Skip to main content

CARDIOPROTECTIVE EFFECTS OF CURCUMIN

  • Chapter

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

Curcumin, a major active component of turmeric, is extracted from the powdered dry rhizome of Curcuma longa Linn (Zingiberaceae) and it has been used for centuries in indigenous medicine.We have shownthat curcumin has a protective role against myocardial necrosis in rats. The antioxidant activity of curcumin could be attributed to the phenolic and methoxy groups in conjunction with the 1,3-diketone-conjugated diene system, for scavenging of the oxygen radicals. In addition, curcumin is shown to enhance the activities of detoxifying enzymes such as glutathione-S-transferase in vivo. We have also shown that oxygen free radicals exacerbate cardiac damage and curcumin induces cardioprotective effect and it also inhibits free-radical generation in myocardial ischemia in rats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. H. P. T. Ammon and M. A. Wahl, Pharmacology of Curcuma longa. Planta Med 57, 1–7 (1991).

    PubMed  CAS  Google Scholar 

  2. 2. R. C. Srimal, Turmeric. A brief review of medicinal properties. Fitoterapia. 68, 483–493 1997).

    Google Scholar 

  3. 3. S. Toda, Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull33, 1725–1728 (1985).

    PubMed  CAS  Google Scholar 

  4. 4. Y. Abe, S. Hashimoto, and T. Horie, Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39, 41–47 (1999).

    PubMed  CAS  Google Scholar 

  5. 5. J. L. Quiles, M. D. Mesa, C. L. Ramirez-Tortosa, C. M. Aguilera, M. Battino, A. Gil, M. C. Ramirez-Tortosa, Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler Thromb Vasc Biol 22,1225–1231 (2002).

    PubMed  CAS  Google Scholar 

  6. 6. L. Pilgeram, Atherogenesis and fibrinogen: Historical perspective and current status. Naturwissenschaften 80, 547–555 (1993).

    PubMed  CAS  Google Scholar 

  7. 7. K. Von Rokitansky, Handbuch der Pathologischen Anatomie, Vols. 1–3. Vienna: Braunmuller und Seidel, 1846.

    Google Scholar 

  8. 8. C. Anitschow, In: E. V. Cowdry, ed. Arteriosclerosis: A Survey of the Problem. New York: McMillan, New York, 1933, pp. 107–121.

    Google Scholar 

  9. 9. R. O. Hynes, Integrins: A family of cell surface receptors. Cell 48, 549–554 (1987).

    PubMed  CAS  Google Scholar 

  10. 10. S. S. Smyth, C. C. Joneckis, and L. V. Parise, Regulation of vascular integrins. Blood 81, 2827–2843 (1993).

    PubMed  CAS  Google Scholar 

  11. 11. W. H. Frishman, B. Burns, B. Atac, N. Alturk B. Altajar, and K. Lerrick, Novel antiplatelet therapies for treatment of patients with ischemic heart disease: Inhibitors of the platelet glycoprotein IIb/IIIa integrin receptor. Am Heart J 130, 877–892 (1995).

    PubMed  CAS  Google Scholar 

  12. 12. K. C. Srivastava and T. Mustafa, Spices: Antiplatelet activity and prostanoid metabolism. Prostaglandins Leukotr Essent Fatty Acids 8, 255–266 (1989).

    Google Scholar 

  13. 13. K. C. Srivastava and O. D. Tyagi, Effects of a garlic-derived principle (ajoene) on aggregation and arachidonic acid metabolism in human blood platelets. Prostaglandins Leukotr Essent Fatty Acids 49, 587–595 (1993).

    CAS  Google Scholar 

  14. 14. K. C. Srivastava, Extracts of two frequently consumed spices—cumin (Cuminum cyminum) and turmeric (Curcuma longa)—inhibit aggregation and alter eicosanoid biosynthesis in human blood platelets. Prostaglandins Leukotr Essent Fatty Acids 37, 57–64 (1989).

    CAS  Google Scholar 

  15. 15. K. C. Srivastava, A. Bordia, and S. K. Verma, Curcumin, a major component of food spice turmeric (Curcuma longa), inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukotr Essent Fatty Acids 52, 223–227 (1995).

    CAS  Google Scholar 

  16. 16. J. Lefkovits, E. F. Plow, and E. J. Topol, Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 332, 1553–1559 (1995).

    PubMed  CAS  Google Scholar 

  17. 17. M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities ischemia in rats. Int J Biochem Cell Biol 36, 1967–1980 (1991).

    Google Scholar 

  18. 18. P. Manikandan, M. Sumitra, S. Aishwarya, B. M. Manohar, B. Lokanadam, and R. Puvanakrishnan, Curcumin modulates free radical quenching in myocardial in mouse epidermis. Cancer Res 51, 813–819 (2004).

    Google Scholar 

  19. 19. S. Offermans, Kl. Laugwitz, K. Spicher, and G. Schultz, G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA 91, 504–508 (1994).

    Google Scholar 

  20. 20. S. D. Shukla, C. C. Franklin, and M. G. Carter, Activation of phospholipase C in platelets by platelet activating factor and thrombin causes hydrolysis of a common pool of phosphatidylinositol 4,5- bisphosphate. Biochim Biophys Acta 929, 134–141 (1987).

    PubMed  CAS  Google Scholar 

  21. 21. M. R. James-Kracke, R. B. Sexe, and S. D. Shukla, Picomolar platelet activating factor mobilizes Ca21 to change platelet shape without activating phospholipase C or protein kinase C; simultaneous measurements of intracellular free Ca21 concentration and aggregation. J Pharmacol Exp Ther 271, 824–831 (1994).

    PubMed  CAS  Google Scholar 

  22. 22. W. Siess, Molecular mechanisms of platelet activation. Physiol Rev 69, 58–178 (1989).

    PubMed  CAS  Google Scholar 

  23. 23. J. W. M. Heemskerk and O. Sage, Calcium signaling in platelets and other cells. Platelets 5, 295–316 (1994).

    CAS  Google Scholar 

  24. 24. D. E. Clapham, Calcium signaling. Cell 80, 259–268 (1995).

    PubMed  CAS  Google Scholar 

  25. 25. M. Crabos, D. Fabbro, S. Stabel, and P. Erne, Effect of tumor promoting phorbol ester, thrombin platelets and regulation by calcium. Biochem J 288, 891–896 (1992).

    PubMed  CAS  Google Scholar 

  26. 26. A. C. Newton, Protein kinase C: Structure, function and regulation. J Biol Chem 270, 28,495–28,498 (1995).

    CAS  Google Scholar 

  27. 27. T. M. Quinton and W. L. Dean, Multiple inositol 1,4,5-triphosphate receptor isoforms are present in platelets. Biochem Biophys Res Commun 224, 740–746 (1996).

    PubMed  CAS  Google Scholar 

  28. 28. L. F. Brass, J. A. Hoxie, and D. R. Manning, Signaling through G proteins and G protein-coupled receptors during platelet activation. Thromb Haemost 70, 217–223 (1993).

    PubMed  CAS  Google Scholar 

  29. 29. W. Siess, B. Grunberg, and K. Luber, Functional relationship between cyclic AMP-dependent protein phosphorylation and platelet inhibition. Adv Exp Med Biol 344, 229–235 (1993).

    PubMed  CAS  Google Scholar 

  30. 30. S. M. O. Hourani and D. A. Hall, Receptors for ADP on human blood platelets. Trends Pharmacol Sci 15, 103–108 (1994).

    PubMed  CAS  Google Scholar 

  31. 31. W. Chao and M. S. Olson, Platelet-activating factor: Receptors and signal transduction. Biochem J 292, 617–629 (1993).

    PubMed  CAS  Google Scholar 

  32. 32. S. A. Saeed and B. H. Shah, Diversity of agonist-mediated signal transduction pathways in human platelets. Adv Exp Med Biol 407, 531–535 (1997).

    PubMed  CAS  Google Scholar 

  33. 33. B. H. Shah, D. J. McEwan, and G. Milligan, Gonadotrophin releasing hormone receptor agonist-mediated down-regulation of Gqa/G11 a (pertussis toxin-insensitive) G proteins in aT3–1 gonadotroph cells reflects increased G protein turnover but not alterations in mRNA levels. Proc Natl Acad Sci USA 92, 1886–1889 (1995).

    PubMed  CAS  Google Scholar 

  34. 34. J. Kawabe, G. Iwami, T. Ebina, S. Ohno, T. Katada, Y. Ueda, C. J. Homcy, and Y. Ishikawa, Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem 269, 16,554–16,558 (1994).

    CAS  Google Scholar 

  35. 35. J. Y. Liu, S. J. Lin, and J. K. Lin, JInhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoylphorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14, 857–861 (1993).

    PubMed  CAS  Google Scholar 

  36. 36. J. K. Lin, Y. C. Chen, Y. T. Huang, and S. Y. Lin-Shiau, Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. J Cell Biochem Suppl 28–29, 39–48 (1997).

    PubMed  Google Scholar 

  37. 37. X. Wang, S. Yanagi, C. Yang, R. Inatome, and H. Yamamura, Tyrosine phosphorylation and SYK activation are involved in thrombin-induced aggregation of epinephrine-potentiated platelets. J Biochem 121, 325–330 (1997).

    PubMed  CAS  Google Scholar 

  38. 38. Y. Banno, T. Asano, and Y. Nozawa, Stimulation by G protein bg subunits of phospholipase Cb isoforms in human platelets. Thromb Haemost 79, 1008–1013 (1998).

    PubMed  CAS  Google Scholar 

  39. 39. K. L. Kaplan. and A. Bini, Thrombosis in atherogenesis. Crit Rev Oncol Hematol 9, 305–318 (1989).

    PubMed  CAS  Google Scholar 

  40. 40. E. B. Smith, R. S. Slater, and J. A. Hunter, Quantitative studies on fibrinogen and low-density lipoprotein in human aortic intima. Atherosclerosis 55, 171–178 (1973).

    Google Scholar 

  41. 41. E. Ernst and K. L. Resch, Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med 118, 956–963 (1993).

    PubMed  CAS  Google Scholar 

  42. 42. A. Ramý'rez-Bosca', M. A Carrio'n Gutie'rrez, A. Soler, et al., Effects of the antioxidant turmeric on lipoprotein peroxides: Implications for the prevention of atherosclerosis. Age 20,165–168 (1997).

    Google Scholar 

  43. 43. A. Ramý'rez-Bosca', A. Soler, M. A. Carrio'n-Gutie'rrez, A. Laborda Alvarez, and E. Quintanilla Almagro, Antioxidant curcuma extracts decrease the blood lipid peroxide levels of human subjects. Age 18, 167–169 (1995).

    Google Scholar 

  44. 44. A. Claus, Fibrinogens. Acta Haemat 7, 237 (1957).

    Article  Google Scholar 

  45. 45. T. Masuda, J. Isobe, A. Jitoe, and N. Nakatani, Antioxidative curcuminoids from rhizomes of Curcumaxantorrhyza. Phytochemistry 31, 3645–3647 (1992).

    CAS  Google Scholar 

  46. 46. T. N. Bhavani Shankar, N. V. Shantha, H. P. Ramesh, I. A. S. Murthy, and V. S. Murthy, Toxicity studies on turmeric (Curcuma longa): Acute toxicity studies in rats, guinea pigs and monkeys. Ind J Exp Biol 18, 73–75 (1980).

    Google Scholar 

  47. 47. G. K. Hansson, Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352, 1685–1695 (2005).

    PubMed  CAS  Google Scholar 

  48. 48. A. Doria, Y. Sherer, P. L. Meroni and Y. Shoenfeld, Inflammation and accelerated atherosclerosis: Basic mechanisms. Rheum Dis Clin North Am 31, 355–362 (2005).

    PubMed  Google Scholar 

  49. 49. J. Miquel, M. Martínez, A. Diez, E. De Juan, A. Solar, A. Ramírez-Boscâ, J. Laborda, and M. Carriona, Effects of turmeric on blood and liver lipoperoxide levels of mice: Lack of toxicity. Age 18, 171–174 (1995).

    CAS  Google Scholar 

  50. 50. M. C. Ramírez-Tortosa, M. D. Mesa, M. C. Aguilera, J. L. Quiles, L. Baró, C. L. Ramírez-Tortosa, E. Martínez-Victoria, and A. Gil, Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effect in rabbits with experimental atherosclerosis. Atherosclerosis 147, 371–378 (1999).

    PubMed  Google Scholar 

  51. 51. H. W. Chen and H. C. Huang, Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells. Br J Pharmacol 124, 1029–1040 (1998).

    PubMed  CAS  Google Scholar 

  52. 52. K. C. Srivastava, Evidence for the mechanism by which garlic inhibits platelet aggregation. Prostaglandins Leukotr Med 22, 313–321 (1986).

    CAS  Google Scholar 

  53. 53. C. C. Araujo, and L. L. Leon, Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 96,723–728 (2001).

    PubMed  CAS  Google Scholar 

  54. 54. B. B. Aggarwal, A. Kumar, and A. C. Bharti, Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 23, 363–398 (2003).

    PubMed  CAS  Google Scholar 

  55. 55. A. Duvoix, R. Blasius, S. Delhalle, M. Schnekenburger, F. Morceau, E. Henry, et al., Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223, 181–190 (2005).

    PubMed  CAS  Google Scholar 

  56. 56. J. A. Piedrahita, S. H. Zhang, J. R. Hagaman, P. M. Oliver, and N. Maeda, Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA 89, 4471–4475 (1992).

    PubMed  CAS  Google Scholar 

  57. 57. S. Ishibashi, J. Herz, N. Maeda, J. L. Goldstein, and M. S. Brown, The two-receptor model of lipoprotein clearance: Tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci USA 91, 4431–4435 (1994).

    PubMed  CAS  Google Scholar 

  58. 58. Y. Nakashima, A. S. Plump, E. W. Raines, J. L. Breslow, and R. Ross, ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14, 133–140 (1994).

    PubMed  CAS  Google Scholar 

  59. 59. G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. S. Srinivas, Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64, 353–356 (1998).

    PubMed  CAS  Google Scholar 

  60. 60. C. Monaco and E. Paleolog, Nuclear factor kappaB: A potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 61, 671–682 (2004).

    PubMed  CAS  Google Scholar 

  61. 61. J. Jawien, M. Gajda, L. Mateuszuk, R. Olszanecki, A. Jakubowski, A Szlachcic, et al., Inhibition of nuclear factor-kappaB attenuates artherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 56, 483–489 (2005).

    PubMed  CAS  Google Scholar 

  62. 62. K. Hishikawa, T. Nakaki, and T. Fujita, Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25, 442–446 (2005).

    PubMed  CAS  Google Scholar 

  63. 63. B. Gupta and B. Ghosh, Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immunopharmacol 21, 745–757 (1999).

    PubMed  CAS  Google Scholar 

  64. 64. K. A. Hoekstra, D. V. Godin, and K. M. Cheng, Protective role of heme oxygenase in the blood vessel wall during atherogenesis. Biochem Cell Biol 82, 351–359 (2004).

    PubMed  Google Scholar 

  65. 65. N. G. Abraham and A. Kappas, Heme oxygenase and the cardiovascular-renal system. Free Radical Biol Med 39, 1–25 (2005).

    CAS  Google Scholar 

  66. 66. S. H. Juan, T. S. Lee, K. W. Tseng, J. Y. Liou, S. K. Shyue, K. K. Wu, et al., Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E deficient mice. Circulation. 104, 1519–1525 (2001).

    PubMed  CAS  Google Scholar 

  67. 67. S. F. Yet, M. D. Layne X. Liu, Y. H. Chen, B. Ith, N. E. Sibinga, et al., Absence of heme oxygenase-1e xacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J 17, 1759–1761 (2003).

    PubMed  CAS  Google Scholar 

  68. 68. R. Motterlini, R. Foresti, R. Bassi, and C. J. Green, Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biol Med 28, 1303–1312 (2000).

    CAS  Google Scholar 

  69. 69. E. Middleton, Jr., C. Kandaswami, T. C. Theoharides, The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol Rev 52, 673–751 (2000).

    PubMed  CAS  Google Scholar 

  70. 70. S. Schmitt-Schillig, S. Schaffer, C. C. Weber, G. P. Eckert, and W. E. Muller, Flavonoids and the aging brain. J Physiol Pharmacol 56(Suppl 1), 23–36 (2005).

    PubMed  Google Scholar 

  71. 70a. O. S. Zayachkivska, S. J. Konturek, D. Drozdowicz, P. C. Konturek, T. Brzozowski, and M. R. Ghegotsky, Gastroprotective effects of flavonoids in plant extracts. J Physiol Pharmacol 56, 219–231 (2005).

    PubMed  Google Scholar 

  72. 71. C. Manach, A. Mazur, and A. Scalbert, Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16, 77–84 (2005).

    PubMed  CAS  Google Scholar 

  73. 72. M. Aviram and B. Fuhrman, wine flavonoids protect against LDL oxidation and atherosclerosis. Ann NY Acad Sci 957, 146–161 (2002).

    Article  PubMed  CAS  Google Scholar 

  74. 73. R. Olszanecki, A. Gebska, V. I. Kozlovski, and R. J. Gryglewski, Flavonoids and nitric oxide synthase. J Physiol Pharmacol 53, 571–584 (2002).

    PubMed  CAS  Google Scholar 

  75. 74. S. J. Duffy and J. A. Vita, Effects of phenolics on vascular endothelial function. Curr Opin Lipidol 14, 21–27 (2003).

    PubMed  CAS  Google Scholar 

  76. 75. M. Strzelecka, M. Bzowska, J. Koziel, B. Szuba, O. Dubiel, N. D. Riviera, et al., Anti-inflammatory effects of extracts from some traditional Mediterranean diet plants. J Physiol Pharmacol 56, 139–156 (2005).

    PubMed  Google Scholar 

  77. 76. J. C. Ruf, Wine and polyphenols related to platelet aggregation and atherothrombosis. Drugs Exp Clin Res 25, 125–131 (1999).

    PubMed  CAS  Google Scholar 

  78. 77. N. Venkatesan, Pulmonary protective effects of curcumin against paraquat toxicity. Life Sci 66, 21–28 (2000).

    Google Scholar 

  79. 78. S. Toda, T. Miyase, H. Arichi, H. Tanizawa, and Y. Takino, Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharma Bull 33, 1725–1728 (1985).

    CAS  Google Scholar 

  80. 79. A. C. Reddy and B. R. Lokesh, Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137, 1–8 (1994).

    PubMed  CAS  Google Scholar 

  81. 80. M. K. Unnikrishnan and M. N. Rao, Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem 146, 35–37 (1995).

    PubMed  CAS  Google Scholar 

  82. 81. N. Sreejayan and M. N. A. Rao, Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol. 49, 105–107 (1997).

    PubMed  CAS  Google Scholar 

  83. 82. A. C. Reddyand B. R. Lokesh, Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem 111, 117–124 (1992).

    Google Scholar 

  84. 83. N. Sreejayan and M. N. A. Rao, Curcuminoids as potent inhibitors of lipid peroxidation. J Pharm Pharmacol 46, 1013–1016 (1994).

    PubMed  CAS  Google Scholar 

  85. 84. H. H. Cohly, A. Taylor, M. F. Angel, and A. K. Salahudeen, Effect of turmeric, turmeric and curcumin on H2O2-induced renal epithelial (LLCPK1) cell injury. Free Radical Biol Med 24, 49–54 (1998).

    CAS  Google Scholar 

  86. 85. M. Dikshit, L. Rastogi, R. Shukla, and R. C. Srimal, Prevention of ischemia-induced biochemical changes by curcumin and quinidine in the cat heart. Ind J Med Res 101, 31–35 (1995).

    CAS  Google Scholar 

  87. 86. C. Nirmala and R. Puvanakrishnan, Effect of curcumin on certain lysosomal hydrolases in isoproterenol-induced myocardial infarction in rats. Biochem Pharmacol 51, 47–51 (1996).

    PubMed  CAS  Google Scholar 

  88. 87. C. Nirmala and R. Puvanakrishnan, Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159, 85–93 (1996).

    PubMed  CAS  Google Scholar 

  89. 88. C. Nirmala, S. Anand, and R. Puvanakrishnan, Curcumin treatment modulates collagen metabolism in isoproterenol induced myocardial necrosis in rats. Mol Cell Biochem 197, 31–37 (1999).

    PubMed  CAS  Google Scholar 

  90. 89. J. P. Gaddipati, S. V. Sundar, J. Calemine, P. Seth, G. S. Sidhu, and R. K. Maheshwari, Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19, 150–156 (2003).

    PubMed  CAS  Google Scholar 

  91. 90. P. Rafiee, Y. Shi, K. A. Pritchard, H. Ogawa, A. L. Eis, R. A. Komorowski, C. M. Fitzpatrick, J. S. Tweddell, S. B. Litwin, K. Mussatto, R. D. Jaquiss, and J. E. Baker, Cellular redistribution of inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: Role of protein kinases. J Biol Chem 278, 43,636–43,644 (2003).

    CAS  Google Scholar 

  92. 91. P. Rafiee, Y. Shi, X., Kong, K. A. Pritchard, Jr., J. S. Tweddell, S. B. Litwin, K. Mussatto, R. D. Jaquiss, J. Su, and J. E. Baker, Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: Role in cardioprotection. Circulation 106, 239–245 (2002).

    PubMed  CAS  Google Scholar 

  93. 92. N. Sreejayan and M. N. A. Rao, Free radical scavenging activity of curcuminoids. Arzneimittelforschung 6, 169–171 (1996).

    Google Scholar 

  94. 93. C. V. Rao, A. Rivenson, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).

    PubMed  CAS  Google Scholar 

  95. 94. A. J. Ruby, G. Kuttan, K. D. Babu, K. N. Rajasekharan, and R. Kuttan, Anti-tumor and antioxidant activity of natural curcuminoids. Cancer Lett 94, 79–83 (1995).

    PubMed  CAS  Google Scholar 

  96. 95. J. M. McCord, Oxygen-derived free radicals in post-ischaemic tissue injury. N Eng J Med 312, 159–163 (1985).

    Article  CAS  Google Scholar 

  97. 96. Y. Xia and J. L. Zweier, Substrate control of free radical generation from xanthine oxidase in the post-ischaemic heart. J Biol Chem 270, 18,797–18,803 (1995).

    CAS  Google Scholar 

  98. 97. W. F. Saavedra, N. Paolocci, M. E. St John, M. W. Skaf, G. C. Stewart, J. S. Xie, et al., Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 90, 297–304 (2002).

    PubMed  CAS  Google Scholar 

  99. 98. L. S. Terada, D. M. Guidot, J. A. Leff, I. R. Willingham, M. E. Hanley, D. Piermattei, and J. E. Repine, Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc Natl Acad Sci USA 89, 3362–3366 (1992).

    PubMed  CAS  Google Scholar 

  100. 99. E. Kunchandy and M. N. A. Rao, Oxygen radical scavenging activity of curcumin. Int J Pharm 58, 237–240 (1990).

    CAS  Google Scholar 

  101. 100. T. Matsuyama, Free radical-mediated cerebral damage after hypoxia/ischemia and stroke. In: G. J. Ter Horst and J. Korf, eds. Clinical Pharmacology of Cerebral Ischemia. Totowa, NJ: Humana Press, 1997. pp. 153–184.

    Google Scholar 

  102. 101. M. Pan, T. Huang, and J. Lin, Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27, 486–494 (1999).

    PubMed  CAS  Google Scholar 

  103. 102. J. A. Thomas, Oxidative stress, oxidant defense, and dietary constituents. In Modern Nutrition in Health and Disease, 8th ed. Lea & Febiger, Phil.; 1994, pp. 501–512.

    Google Scholar 

  104. 103. M. Seif-El-Nasr and A. A. Abd-El-Fattah, Lipid peroxide, phospholipids, glutathione levels and superoxide dismutase activity in rat brain after ischemia: Effect of Ginkgo biloba extract. Pharmacol Res 32, 273–278 (1995).

    PubMed  CAS  Google Scholar 

  105. 104. S. Mathews and M. N. A. Rao, Interaction of curcumin with glutathione. Int J Pharm 76, 257–259 (1991).

    CAS  Google Scholar 

  106. 105. 105. S. V. Jovanovic, C. W. Boone, S. Steenken, M. Trinoga, and R. B. Kaskey, How curcumin works preferentially with water-soluble antioxidants. J Am Chem Soc 123, 3064–3068 (2001).

    PubMed  CAS  Google Scholar 

  107. 106. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci 78, 2081–2087 (2006).

    PubMed  CAS  Google Scholar 

  108. 107. K. I. Priyadarsini, Free radical reactions of curcumin in membrane models. Free Radical Biol Med 23, 838–843 (1997).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Miriyala, S., Panchatcharam, M., Rengarajulu, P. (2007). CARDIOPROTECTIVE EFFECTS OF CURCUMIN. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_16

Download citation

Publish with us

Policies and ethics