Fabrication Processes

  • Mohammed CherkaouiEmail author
  • Laurent Capolungo
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 112)

As a preliminary note, let us acknowledge that the initial microstructure of a nanocrystalline (NC) sample – which defines its mechanical and thermal responses – is dependent on its processing route. Therefore, models with adequate predicting capabilities must originate from a clear description of the material’s microstructure. Since different processing routes may lead, for example, to materials with different amounts of defects, it is capital to acquire a fairly good knowledge on the relationship between fabrication process and resulting microstructure. In doing so, the analysis of model predictions can be adequately discussed with respect to experimental observations. For this purpose this chapter is entirely dedicated to fabrication processes.


Shear Band Grain Size Distribution Mechanical Alloy Severe Plastic Deformation Equal Channel Angular Pressing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Langdon, T.G. and R.Z. Valiev, Progress in Materials Science 51, (2006)Google Scholar
  2. 2.
    Iwahashi, Y., J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Scripta Materialia 35, (1996)Google Scholar
  3. 3.
    Xu, S., G. Zhao, Y. Luan, and Y. Guan, Journal of Materials Processing Technology 176, (2006)Google Scholar
  4. 4.
    Mishra, A., B.K. Kad, F. Gregori, and M.A. Meyers, Acta Materialia 55, (2007)Google Scholar
  5. 5.
    Lowe, T.C. and R.Z. Valiev, JOM 52, (2000)Google Scholar
  6. 6.
    Furukawa, M., Z. Horita, M. Nemoto, and T.G. Langdon, Materials Science and Engineering A 324, (2002)Google Scholar
  7. 7.
    Jiang, H., Y.T. Zhu, D.P. Butt, I.V. Alexandrov, and T.C. Lowe, Materials Science and Engineering A 290, (2000)Google Scholar
  8. 8.
    Ebrahimi, F., G.R. Bourne, M.S. Kelly, and T.E. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostructured Materials, 11(3), 343–350, (1999)Google Scholar
  9. 9.
    Cheung, C., F. Djuanda, U. Erb, and G. Palumbo, Electrodeposition of nanocrystalline Ni-Fe alloys. Nanostructured Materials, 5(5), 513–52, (1995)Google Scholar
  10. 10.
    Wu, R.I., G. Wilde, and J.H. Perepezko. Glass formation and primary nanocrystallization in Al-base metallic glasses. Cincinnati, OH, USA: Elsevier, (2001)Google Scholar
  11. 11.
    Gravier, S., L. Charleux, A. Mussi, J.J. Blandin, P. Donnadieu, and M. Verdier, Journal of Alloys and Compounds 434–435, (2007)Google Scholar
  12. 12.
    Louzguine-Luzgin, D.V. and A. Inoue, Journal of Alloys and Compounds 434–435, (2007)Google Scholar
  13. 13.
    Perepezko, J.H., Progress in Materials Science 49, (2004)Google Scholar
  14. 14.
    Zhang, T. and H. Men, Journal of Alloys and Compounds 434–435, (2007)Google Scholar
  15. 15.
    Zhu, M., X.Z. Che, Z.X. Li, J.K.L. Lai, and M. Qi, Journal of Materials Science 33, (1998)Google Scholar
  16. 16.
    Jiang, J.Z., R. Lin, S. Morup, K. Nielsen, F.W. Poulsen, F.J. Berry, and R. Clasen, Physical Review B (Condensed Matter) 55, (1997)Google Scholar
  17. 17.
    Fecht, H.J., Nanostructured Materials 1, (1992)Google Scholar
  18. 18.
    Huang, J.Y., Y.K. Wu, and H.Q. Ye, Acta Materialia 44, (1996)Google Scholar
  19. 19.
    Huang, J.Y., X.Z. Liao, and Y.T. Zhu, Philosophical magazine 83, (2003)Google Scholar
  20. 20.
    Witkin, D.B. and E.J. Lavernia, Progress in Materials Science 51, (2006)Google Scholar
  21. 21.
    Lee, J., F. Zhou, K.H. Chung, N.J. Kim, and E.J. Lavernia, Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science) 32A, (2001)Google Scholar
  22. 22.
    Zuniga, A., S. Fusheng, P. Rojas, and E.J. Lavernia, Materials Science and Engineering A (Structural Materials: Properties, Microstructure and Processing) 430, (2006)Google Scholar
