Skip to main content

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

Turmeric (Curcuma longa) is extensively used as a household remedy for various diseases. For the last few decades, work has been done to establish the biological activities and pharmacological actions of curcumin, the principle constituent of turmeric. Curcumin has proven to be beneficial in the prevention and treatment of a number of inflammatory diseases due to its anti-inflammatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. World Health Organization, Health Report, 2006. Lyon: WHO Publications Press, 2006.

    Google Scholar 

  2. 2. Chronic Disease Prevention. Center for Disease Control, Annual Report (2006).

    Google Scholar 

  3. 3. W.C. Willett, M. J. Stampfer, B. A. Colditz, G. A. Rosner, and F. E. Speizer, Relation of meat, fat and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med 323, 1664–1672 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. 4. J. D. Potter and K. Steinmatz, Vegetables, fruits and phytoestrogens as preventive agents. IARC Sci Publ 139, 61–90 (1995).

    Google Scholar 

  5. 5. C. V. Rao and B. S. Reddy, NSAIDs and chemoprevention. Curr Cancer Drug Targets 4, 29–44 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. 6. J. P. Collet, C. Sharpe, E. Belzile, J. F. Boivin, J. Hanley, and L. Abenhaim, Colorectal cancer prevention by non-steroidal anti-inflammatory drugs: Effects of dosage and timing. Br J Cancer 81, 62–68 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. 7. S. R. Maxwell, R. A. Payne, G. D. Murray, and D. J. Webb, Selectivity of NSAIDs for COX-2 and cardiovascular outcome. Br J Clin Pharmacol 62(2), 243–245 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. 8. D. M. Schreinemachers and R. B. Everson, Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 5, 138–146 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. 9. K. Kohli, J. Ali, M. J. Ansari, and Z. Raheman, Curcumin: A natural anti-inflammatory agent. Indian J Pharmacol 37, 141–147 (2005).

    Article  CAS  Google Scholar 

  10. 10. H. H. Tonnesen, Chemistry of curcumin and curcuminoids. In: C.-T. Ho, C. Y. Lee, and M-T. Haung, eds. Phenolic Compounds in Food and their Effect of Health. Vol. 1: Analysis, Occurrence and Chemistry. ACS Symposium Series No. 506, pp. 143–153, Washington, DC: American Chemical Society, 1992. pp. 143–153.

    Google Scholar 

  11. 11. R. C. Srimal and B. N. Dhawan, Pharmacology of diferuloylmethane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25, 447–452 (1973).

    PubMed  CAS  Google Scholar 

  12. 12. H. P. T. Ammon and M. A. Wahl, Pharmacology of Curcuma longa. Planta Med 57, 1–7 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. 13. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin, preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003).

    PubMed  CAS  Google Scholar 

  14. 14. I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, and R. K. Banerjee, Turmeric and curcumin: Biological actions and medicinal applications. Cur Sci 87, 44–53 (2004).

    CAS  Google Scholar 

  15. 15. R. Arora, N. Basu, and V. Kapoor, Anti-inflammatory studies on Curcuma longa (turmeric). Indian J Med Res 59, 1289–1295 (1971).

    PubMed  CAS  Google Scholar 

  16. 16. R. C. Srimal, N. M. Khanna, and B. N. Dhawan, A preliminary report on anti inflammatory activity of curcumin. Int J Pharm 3, 10–13 (1971).

    Google Scholar 

  17. 17. A. Mukhopadhyay, N. Basu, and N. Ghatak, Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12, 508–515 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. 18. R. R. Satoskar, S. J. Shah, and S. G. Shenoy, Evaluation of anti-inflammatory property of curcumin in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol 24, 651–654 (1986).

    PubMed  CAS  Google Scholar 

  19. 19. R. Maheshwari, A. K. Singh, J. Gaddopati, and R. C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci 78, 2081–2087 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. 20. T. H. Leu and M. C. Maa, The molecular mechanisms for the antitumorigenic effect of curcumin. Curr Med Chem Anticancer Agents 2, 357–370 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. 21. S. Shishodia, H. M. Amin, R. Lai, and B. B. Aggarwal, Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70(5), 700–713 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. 22. R. L. Thangapazham, S. Sharma, and R. Maheshwari, Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J 8, 443–449 (2006).

    Article  Google Scholar 

  23. 23. W. L. Smith, R. M. Garavito, and D. L. DeWitt, Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271, 33,157–33,160 (1996).

    CAS  Google Scholar 

  24. 24. J. Y. Jouzeau, B. Terlain, A. Abid, E. Nedelec, and P. Netter, Cyclo-oxygenase isoenzymes. How recent findings affect thinking about nonsteroidal anti-inflammatory drugs. Drugs 53, 563–582 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. 25. J. Y. Fu, J. L. Masferrer, K. Seibert, A. Raz, and P. Needleman, The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem 265, 16,737–16,740 (1990).

    CAS  Google Scholar 

  26. 26. K. C. Srivastava, A. Bordia, and S. K. Verma, Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 52, 223–227 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. 27. A. H. Conney, T. Lysz, T Ferraro, T. F. Abidi, P. S. Manchand, J. D. Laskin, and M. T. Huang, Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 31, 385–396 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. 28. B. Joe and B. R. Lokesh, Effect of curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32, 1173–1180 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. 29. H. P. Ammon, H. Safayhi, T. Mack, and J. Sabieraj, Mechanism of anti-inflammatory actions of curcumin and bowsellic acids. J Ethnopharmacol 38, 113–119 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. 30. R. Srivastava, Inhibition of neutrophil response by curcumin. Agents Actions 28, 298–303 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. 31. C. V. Rao, B. Simi, and B. S. Reddy, Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis 14, 2219–2225 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. 32. C. V. Rao, A. Rivenson, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).

    PubMed  CAS  Google Scholar 

  33. 33. M.-T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).

    PubMed  CAS  Google Scholar 

  34. 34. M.-T. Huang, R. C. Smart, C.-Q. Wong, and A. H. Cooney, Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48, 5941–5946 (1998).

    Google Scholar 

  35. 35. C. Ireson, S. Orr, D. J. Jones, R. Verschoyle, C. K. Lim, J. L. Luo, et al., Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61, 1058–1064 (2001).

    PubMed  CAS  Google Scholar 

  36. 36. R. S. Ramsewak, D. L. DeWitt, and M. G. Nair, Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine 7, 303–308 (2000).

    PubMed  CAS  Google Scholar 

  37. 37. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and A. J. Dannenberg, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signaling complex. Carcinogenesis 20, 445–451 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. 38. A. Goel, C. R. Boland, and D. P. Chauhan, Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172, 111–118 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. 39. H. Y. Kim, E. J. Park, E. H. Joe, and I. Jou, Curcumin suppresses Janus kinase–STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 171, 6072–6079 (2003).

    PubMed  CAS  Google Scholar 

  40. 40. Y. J. Surh, K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park KK, et al., Molecular mechanism underlying chemopreventive activities of anti-inflammatory phytochemicals: down regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation Res 480, 243–268 (2001).

    PubMed  Google Scholar 

  41. 41. A. A. Nanji, K. Jokelainen, G. L. Tipoe, A. Rahemtulla, P. Thomas, and A. J. Dannenberg, Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol Gastrointest Liver Physiol 284, 321–327 (2003).

    Google Scholar 

  42. 42. S. S. Han, Y. S. Keum, H. I. Seo, and Y. L. Surh, Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol 35, 337–342 (2002).

    PubMed  CAS  Google Scholar 

  43. 43. S. Shishodia, H. M. P. Potdar, C. G. Gairola, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: Correlation with suppression of COX-2, MMP->9 and cyclin D1. Carcinogenesis 24(7), 1269–1279 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. 44. K. S. Chun, Y. S. Keum, S. S. Han, Y. S. Song, S. H. Kim, and Y. J. Surh, Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis 24, 1515–1524 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. 45. A. C. Bharti, N. Donato, S. Singh, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 10, 1053–1062 (2003).

    Article  CAS  Google Scholar 

  46. 46. D. Salvemini, S. L. Settle, J. L. Masferrer, K. Seibert, M. G. Currie, and P. Needleman, Regulation of prostaglandin production by nitric oxide: An in vivo analysis. Br J Pharmacol 114, 1171–1178 (1995).

    PubMed  CAS  Google Scholar 

  47. 47. T. Tetsuka, D. D. Iken, B. W. Miler, Z. Guan, L. D. Baier, and A. R. Morrison, Nitric oxide amplifies interleukin 1-induced cyclooxygenase-2 expression in rat mesangial cells. J Clin Invest 97, 2051–2055 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. 48. J. M. Mei, N. G. Hord, D. F. Winterstein, S. P. Donald, and J. M. Phang, Expression of prostaglandin endoperoxide H synthase-2 induced by nitric oxide in conditionally immortalized murine colonic epithelial cells. FASEB J 14, 1188–1192 (2000).

    PubMed  CAS  Google Scholar 

  49. 49. L. J. Marnett, T. L. Wright, B. C. Crews, S. R. Tannenbaum, and J. D. Morrow, Regulation of prostaglandin biosynthesis by nitric oxide is revealed by targeted deletion of inducible nitric oxide synthase. J Biol Chem 275, 13,427–13,421 (2000).

    Article  CAS  Google Scholar 

  50. 50. D. Salvemini, T. P. Misko, J. L. Masferrer, K. Seibert, M. G. Currie, and P. Needleman, Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 90, 7240–7245 (1993).

    Article  PubMed  CAS  Google Scholar 

  51. 51. L. J. Marnett, S. W. Rowlinson, D. C. Goodwin, A. S. Kalgutkar, and C. A. Lanzo, Arachidonic acid oxygenation by COX-1 and COX-2. J Biol Chem 274, 22,903–22,906 (1999).

