}\,\varepsilon_{ij}.$$
((8.117))

Equivalently, (8.117) can be written as

$$\sigma^{s}_{\alpha\beta}=\tau^{s}_{\alpha\beta}+C_{\alpha\beta\hat{\kappa} \lambda} \varepsilon_{\hat{\kappa}\lambda}+C_{\alpha\beta3k}\varepsilon^t_{k},\qquad\sigma_{j}^t=\tau^{t}_{j}+C_{3j\hat{\kappa}\lambda}\varepsilon_{\hat{\kappa}\lambda}+C_{3j3k}\varepsilon^t_{k},$$
((8.118))

where the summation convention is implied, and the lowercase Roman subscripts go from 1 to 3 and the lowercase Greek subscripts go from 1 to 2, and

$$\sigma^s_{\alpha\beta}=\bar{\boldsymbol{\sigma}}_{\alpha\beta},\,\varepsilon_{\alpha\beta}=\hat{\varepsilon}_{\alpha\beta},\,\sigma^{\,t}_j=\bar{\boldsymbol{\sigma}}_{3j},\varepsilon^t_{\alpha}=2\hat{\varepsilon}_{\alpha3},\,\varepsilon^t_{3}=\hat{\varepsilon}_{33},\tau^s_{\alpha\beta}=\tau_{\alpha \beta}, \tau^t_{j}=\tau_{3j}.$$
((8.119))

Assuming that the second-order, \(C_{3k3j}\), is invertible, the second part of Equation (8.118) can be rewritten as

$$\varepsilon^t_{k}=-M_{kj}\tau^t_j+M_{jk}\sigma^t_j-\gamma_{k\alpha\beta}\varepsilon_{\alpha\beta},$$
((8.120))

where

$$M_{kj}=C^{-1}_{3k3j},\qquad\gamma_{k\alpha\beta}=M_{kj}C_{3k\alpha\beta}.$$
((8.121))

Substituting (8.120) into the first of (8.118) yields

$$\sigma^s_{\alpha\beta}=\hat{\tau}^{\,s}_{\alpha\beta}+C^{\,s}_{\alpha\beta\hat{\kappa}\lambda}\varepsilon_{\hat{\kappa}\lambda}+\gamma_{j\alpha\beta}\sigma^{\,t}_j,$$
((8.122))

where

$$\hat{\tau}^{s}_{\alpha\beta}=\tau^{s}_{\alpha\beta}-\tau^{t}_j\gamma_{j\alpha\beta},\qquad C^{\,s}_{\alpha\beta\hat{\kappa}\lambda}=C_{\alpha\beta\hat{\kappa}\lambda}-C_{\alpha\beta3j}\gamma_{j\hat{\kappa}\lambda}.$$
((8.123))

Using tensorial notation, Equation (8.116), (8.120) and (8.122) can be written, respectively, as

$$w=w_0-\frac{1}{2}\boldsymbol{\tau}^t\cdot{\bf M}\cdot\boldsymbol{\tau}^t+\hat{\boldsymbol{\tau}}^{\,s}:\boldsymbol{\varepsilon}^s+\frac{1}{2}\boldsymbol{\varepsilon}^{\,s}:{\bf C}^s:\boldsymbol{\varepsilon}^{\,s}+\frac{1}{2}\boldsymbol{\sigma}^t\cdot{\bf M}\cdot\boldsymbol{\sigma}^t,$$
((8.124))
$$\boldsymbol{\varepsilon}^t=-{\bf M}\cdot\boldsymbol{\tau}^t+{\bf M}\cdot\boldsymbol{\sigma}^t-\boldsymbol{\gamma}:\boldsymbol{\varepsilon}^{\,s},$$
((8.125))
$$\boldsymbol{\sigma}^{\,s}=\hat{\boldsymbol{\tau}}^{\,s}+{\bf C}^{\,s}:\boldsymbol{\varepsilon}^{\,s}+\boldsymbol{\gamma}\cdot\boldsymbol{\sigma}^t.$$
((8.126))

In addition, if the material is isotropic, that is

$$C_{ijkl}=\lambda\delta_{ij}\delta_{kl}+\hat{\mu}\left(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}\right),$$
((8.127))

where λ and μ are the Lamé constants. The other quantities, in this special case, are such as

$$\begin{cases}C_{3k3j}\ \,=\left(\lambda+\hat{\mu}\right)\delta_{3k}\delta_{3j}+\hat{\mu}\delta_{kj},\\M_{kj}\ \ \;=-\frac{\lambda+\hat{\mu}}{\hat{\mu}\left(\lambda+2\hat{\mu}\right)}\delta_{3k}\delta_{3j}+\frac{1}{\hat{\mu}}\delta_{kj},\\\gamma_{i\alpha\beta}\ \ \,=\frac{\lambda}{\lambda+2\hat{\mu}}\delta_{3i}\delta_{\alpha\beta},\\C^{s}_{\alpha\beta\hat{\kappa}\lambda}=\frac{2\lambda\hat{\mu}}{\lambda+2\hat{\mu}}\delta_{\alpha\beta}\delta_{\hat{\kappa}\lambda}+\hat{\mu}\left(\delta_{\alpha\hat{\kappa}}\delta_{\beta\lambda}+\delta_{\alpha\lambda}\delta_{\beta\hat{\kappa}}\right).\end{cases}$$
((8.128))

Appendix 2: Atomic Level Description

The difference in position of two atoms, \(m\) and \(n\), near their relaxed state as

$$r^{\,mn}_i-\hat{r}^{\,mn}_i=A^{\,mn}_{i\alpha\beta}\varepsilon_{\alpha\beta}+B^{\,mn}_{ik}\sigma_k^t+\left(\tilde{\varepsilon}^{\,m}_{ij}\hat{r}^{\,m}_j-\tilde{\varepsilon}^{n}_{ij}\hat{r}^{\,n}_j\right),$$
((8.129))

where,

$$\begin{cases}A^{mn}_{i\alpha\beta}=\left(A^{\pm,\,m}_{ij\alpha\beta}+A^{\pm,\,n}_{ij\alpha\beta}\right)\hat{r}^{\,mn}_j-\left(A^{\pm,\,n}_{ij\alpha\beta}\hat{r}^{\,m}_j-A^{\pm,\,m}_{ij\alpha\beta}\hat{r}^{\,n}_j\right),\\\\B^{\,mn}_{ik}=\left(B^{\pm,\,m}_{ijk}+B^{\pm,\,n}_{ijk}\right)\hat{r}^{\,mn}_j-\left(B^{\pm,\,n}_{ijk}\hat{r}^{\,m}_j-B^{\pm,\,m}_{ijk}\hat{r}^{\,n}_j\right).\end{cases}$$
((8.130))

The total strain energy of the atomic assembly (see Section 8.8.1.1),

$$\begin{aligned} E=& E_0+\overline{\bf A}^{(1)}:\hat{\boldsymbol{\varepsilon}}^{\,s}+\overline{\bf B}^{(1)}\cdot\overline{\boldsymbol{\sigma}}^{\,t}+\frac{1}{2}\hat{\boldsymbol{\varepsilon}}^{\,s}:\overline{\bf A}^{(2)}:\hat{\boldsymbol{\varepsilon}}^{\,s}+\frac{1}{2}\overline{\boldsymbol{\sigma}}^{\,t}\cdot\overline{\bf B}^{(2)}\cdot\overline{\boldsymbol{\sigma}}^{\,t}\\&+\overline{\boldsymbol{\sigma}}^{\,t}\cdot\overline{\bf Q}:\hat{\boldsymbol{\varepsilon}}^{\,s}+\sum^{N-1}_{n=1}\left({\bf K}^n+{\bf D}^n:\hat{\boldsymbol{\varepsilon}}^{\,s} +{\bf G}^n\cdot\overline{\boldsymbol{\sigma}}^{\,t}\right):\tilde{\boldsymbol{\varepsilon}}^{n}\\&+\frac{1}{2}\sum^{N-1}_{n=1}\sum^{N-1}_{m=1}\tilde{\boldsymbol{\varepsilon}}^{\,n}:{\bf L}^{mn}:\tilde{\boldsymbol{\varepsilon}}^{\,m}. \end{aligned}$$
((8.131))

