Structure, Mechanical Properties, and Applications of Nanocrystalline Materials

  • Mohammed CherkaouiEmail author
  • Laurent Capolungo
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 112)

Nanocrystalline (NC) materials are composed of grain cores with well-defined atomic arrangement (e.g., face center cubic, body center cubic) joined by an interphase region composed of grain boundaries and higher-order junctions (e.g., triple junctions, quadruple junctions). Early experiments on nanocrystalline materials have shown that the interphase region and particularly grain boundaries exhibit an almost grain size–independent thickness [1]. Hence, as the grain size is decreased, the volume fraction of the interphase region increases. Supposing a tetracaidecahedral grain shape, corresponding to a realistic grain shape, the following expressions of the volume fraction of interphase (e.g., grain boundaries and triple junctions), grain boundaries, and triple junctions can be derived [2].


Equal Channel Angular Pressing Strain Rate Sensitivity Triple Junction Nanocrystalline Material Excess Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Champion, Y. and M.J. Hytch, The European Journal of Applied Physics 4, (1998)Google Scholar
  2. 2.
    Palumbo, G., S.J. Thorpe, and K.T. Aust, Scripta Metallurigica et Materialia 24, (1990)Google Scholar
  3. 3.
    Birringer, R., Materials Science and Engineering A 117, (1989)Google Scholar
  4. 4.
    Zhang, K., I.V. Alexandrov, and K. Lu. The X-ray diffraction study on a nanocrystalline Cu processed by equal-channel angular pressing. Kona, HI, USA: Elsevier, (1997)Google Scholar
  5. 5.
    Kumar, K.S., S. Suresh, M.F. Chislom, J.A. Horton, and P. Wang, Acta Materialia 51, (2003)Google Scholar
  6. 6.
    Straub, W.M., T. Gessman, W. Sigle, F. Phillipp, A. Seeger, and H.E. Schaefer, Nanostructured Materials 6, (1995)Google Scholar
  7. 7.
    Torre, F.D., P. Spatig, R. Schaublin, and M. Victoria, Acta Materialia 53, (2005)Google Scholar
  8. 8.
    Ungar, T., S. Ott, P.G. Sanders, A. Borbely, and J.R. Weertman, Acta Materialia 46, (1998)Google Scholar
  9. 9.
    Estrin, Y. and H. Mecking, Acta Metallurgica 32, (1984)Google Scholar
  10. 10.
    Kocks, U.F., Transactions of the ASME (1976)Google Scholar
  11. 11.
    Kocks, U.F. and H. Mecking, Progress in Materials Science 48, (2003)Google Scholar
  12. 12.
    Mecking, H. and U.F. Kocks, Acta Metallurgica 29, (1981)Google Scholar
  13. 13.
    Huang, J.Y., X.Z. Liao, and Y.T. Zhu, Philosophical Magazine 83, (2003)Google Scholar
  14. 14.
    Sanders, P.G., A.B. Witney, J.R. Weertman, R.Z. Valiev, and R.W. Siegel, Journal of Engineering and Applied Science A204, (1995)Google Scholar
  15. 15.
    Mingwei, C., M. En, K.J. Hemker, S. Hongwei, W. Yinmin, and C. Xuemei, Science 300, (2003)Google Scholar
  16. 16.
    Markmann, J., et al., Scripta Materialia 49, (2003)Google Scholar
  17. 17.
    Liao, X.Z., F. Zhou, E.J. Lavernia, D.W. He, and Y.T. Zhu, Applied Physics Letters 83, (2003)Google Scholar
  18. 18.
    Ranganathan, S., R. Divakar, and V.S. Raghunathan, Scripta Materialia 27, (2000)Google Scholar
  19. 19.
    Sun, X., R. Reglero, X. Sun, and M.J. Yacaman, Materials Chemistry and Physics 63, (2000)Google Scholar
  20. 20.
    Patterson, A.L., Physical Review 56, (1939)Google Scholar
  21. 21.
    Scherrer, P., Gottinger Nachrichten 2, (1918)Google Scholar
  22. 22.
    Hall, E.O., Proceedings of the Physical Society of London B64, (1951)Google Scholar
  23. 23.
    Petch, N.J., Journal of Iron Steel Institute 174, (1953)Google Scholar
  24. 24.
    Li, J.C.M., Transactions of the Metallurgical Society of AIME 227, (1963)Google Scholar
  25. 25.
    Murr, L.E., Materials Science and Engineering 51, (1981)Google Scholar
  26. 26.
    Murr, L.E. and E. Venkatesh, Metallography 11, (1978)Google Scholar
  27. 27.
    Venkatesh, E.S. and L.E. Murr, Scripta Metallurgica 10, (1976)Google Scholar
  28. 28.
    Venkatesh, E.S. and L.E. Murr, Materials Science and Engineering 33, (1978)Google Scholar
  29. 29.
    Ashby, M.F., Philosophical Magazine 21, (1970)Google Scholar
  30. 30.
    Cheong, K.S. and E.P. Busso, Discrete dislocation density modelling of single phase FCC polycrystal aggregates. Acta Materialia, 52(19), 5665–5675, (2004)Google Scholar
  31. 31.
    Cheng, S., et al., Acta Materialia 53, (2005)Google Scholar
  32. 32.
    Yinmin, W., C. Mingwei, Z. Fenghua, and M. En, Nature 419, (2002)Google Scholar
  33. 33.
    Youssef, K.M., R.O. Scattergood, K.L. Murty, and C.C. Koch, Applied Physics Letters 85, (2004)Google Scholar
  34. 34.
    Champion, Y., C. Langlois, S. Guerin-Mailly, P. Langlois, J.L. Bonnentien, and M.J. Hytch, Science 300, (2003)Google Scholar
  35. 35.
    Khan, A.S., B. Farrokh, and L. Takacs, Materials Science and Engineering: A 489, (2008)Google Scholar
  36. 36.
    Legros, M., B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker, Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties 80, (2000)Google Scholar
  37. 37.
    Nieman, G.W., J.R. Weertman, and R.W. Siegel. Mechanical behaviour of nanocrystalline Cu, Pd and Ag samples. New Orleans, LA, USA: TMS – Miner. Metals & Amp; Mater. Soc., (1991)Google Scholar
  38. 38.
    Sanders, P.G., J.A. Eastman, and J.R. Weertman, Acta Materialia 45, (1997)Google Scholar
  39. 39.
    Yim, T., S. Yoon, and H. Kim, Materials Science & Engineering. A, Structural materials 449–451, (2007)Google Scholar
  40. 40.
    Chen, J., L. Lu, and K. Lu, Scripta Materialia 54, (2006)Google Scholar
  41. 41.
    Asaro, R.J. and S. Suresh, Acta Materialia 53, (2005)Google Scholar
  42. 42.
    Hillert, M., Acta Metallurgica 13, (1964)Google Scholar
  43. 43.
    De Castro, C.L. and B.S. Mitchell, Materials Science and Engineering A 396, (2005)Google Scholar
  44. 44.
    Song, X., J. Zhang, L. Li, K. Yang, and G. Liu, Acta Materialia 54, (2006)Google Scholar
  45. 45.
    Fecht, H.J., Physical Review Letters 65, (1990)Google Scholar
  46. 46.
    Wagner, M., Physical Review B (Condensed Matter) 45, (1992)Google Scholar
  47. 47.
    Gibbs, J.W., The collected works. Green and Co, New York, (1928)Google Scholar
  48. 48.
    Millet, P.C., R.P. Selvam, and A. Saxena, Acta Materialia 55, (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations