Advertisement

Deformation Mechanisms in Nanocrystalline Materials

  • Mohammed CherkaouiEmail author
  • Laurent Capolungo
Chapter
  • 925 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 112)

Nanocrystalline (NC) materials have a particularly interesting microstructure characterized by large amounts of interfaces and, depending on the fabrication process, by the presence of defects (e.g., impurities, voids). This was discussed in Chapter 2. Prior to detailing the particular plastic deformation mechanisms associated with NC materials, let us recall some of the key features of the response of NC materials such as (1) the breakdown of the Hall-Petch law, (2) elastic pseudo perfect plastic response in quasi-static tests, and (3) increasing strain rate sensitivity parameter with decreasing grain size. All of these indicators clearly suggest that the activity of each probable deformation mechanism is likely to exhibit a pronounced size dependence.

Keywords

Triple Junction Partial Dislocation Critical Resolve Shear Stress Dislocation Activity Dislocation Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kumar, K.S., S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Acta Materialia 51, (2003)Google Scholar
  2. 2.
    Wu, X., Y.T. Zhu, M.W. Chen, and E. Ma, Scripta Materialia 54, (2006)Google Scholar
  3. 3.
    Vevecka, A. and T.G. Langdon, Materials Science and Engineering A 187, (1994)Google Scholar
  4. 4.
    Serra, A., D.J. Bacon, and R.C. Pond, Metallurgical and Materials Transactions; A; Physical Metallurgy and Materials Science 33, (2002)Google Scholar
  5. 5.
    Kim, H.S., M.B. Bush, and Y. Estrin, Materials Science and Engineering A 276, (2000)Google Scholar
  6. 6.
    Kocks, U.F. and H. Mecking, Progress in Materials Science 48, (2003)Google Scholar
  7. 7.
    Madec, R., B. Devincre, and L.P. Kubin, Scripta Materialia 47, (2002)Google Scholar
  8. 8.
    Qin, W., Z.H. Chen, P.Y. Huang, and Y.H. Zhuang, Journal of Alloys and Compounds 292, (1999)Google Scholar
  9. 9.
    Qin, W., Y.W. Du, Z.H. Chen, and W.L. Gao, Journal of Alloys and Compounds 337, (2002)Google Scholar
  10. 10.
    Van Petegem, S., F. Dalla Torre, D. Segers, and H. Van Swygenhoven, Scripta Materialia 48, (2003)Google Scholar
  11. 11.
    Lu, K., R. Luck, and B. Predel, Materials Science and Engineering A 179–180, (1994)Google Scholar
  12. 12.
    Gutkin, M.Y. and I.A. Ovid'ko, Acta Materialia 56(7), 1642–1649, (2008)Google Scholar
  13. 13.
    Li, J.C.M., Transactions of the Metallurgical Society of AIME 227, (1963)Google Scholar
  14. 14.
    Capolungo, L., D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, and K.I. Jacob, Journal of the Mechanics and Physics of Solids 55, (2007)Google Scholar
  15. 15.
    Spearot, D.E., K.I. Jacob, and D.L. McDowell, Acta Materialia 53, (2005)Google Scholar
  16. 16.
    Van Swygenhoven, H., Materials Science and Engineering: 483–484, 33–39, (2008)Google Scholar
  17. 17.
    Wolf, D., V. Yamakov, S.R. Phillpot, A. Mukherjee, and H. Gleiter, Acta Materialia 53, (2005)Google Scholar
  18. 18.
    Yamakov, V., D. Wolf, M. Slalzar, S.R. Phillpot, and H. Gleiter, Acta Materialia 49, (2001)Google Scholar
  19. 19.
    Warner, D.H., F. Sansoz, and J.F. Molinari, International Journal of Plasticity 22, (2006)Google Scholar
  20. 20.
    Sansoz, F. and J.F. Molinari, Acta Materialia 53(7), 1931–1944, (2005)Google Scholar
  21. 21.
    Asaro, R.J., P. Krysl, and B. Kad, Philosophical Magazine letters 83, (2003)Google Scholar
  22. 22.
    Asaro, R.J. and S. Suresh, Acta Materialia 53, (2005)Google Scholar
  23. 23.
    Christian, J.W. and S. Mahajan, Progress in Materials Science 39, (1995)Google Scholar
  24. 24.
    Man Hyong, Y. and W. Chuan-Tseng, Philosophical Magazine 13, (1966)Google Scholar
  25. 25.
    Mendelson, S., Materials Science and Engineering 4, (1969)Google Scholar
  26. 26.
    Mendelson, S., Scripta Metallurgica 4, (1970)Google Scholar
  27. 27.
    Herring, C., Journal of Applied Physics 21, (1950)Google Scholar
  28. 28.
    Coble, R.L., Journal of Applied Physics 34, (1963)Google Scholar
  29. 29.
    Luthy, H., R.A. White, and O.D. Sherby, Materials Science and Engineering 39, (1979)Google Scholar
  30. 30.
    Capolungo, L., C. Jochum, M. Cherkaoui, and J. Qu, International Journal of Plasticity 21, (2005)Google Scholar
  31. 31.
    Wang, N., Z. Wang, K.T. Aust, and U. Erb, Acta Metallurgica et Materialia 43, (1995)Google Scholar
  32. 32.
    Zener, C., Physical Review 60, (1941)Google Scholar
  33. 33.
    Raj, R. and M.F. Ashby, Metallurgical Transactions 2, (1971)Google Scholar
  34. 34.
    Langdon, T.G., Philosophical Magazine 22, (1970)Google Scholar
  35. 35.
    Wei, Y.J. and L. Anand, Journal of the Mechanics and Physics of Solids 52, (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations