Skip to main content

Structure, Mechanical Properties, and Applications of Nanocrystalline Materials

  • Chapter
  • First Online:
Atomistic and Continuum Modeling of Nanocrystalline Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 112))

Nanocrystalline (NC) materials are composed of grain cores with well-defined atomic arrangement (e.g., face center cubic, body center cubic) joined by an interphase region composed of grain boundaries and higher-order junctions (e.g., triple junctions, quadruple junctions). Early experiments on nanocrystalline materials have shown that the interphase region and particularly grain boundaries exhibit an almost grain size–independent thickness [1]. Hence, as the grain size is decreased, the volume fraction of the interphase region increases. Supposing a tetracaidecahedral grain shape, corresponding to a realistic grain shape, the following expressions of the volume fraction of interphase (e.g., grain boundaries and triple junctions), grain boundaries, and triple junctions can be derived [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Champion, Y. and M.J. Hytch, The European Journal of Applied Physics 4, (1998)

    Google Scholar 

  2. Palumbo, G., S.J. Thorpe, and K.T. Aust, Scripta Metallurigica et Materialia 24, (1990)

    Google Scholar 

  3. Birringer, R., Materials Science and Engineering A 117, (1989)

    Google Scholar 

  4. Zhang, K., I.V. Alexandrov, and K. Lu. The X-ray diffraction study on a nanocrystalline Cu processed by equal-channel angular pressing. Kona, HI, USA: Elsevier, (1997)

    Google Scholar 

  5. Kumar, K.S., S. Suresh, M.F. Chislom, J.A. Horton, and P. Wang, Acta Materialia 51, (2003)

    Google Scholar 

  6. Straub, W.M., T. Gessman, W. Sigle, F. Phillipp, A. Seeger, and H.E. Schaefer, Nanostructured Materials 6, (1995)

    Google Scholar 

  7. Torre, F.D., P. Spatig, R. Schaublin, and M. Victoria, Acta Materialia 53, (2005)

    Google Scholar 

  8. Ungar, T., S. Ott, P.G. Sanders, A. Borbely, and J.R. Weertman, Acta Materialia 46, (1998)

    Google Scholar 

  9. Estrin, Y. and H. Mecking, Acta Metallurgica 32, (1984)

    Google Scholar 

  10. Kocks, U.F., Transactions of the ASME (1976)

    Google Scholar 

  11. Kocks, U.F. and H. Mecking, Progress in Materials Science 48, (2003)

    Google Scholar 

  12. Mecking, H. and U.F. Kocks, Acta Metallurgica 29, (1981)

    Google Scholar 

  13. Huang, J.Y., X.Z. Liao, and Y.T. Zhu, Philosophical Magazine 83, (2003)

    Google Scholar 

  14. Sanders, P.G., A.B. Witney, J.R. Weertman, R.Z. Valiev, and R.W. Siegel, Journal of Engineering and Applied Science A204, (1995)

    Google Scholar 

  15. Mingwei, C., M. En, K.J. Hemker, S. Hongwei, W. Yinmin, and C. Xuemei, Science 300, (2003)

    Google Scholar 

  16. Markmann, J., et al., Scripta Materialia 49, (2003)

    Google Scholar 

  17. Liao, X.Z., F. Zhou, E.J. Lavernia, D.W. He, and Y.T. Zhu, Applied Physics Letters 83, (2003)

    Google Scholar 

  18. Ranganathan, S., R. Divakar, and V.S. Raghunathan, Scripta Materialia 27, (2000)

    Google Scholar 

  19. Sun, X., R. Reglero, X. Sun, and M.J. Yacaman, Materials Chemistry and Physics 63, (2000)

    Google Scholar 

  20. Patterson, A.L., Physical Review 56, (1939)

    Google Scholar 

  21. Scherrer, P., Gottinger Nachrichten 2, (1918)

    Google Scholar 

  22. Hall, E.O., Proceedings of the Physical Society of London B64, (1951)

    Google Scholar 

  23. Petch, N.J., Journal of Iron Steel Institute 174, (1953)

    Google Scholar 

  24. Li, J.C.M., Transactions of the Metallurgical Society of AIME 227, (1963)

    Google Scholar 

  25. Murr, L.E., Materials Science and Engineering 51, (1981)

    Google Scholar 

  26. Murr, L.E. and E. Venkatesh, Metallography 11, (1978)

    Google Scholar 

  27. Venkatesh, E.S. and L.E. Murr, Scripta Metallurgica 10, (1976)

    Google Scholar 

  28. Venkatesh, E.S. and L.E. Murr, Materials Science and Engineering 33, (1978)

    Google Scholar 

  29. Ashby, M.F., Philosophical Magazine 21, (1970)

    Google Scholar 

  30. Cheong, K.S. and E.P. Busso, Discrete dislocation density modelling of single phase FCC polycrystal aggregates. Acta Materialia, 52(19), 5665–5675, (2004)

    Google Scholar 

  31. Cheng, S., et al., Acta Materialia 53, (2005)

    Google Scholar 

  32. Yinmin, W., C. Mingwei, Z. Fenghua, and M. En, Nature 419, (2002)

    Google Scholar 

  33. Youssef, K.M., R.O. Scattergood, K.L. Murty, and C.C. Koch, Applied Physics Letters 85, (2004)

    Google Scholar 

  34. Champion, Y., C. Langlois, S. Guerin-Mailly, P. Langlois, J.L. Bonnentien, and M.J. Hytch, Science 300, (2003)

    Google Scholar 

  35. Khan, A.S., B. Farrokh, and L. Takacs, Materials Science and Engineering: A 489, (2008)

    Google Scholar 

  36. Legros, M., B.R. Elliott, M.N. Rittner, J.R. Weertman, and K.J. Hemker, Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties 80, (2000)

    Google Scholar 

  37. Nieman, G.W., J.R. Weertman, and R.W. Siegel. Mechanical behaviour of nanocrystalline Cu, Pd and Ag samples. New Orleans, LA, USA: TMS – Miner. Metals & Amp; Mater. Soc., (1991)

    Google Scholar 

  38. Sanders, P.G., J.A. Eastman, and J.R. Weertman, Acta Materialia 45, (1997)

    Google Scholar 

  39. Yim, T., S. Yoon, and H. Kim, Materials Science & Engineering. A, Structural materials 449–451, (2007)

    Google Scholar 

  40. Chen, J., L. Lu, and K. Lu, Scripta Materialia 54, (2006)

    Google Scholar 

  41. Asaro, R.J. and S. Suresh, Acta Materialia 53, (2005)

    Google Scholar 

  42. Hillert, M., Acta Metallurgica 13, (1964)

    Google Scholar 

  43. De Castro, C.L. and B.S. Mitchell, Materials Science and Engineering A 396, (2005)

    Google Scholar 

  44. Song, X., J. Zhang, L. Li, K. Yang, and G. Liu, Acta Materialia 54, (2006)

    Google Scholar 

  45. Fecht, H.J., Physical Review Letters 65, (1990)

    Google Scholar 

  46. Wagner, M., Physical Review B (Condensed Matter) 45, (1992)

    Google Scholar 

  47. Gibbs, J.W., The collected works. Green and Co, New York, (1928)

    Google Scholar 

  48. Millet, P.C., R.P. Selvam, and A. Saxena, Acta Materialia 55, (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Cherkaoui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cherkaoui, M., Capolungo, L. (2009). Structure, Mechanical Properties, and Applications of Nanocrystalline Materials. In: Atomistic and Continuum Modeling of Nanocrystalline Materials. Springer Series in Materials Science, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46771-9_2

Download citation

Publish with us

Policies and ethics