with

$$E_0=\sum_{n}\frac{1}{\Omega_n}\sum_{m\neq n}E^{(n)}\bigg|_{r^{\,mn}=\hat{r}^{\,mn}},$$
((8.132))
$$\overline{A}^{(1)}_{\alpha\beta}=\sum_{n}\frac{1}{\Omega_n}\sum_{m\neq n}\frac{\partial E^{(n)}}{\partial r^{\,mn}_i}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}A^{\,mn}_{i\alpha\beta},$$
((8.133))
$$\overline{B}^{(1)}_{k}=\sum_{n}\frac{1}{\Omega_n}\sum_{m\neq n}\frac{\partial E^{(n)}}{\partial r^{\,mn}_i}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}} B^{\,mn}_{ik},$$
((8.134))
$$\overline{A}^{(2)}_{\alpha\beta\hat{\kappa}\lambda}=\sum_{n}\frac{1}{\Omega_n}\sum_{m\neq n}\frac{\partial^2 E^{(n)}}{\partial r^{\,mn}_i \partial r^{mn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}A^{mn}_{i\alpha\beta\;}A^{\,mn}_{k\hat{\kappa}\lambda},$$
((8.135))
$$\overline{B}^{(2)}_{jl}=\sum_{n}\frac{1}{\Omega_n}\sum_{m\neq n}\frac{\partial^2 E^{(n)}}{\partial r^{\,mn}_i \partial r^{\,mn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}B^{\,mn}_{ij}B^{\,mn}_{kl},$$
((8.136))
$$\overline{Q}_{\alpha\beta j}=\sum_{n}\frac{1}{\Omega_n}\sum_{m\neq n}\frac{\partial^2E^{(n)}}{\partial r^{\,mn}_i \partial r^{\,mn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}A^{\,mn}_{i\alpha\beta}B^{\;mn}_{kj},$$
((8.137))
$$\begin{aligned}K^n_{ij}=&\frac{1}{2\Omega_n}\hat{r}^{n}_j\left(\sum_{p\neq n}\frac{\partial E^{(p)}}{\partial r^{\,pn}_i}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}-\frac{\partial E^{(n)}}{\partial r^{\,pn}_i}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\right)\\&+\frac{1}{2\Omega_n}\hat{r}^{n}_i\left(\sum_{p\neq n}\frac{\partial E^{(p)}}{\partial r^{\,pn}_j}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}-\frac{\partial E^{(n)}}{\partial r^{\,pn}_j}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\right), \end{aligned}$$
((8.138))
$$\begin{aligned}D^n_{ij\alpha\beta}=&\frac{1}{2\Omega_n}\hat{r}^{n}_j\sum_{p\neq n}\sum_{q\neq n}\left[\left(\frac{\partial^2 E^{(p)}}{\partial r^{\,pn}_i \partial r^{qn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}-\frac{\partial^2E^{(n)}}{\partial r^{\,pn}_i \partial r^{qn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\right)A^{pn}_{k\alpha\beta}\right]\\&+\frac{1}{2\Omega_n}\hat{r}^{\,n}_i\sum_{p\neq n}\sum_{q\neq n}\left[\left(\frac{\partial^2 E^{(p)}}{\partial r^{\,pn}_j \partial r^{\,qn}_l}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}-\frac{\partial^2E^{(n)}}{\partial r^{\,pn}_j \partial r^{\,qn}_l}\Bigg|_{r^{mn}=\hat{r}^{\,mn}}\right)A^{\,pn}_{l\alpha\beta}\right],\end{aligned}$$
((8.139))
$$\begin{aligned}G^n_{ijv}= \& \frac{1}{2\Omega_n}\hat{r}^{\,n}_j\sum_{p\neq n}\sum_{q\neq n}\left[\left(\frac{\partial^2 E^{(p)}}{\partial r^{\,pn}_i \partial r^{\,qn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}-\frac{\partial^2E^{(n)}}{\partial r^{\,pn}_i \partial r^{\,qn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\right)B^{\,pn}_{kv}\right]\\ \& +\frac{1}{2\Omega_n}\hat{r}^{\,n}_i\sum_{p\neq n}\sum_{q\neq n}\left[\left(\frac{\partial^2 E^{(p)}}{\partial r^{\,pn}_j \partial r^{\,qn}_l}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}-\frac{\partial^2E^{(n)}}{\partial r^{\,pn}_j \partial r^{\,qn}_l}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\right)B^{\,pn}_{lv}\right],\end{aligned}$$
((8.140))
$$\begin{aligned}L^{\,mn}_{ijkl}=&\frac{1}{2\Omega_n}\left(\sum_{p\neq n}\frac{\partial^2E^{(p)}}{\partial r^{\,pn}_i \partial r^{\,pn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}+ \frac{\partial^2E^{(n)}}{\partial r^{\,pn}_i \partial r^{\,pn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\right)\hat{r}^{\,n}_j\hat{r}^{\,n}_l\delta_{\,mn}\\&+\frac{1}{2\Omega_n}\left(\sum_{p\neq n}\frac{\partial^2E^{(p)}}{\partial r^{\,pn}_j \partial r^{\,pn}_l}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}+ \frac{\partial^2E^{(n)}}{\partial r^{\,pn}_j \partial r^{\,pn}_l}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\right)\hat{r}^{\,n}_i\hat{r}^{\,n}_k\delta_{\,mn}\\&-\frac{1}{4\Omega_n}\frac{\partial^2 E^{(n)}}{\partial r^{\,mn}_i\partial r^{\,mn}_k}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\left(\hat{r}^{\,n}_j\hat{r}^{\,m}_l+\hat{r}^{\,m}_j\hat{r}^{\,n}\right)\left(1-{\delta_{\,mn}}\right)\\& -\frac{1}{4\Omega_{n}}\frac{\partial^2 E^{(n)}}{\partial r^{\,mn}_j\partial r^{\,mn}_l}\Bigg|_{r^{\,mn}=\hat{r}^{\,mn}}\left(\hat{r}^{\,n}_i\hat{r}^{\,m}_k+\hat{r}^{\,m}_i\hat{r}^{\,n}_k\right)\left(1-\delta_{\,mn}\right).\end{aligned}$$
((8.141))

Appendix 3: Strain Concentration Tensors: Spherical Isotropic Configuration

The deviatoric and spherical parts of all concentration tensors needed to solve Equation (8.105) for \(\hat{\mu}^{eff}\) and \(\hat{\kappa}^{eff}\) are defined below.

8.3.1 Parts of \(\boldsymbol{\vartheta}^{{\textbf{\textit{(i/j)}}}}\)

From Equation (8.95), one gets:

$$ \begin{cases} \hat{\bf S}_{\vartheta}^{(i/j)}=\displaystyle\frac{3\hat{\kappa}_i+4\hat{\mu}_j}{3\hat{\kappa}_j+4\hat{\mu}_j},\\\hat{\bf D}_{\vartheta}^{(i/j)}\ =\displaystyle\frac{3\hat{\kappa}_j\left(2\hat{\mu}_i+3\hat{\mu}_j\right)+4\hat{\mu}_j\left(4\hat{\mu}_i+2\hat{\mu}_j\right)}{5\hat{\mu}_j\left(3\hat{\kappa}_j+4\hat{\mu}_j\right)}.\end{cases}$$
((8.142))

8.3.2 Parts of \(\boldsymbol{\Pi}^{\,j}\)

Note that:

$$\boldsymbol{\Pi}^{1}={\bf J}+{\bf K}, \qquad {\rm and} \qquad \boldsymbol{\Pi}^{2}=\boldsymbol{\vartheta}^{(1/2)}.$$
$$\begin{cases} \hat{\bf S}^{j}_{\Pi}=\displaystyle\frac{\sum^{\,j-1}_{k=1}\varphi_k\hat{\bf S}^{k}_{\Pi}\hat{\bf S}^{(k/j)}_{\vartheta}}{\sum^{\,j-1}_{k=1}\varphi_k},\\ \hat{\bf D}^{j}_{\Pi}=\displaystyle\frac{\sum^{\,j-1}_{k=1}\varphi_k\hat{\bf D}^{k}_{\Pi}\hat{\bf D}^{(k/j)}_{\vartheta}}{\sum^{\,j-1}_{k=1}\varphi_k}, \end{cases}$$
((8.143))

for \(j=3\).

8.3.3 Parts of \({\bf a}^{1}\)

From Equation (8.96), one gets:

$$\begin{cases} \hat{\bf S}^{1}_{a}=\left(\sum^{3}_{k=1}\varphi_k\hat{\bf S}^{k}_{\Pi}\right)^{-1},\\ \hat{\bf D}^{1}_{a}\ =\left(\sum^{3}_{k=1}\varphi_k\hat{\bf D}^{k}_{\Pi}\right)^{-1}.\end{cases}$$
((8.144))

8.3.4 Parts of \({\bf a}^{k}\)

From Equation (8.94), one gets:

$$\begin{cases} \hat{\bf S}^{k}_{a} =\hat{\bf S}^{k}_{\Pi}\hat{\bf S}^{1}_{a},\\\hat{\bf D}^{k}_{a} \ =\hat{\bf D}^{k}_{\Pi}\hat{\bf D}^{1}_{a}. \end{cases}$$
((8.145))

8.3.5 Parts of \({\bf A}^{I}\)

From Equation (8.102), one gets:

$$\begin{cases} \hat{\bf S}^{I}_{A}=\left[1+{\Lambda}_3\sum^{3}_{i=1}\varphi_i\left(\hat{\kappa}_i-\hat{\kappa}^{eff}\,\right)\hat{\bf S}^{k}_{a}\right]^{-1},\\ \hat{\bf D}^{I}_{A}\ =\left[1+{\Lambda}_4\sum^{3}_{i=1}\varphi_i\left(\hat{\mu}_i-\hat{\mu}^{eff}\,\right)\hat{\bf D}^{k}_{a}\right]^{-1}, \end{cases}$$
((8.146))

where: \({\Lambda}_3=\displaystyle\frac{3}{4\hat{\mu}^{eff}+3\hat{\kappa}^{eff}}\,\), \({\Lambda}_4=\displaystyle\frac{6\left(\hat{\kappa}^{\,eff}+2\hat{\mu}^{eff}\,\right)}{5\hat{\mu}^{eff}\left(4\hat{\mu}^{eff}+3\hat{\kappa}^{eff}\,\right)}\).

8.3.6 Parts of \({\bf A}^{k}\)

From Eq. (8.42), one gets:

$$\begin{cases} \hat{\bf S}^{k}_{A} =\hat{\bf S}^{k}_{a}\hat{\bf S}^{I}_{A},\\\hat{\bf D}^{k}_{A}\ =\hat{\bf D}^{\,k}_{a}\hat{\bf D}^{I}_{A}. \end{cases}$$
((8.147))

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cherkaoui, M., Capolungo, L. (2009). Innovative Combinations of Atomistic and Continuum: Mechanical Properties of Nanostructured Materials. In: Atomistic and Continuum Modeling of Nanocrystalline Materials. Springer Series in Materials Science, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46771-9_8

Download citation

Publish with us

Policies and ethics