    Article  CAS  Google Scholar 

  52. 52. V. B. O'Donell, B. Coles, M. J. Lewis, B. C. Crews, L. J. Marnett, and B. A. Freeman, Catalytic consumption of nitric oxide by prostaglandin H synthase regulates platelet function. J Biol Chem 275, 38,239–38,243 (2000).

    Article  Google Scholar 

  53. 53. C. V. Rao, C. Indranie, B. Simi, P. T. Manning, J. R. Connor, and B. S. Reddy, Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase inhibitor. Cancer Res 62, 165–170 (2002).

    PubMed  CAS  Google Scholar 

  54. 54. C. V. Rao, T. Kawamori, R. Hamid, and B. S. Reddy, Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis 20, 641–644 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. 55. C. V. Rao, I. Cooma, M. V. Swamy, B. Simi, and B. S. Reddy, Modulation of inducible nitric oxide synthase and cyclooxygenase activities by curcumin during different stages of experimental colon carcinogenesis. Proc Am Assoc Cancer Res 39, 3084 (2001).

    Google Scholar 

  56. 56. Y. Liu, G. L. Borchert, and J. M. Phang, PEA3, an Ets transcription factor, mediates the induction of cyclooxygenase-2 by nitric oxide in colorectal cancer cells. J Biol Chem 279, 18,694–18,700 (2004).

    CAS  Google Scholar 

  57. 57. A. Sala, S. Zarini, and M. Bolla, Leukotrienes, lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc) 63, 84–92 (1998).

    CAS  Google Scholar 

  58. 58. O. P. Radmark, The molecular biology and regulation of 5-lipoxygenase. Am J Respir Crit Care Med 161, S11–S25 (2000).

    PubMed  CAS  Google Scholar 

  59. 59. J. F. Penrose, K. F. Austen, and B. K. Lam, Leukotrienes: Biosynthetic pathways, release and receptor-mediated actions with relevance to disease states. In: J. L. Gallin and R. Snyderman, eds. Inflammation Basic Principles And Clinical Correlates. Philadelphia: Lippincott Williams & Wilkins, 1999, pp. 361–372.

    Google Scholar 

  60. 60. M. A. Bray, A. W. Ford-Hutchinson, and M. J. Smith, Leukotriene B4: An inflammatory mediator in vivo. Prostaglandins 22, 213–222 (1981).

    Article  PubMed  CAS  Google Scholar 

  61. 61. R. A. Lewis, K. F. Ansten, and R. J. Soberman, Leukotrienes and other products of the 5-lipoxigenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 192, 439–446 (2000).

    Google Scholar 

  62. 62. D. L. Flynn, M. F. Rafferty, and A. M. Boctor, Inhibition of 5-hydroxyeicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally occurring diarylheptanoids: Inhibitory activities of curcuminoids and yakuchinones. Leukotrienes Med 22, 357–360 (1986).

    Article  CAS  Google Scholar 

  63. 63. J. Hong, M. Bose, J. Ju, J.H. Ryu, X. Chen, S. Sang, M. J. Lee, and C. S. Yang, Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives; effects of cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25, 1671–1679 (2004).

    Article  PubMed  CAS  Google Scholar 

  64. 64. J. E. Skrzypczak, N. P. McCabe, S. H. Selman, and J. Jankun, Curcumin inhibits lipoxygenase by binding to its central cavity: Theoretical and X-ray evidence. Int J Mol Med 6, 521–526 (2000).

    Google Scholar 

  65. 65. M. West, M. Mhatre, A. Ceballos, R. A. Floyd, P. Grammas, S. P. Gabbita, L. Hamdheydari, T. Mai, Z. Zemlan, and K. Hensley, The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem 91(1), 133–143 (2004).

    Article  PubMed  CAS  Google Scholar 

  66. 66. N. S. Prasad, R. Raghavendra, B. R. Lokesh, and K. A. Naidu, Spice phenolic inhibits human PMNL 5-lipoxygenase. Prostaglandins Leukot Essent Fatty Acids 70, 521–528 (2004).

    Article  PubMed  CAS  Google Scholar 

  67. 67. B. F. McAdam, F. Catella-Lawson, I. A. Mardini, S. Kapoor, J. A. Lawson, and G. A. FitzGerald, Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: The human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA 96, 272–277 (1999).

    Article  PubMed  CAS  Google Scholar 

  68. 68. B. H. Shah, Z. Nawaz, S. A. Pertani, A. Roomi, H. Mahmood, S. A. Saeed, et al., Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2 + signaling. Biochem Pharmacol 58, 1167–1172 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Rao, C.V. (2007). REGULATION OF COX AND LOX BY CURCUMIN. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_9

Download citation

Publish with us

Policies and ethics