  23. 23.
    Khan, A.S., Z. Haoyue, and L. Takacs, International Journal of Plasticity 16, (2000)Google Scholar
  24. 24.
    Tian, H.H. and M. Atzmon, Acta Materialia 47, (1999)Google Scholar
  25. 25.
    Cheng, S., et al., Acta Materialia 53, (2005)Google Scholar
  26. 26.
    Youssef, K.M., R.O. Scattergood, K.L. Murty, and C.C. Koch, Applied Physics Letters 85, (2004)Google Scholar
  27. 27.
    Khan, A.S., B. Farrokh, and L. Takacs, Materials Science and Engineering: A 489, (2008)Google Scholar
  28. 28.
    Fougere, G.E., J.R. Weertman, and R.W. Siegel. On the hardening and softening of nanocrystalline materials. Cancun, Mexico, (1993)Google Scholar
  29. 29.
    Nieman, G.W., J.R. Weertman, and R.W. Siegel. Mechanical behavior of nanocrystalline Cu, Pd and Ag samples. New Orleans, LA, USA: TMS – Miner. Metals & Mater. Soc., (1991)Google Scholar
  30. 30.
    Meyers, M.A., A. Mishra, and D.J. Benson, Progress in Materials Science 51, (2006)Google Scholar
  31. 31.
    Gleiter, H., Progress in Materials Science 33, (1989)Google Scholar
  32. 32.
    Uyeda, R., Progress in Materials Science 35, (1991)Google Scholar
  33. 33.
    Singh, A., Journal of Physics E (Scientific Instruments) 10, (1977)Google Scholar
  34. 34.
    Granqvist, C.G. and R.A. Buhrman, Journal of Applied Physics 47, (1976)Google Scholar
  35. 35.
    Westerberg, K.W., M.A. McClelland, and B.A. Finlayson, International Journal for Numerical Methods in Fluids 26, (1998)Google Scholar
  36. 36.
    Bardakhanov, S.P., A.I. Korchagin, N.K. Kuksanov, A.V. Lavrukhin, R.A. Salimov, S.N. Fadeev, and V.V. Cherepkov, Materials Science and Engineering: B 132, (2006)Google Scholar
  37. 37.
    Agnew, S.R., B.R. Elliott, C.J. Youngdahl, K.J. Hemker, and J.R. Weertman, Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing 285, (2000)Google Scholar
  38. 38.
    Gutmanas, E.Y., Progress in Materials Science 34, (1990)Google Scholar
  39. 39.
    Murty, B.S., J. Joardar, and S.K. Pabi, Nanostructured Materials 7, (1996)Google Scholar
  40. 40.
    Klement, U., U. Erb, A.M. El-Sherik, and K.T. Aust, Materials Science and Engineering A (Structural Materials: Properties, Microstructure and Processing) A203, (1995)Google Scholar
  41. 41.
    Alymov, M.I. and O.N. Leontieva. Synthesis of nanoscale Ni and Fe powders and properties of their compacts. Stuttgart, Germany, (1995)Google Scholar
  42. 42.
    Rawers, J., F. Biancaniello, R. Jiggetts, R. Fields, and M. Williams, Scripta Materialia 40, (1999)Google Scholar
  43. 43.
    Zhu, B., R.J. Asaro, P. Krysl, K. Zhang, and J.R. Weertman, Acta Materialia 54, (2006)Google Scholar
  44. 44.
    Ortiz, A.L., F. Sanchez-Bajo, and F.L. Cumbrera, Acta Materialia 54, (2006)Google Scholar
  45. 45.
    Reinmann, K. and R. Wurschum, Journal of Applied Physics 81, (1997)Google Scholar
  46. 46.
    Hyoung Seop, K. Densification modelling for nanocrystalline metallic powders. Taipei, Taiwan: Elsevier, (2003)Google Scholar
  47. 47.
    Dominguez, O., Y. Champion, and J. Bigot. Mechanical behavior of bulk nanocrystalline Cu and Fe materials obtained by isostatic pressing and sintering. Chicago, IL, USA: Metal Powder Industries Federation, Princeton, NJ, USA, (1997)Google Scholar
  48. 48.
    Livne, Z., A. Munitz, J.C. Rawers, and R.J. Fields, Nanostructured Materials 10, (1998)Google Scholar
  49. 49.
    Sun, X.K., H.T. Cong, M. Sun, and M.C. Yang, Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science) 31A, (2000)Google Scholar
  50. 50.
    Lequitte, M. and D. Autissier. Synthesis and sintering of nanocrystalline erbium oxide. Stuttgart, Germany, (1995)Google Scholar
  51. 51.
    Krasnowski, M. and T. Kulik, Intermetallics 15, (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations