Skip to main content

Embedded Microelectronic Subsystems

  • Chapter
Ambient Intelligence with Microsystems

Part of the book series: Microsystems ((MICT,volume 18))

  • 761 Accesses

Abstract

This chapter explores embedded microelectronic sub-systems by first defining the meaning of microelectronics packaging. Increasing the packaging density of electronic products, through techniques such as integral substrates and advanced interconnect, is a key issue. This challenge needs to be addressed inherently through electronic packaging in order to meet consumers demand for light-weight, compact, reliable and multifunctional electronic or communication devices. The technological advances, particularly 3-D packaging, which is driven by consumer demand can also enable concepts such as smart objects, smart spaces and augmented materials. This chapter provides a concise review of selected areas in 3-D packaging and then focuses upon two areas that may provide the type of flexibility and density required for future high-volume smart object development. These techniques are folded flex packaging and chip in laminate/interconnect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Tummala et al, “Microelectronics Packaging Handbook: Semiconductor Packaging”, Chapman & Hall, January 1997

    Google Scholar 

  2. http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf

  3. S.L. Burkett et al, “Advanced Processing Techniques for Through-Wafer Interconnects,” Journal of Vacuum Science Technology B, Vol. 22, no. 1,pp 248–256, (Jan. 2004)

    Article  Google Scholar 

  4. M. Sunohara et al, “Development of Wafer Thinning and Double Sided Bumping Technologies for Three Dimensional Stacked LSI”, In Proc. 52nd Electronic Components and Technology Conference, (May 28 31 May 2002), San Diego, California USA, pp. 238–245

    Google Scholar 

  5. R. Nagarajan, et al, “Development of a Novel Deep Silicon Tapered Via Etch Process for Through-Silicon Interconnection in 3D Integrated Systems”, In Proc. 56th Electronic Components and Technology Conference, (May 30 –June 2, 2006), San Diego, California, USA, pp 383–387

    Google Scholar 

  6. M. Bonkohara et al., “Trends and Opportunities of System-in-a-Package and Three-dimensional Integration”, Electronics and Communications in Japan (Part II: Electronics), Vol. 88, Issue 10, pp 37–49 (20 Sep 2005)

    Article  Google Scholar 

  7. M. Kada, “The Dawn of 3D Packaging as System-in-Package (SIP)’” IEICE Transactions on Electronics, Special Issue on Integrated Systems with New Concepts, Vol. E84–C, No.12, Japan, ppl763–1770, (2003)

    Google Scholar 

  8. M. Karnezos et al, “System in a Package (SiP) Benefits and Technical Issues,” Proceedings of APEX, San Diego, (January 16–18, 2002), pp S15–1, 1 to 6

    Google Scholar 

  9. T. Kenji et al, “Current Status of Research and Development of Three Dimensional Chip Stack Technology”, Japanese Journal Of Applied Physics; Vol. 40, 2001, pp 3032–3037

    Article  Google Scholar 

  10. ENIAC Strategic Research Agenda http://cordis.europa.eu/ist/eniac

  11. http://www.irvine-sensors.com/chip_stack.html

  12. C. Cahill et al, “Thermal Characterisation of Vertical Multichip Modules MCM-V”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol 18 No. 4, December 1995, pp 765–772

    Google Scholar 

  13. http://www.3d-plus.com/

  14. http://www.aset.or.jp/index-e.html

  15. P. Ramm, et al, Japanese Journal of Applied Physics Vol. 43, No. 7A (2004), p. 829–830

    Article  Google Scholar 

  16. K.N. Chen et al. “Morphology and bond strength of copper wafer bonding”, Electrochemical and Solid-State Letters 7, pp. G14–G16, 2004

    Article  Google Scholar 

  17. R. R. Tummala et al, “Copper Interconnections for High Performance and Fine Pitch Flip-Chip Digital Applications and Ultraminiaturized RF Module Applications”, Proc 56th ECTC 2006 pp 102–111

    Google Scholar 

  18. http://www.tezzaron.com

  19. http://www.zy–cube.com/e/index.html

  20. N. Sillon et al, “Innovative Flip Chip Solution for System-On-Wafer Concept”, In Proc. First International Workshop on 3S (SOP, SIP, SOC) Electronic Technologies, (September 22–23, 2005), Atlanta, Georgia, USA

    Google Scholar 

  21. A. Mathewson et al, “Detailed Characterisation of Ni Microinsert Technology For Flip Chip Die on Wafer Attachment”, Proc 57th ECTC 2007 pp 616–621

    Google Scholar 

  22. Tessera’s Unique Approach to Stacked IC’s Packaging; Tessera Inc, http:// www.tessera.com/images/news_events/Stacked_packaging_backgrounder_05-25-01.pdf

  23. Y J. Kim, “Folded Stack Package Development,” In Proc. 52nd Electronic Components and Technology Conference, (May 28 31 May 2002), San Diego, California USA, pp 1341–1346

    Google Scholar 

  24. B. Majeed et al, “Fabrication And Characterisation Of Flexible Substrates For Use In The Development Of Miniaturised Wireless Sensor Network Modules”, Journal of Electronic Packaging, Volume 128, Issue 3, pp. 236–245, September 2006

    Article  Google Scholar 

  25. B. Majeed et al, “Microstructural, Mechanical, Fracturai and Electrical Characterisation of Thinned and Singulated Silicon Test Die”, J. Micromech. Microeng. Volume 16, Number 8, August 2006 pp. 1519–1529

    Article  Google Scholar 

  26. I. Paul et al, “Statistical Fracture Modelling of Silicon with Varying Thickness”, Acta Materialia, Volume 54, Issue 15, Pages 3991–4000 (September 2006)

    Article  Google Scholar 

  27. I. Paul et al, “Characterizing Stress in Ultra-Thin Silicon Wafers”, Applied Physics Letters 89, 073506 (2006)

    Article  Google Scholar 

  28. E. M. Davis et al, “Solid logic technology: versatile high volume microelectronics”, IBM J. Res. Dev., vol. 8, pp.102, 1964.

    Article  Google Scholar 

  29. L.F. Miller, “Controlled Collapse Reflow Chip Joining”, IBM Journal Research & Development, Vol. 13, pp 239–250, (1969)

    Google Scholar 

  30. S. Baba, “Low cost flip chip technology for organic substrates”, Fujitsu Sci. Tech. J. vol. 34, no.1, pp 78–86 September 1998.

    MathSciNet  Google Scholar 

  31. R. Aschenbrenner et al, “Adhesive flip chip bonding of flexible substrates,” in Proc. 1st IEEE Int. Symp. Polym. Electron. Packag., 26–30 Oct 1997 pp: 86–94.

    Google Scholar 

  32. M. Abtewa et al, “Lead–free solders in microelectronics”, Mat. Sci. Eng., vol. 27, pp 95–141, 2000.

    Article  Google Scholar 

  33. W. Kwang et al, “A new flip chip bonding technique using micromachined conductive polymer bumps”, IEEE Transactions on Advanced. Packaging, vol. 23, no 4, pp 586–591, November 1999.

    Google Scholar 

  34. R. W. Johnson et al, “Patterned adhesive flip chip technology for assembly on polyimide flex substrates”, Int. J. Microcirc. Electron. Packag., vol. 20, no. 3, pp 309–316, 3rd Qtr., 1997.

    Google Scholar 

  35. M. E. Wernle et al, “Advances in materials for low cost flip chip,” Adv. Microelec, pp 1–4, Summer 2000.

    Google Scholar 

  36. J. F. Zeberli et al, “Flip chip with studbumps and non conductive paste for CSP-3D”, in Proc. 13th Europ. Microelec. Packag. Conf, 2001, pp 314 319.

    Google Scholar 

  37. H. C. Cheng, et al, “Process-dependent contact characteristics of NCA assemblies,” IEEE Trans. Comp. Packag. Technol., vol. 27, no. 2, pp 398–410, June 2004.

    Article  Google Scholar 

  38. B. Majeed et al,”Effect of Gold Stud Bump Topology on Reliability of Flip Chip on Flex Interconnects”, Accepted for IEEE Transactions on Advanced Packaging

    Google Scholar 

  39. S. C. O’Mathuna et al, “Test chips, Test Systems and thermal test data for multi-chip modules in the ESPRIT-APACHIP project”, IEEE Trans. Compon. Packag. Manuf. Technol. A Vol. 17, No. 3, pp 425 Sept. 1994

    Article  Google Scholar 

  40. Texas Instruments (US Pat. No. 6,400,573 B1)

    Google Scholar 

  41. Electronic Package Technology Development Intel Packaging Journal, Volume 09, Issue 04, November 9, 2005

    Google Scholar 

  42. Ship Co. Patent WO2004/001848 A1 Electronics circuit manufacture

    Google Scholar 

  43. E. Jung et al, “Ultra Thin Chips for Miniaturised Products”, In Proc. 52nd Electronic Components and Technology Conference, (May 28 31 May 2002), San Diego, California USA, pp 1110–1113.

    Google Scholar 

  44. R. Aschenbrenner, et al, “Process flow and manufacturing concept for embedded active devices”, Proceedings of the Electronics Packaging Technology Conference EPTC, Dec 2004, pages 605–609.

    Google Scholar 

  45. http://www.sentilla.com/

  46. http://www.dust–inc.com/

  47. http://www.physics.berkeley.edu/research/zettl/

  48. B. C. Regan et al, “Nanocrystal-Powered Nanomotor”, Nano Lett.; 2005; 5(9); 1730–1733

    Article  Google Scholar 

  49. K Jensen et al, “Nanotube Radio”, Nano Lett.; 2007; 7(11); 3508–3511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Barton, J. (2008). Embedded Microelectronic Subsystems. In: Ambient Intelligence with Microsystems. Microsystems, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46264-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-46264-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-46263-9

  • Online ISBN: 978-0-387-46264-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics