Skip to main content

Augmenting Materials to Build Cooperating Objects

  • Chapter

Part of the book series: Microsystems ((MICT,volume 18))

Abstract

The goal of pervasive computing systems and ambient intelligence (AmI) provides a driver to technology development that is likely to result in a vast integration of information systems into everyday objects. The current techniques for implementing such integration processes view the development of the system and object elements as very much separate; there is a significant inference load placed upon the systems to accommodate and augment the established affordances of the target object(s). This does not conflict with the ultimate vision of AmI, but it does limit the ability of systems platforms to migrate quickly and effectively across numerous varieties of object (in effect, creating a bespoke technology solution for a particular object). To begin the process of addressing this challenge, this paper describes the proposed development of augmented materials. These are materials with fully embedded distributed information systems, designed to measure all relevant properties, and provide a full knowledge representation of the material; in effect, the material would “know” itself, and its current status. The basic premise is not new; many systems techniques have proposed and implemented versions of this idea. Advances in materials technology, system miniaturisation, and context-aware software have been harnessed to begin to prove the possibility of integrating systems directly into the fabric of artefacts (e.g. smart paper, etc). Where augmented materials would differ from current approaches is in its focus on integrating networks of element into materials and employing the actual material and object fabrication processes to programme them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Weiser. “The Computer for the 21st Century”. Scientific American, pp. 94–104. September 1991

    Google Scholar 

  2. G. D. Abowd E. D. Mynatt, Charting past, present, and future research in ubiquitous computing, ACM Transactions on Computer-Human Interaction (TOCHI), Volume 7, Issue 1 (March 2000), Special issue on human-computer interaction in the new millennium, Part 1, Pages: 29–58, Year of Publication: 2000, ISSN:1073–0516

    Google Scholar 

  3. IST Advisory Group (ISTAG) Scenarios for Ambient Intelligence in 2010: http://www.cordis.lu/ist/istag-reports.htm.

  4. J. Kephart and D. Chess. The vision of autonomic computing. IEEE Computer 36(1), pp. 41–52. January 2003

    Google Scholar 

  5. R. Want, T. Pering, D. Tennenhouse, Comparing autonomic and proactive computing, IBM Systems Journal, Volume 42, Issue 1 (January 2003), Pages: 129–135, Year of Publication: 2003, ISSN:0018-8670

    Google Scholar 

  6. B. Warneke, M. Last, B. Leibowitz and K.S.J. Pister, Smart Dust: Communicating with a Cubic-Millimeter Computer; IEEE Computer 34(1), p. 43–51, January 2001

    Google Scholar 

  7. http://www2.parc.com/spl/projects/smart-matter/

  8. N. Gershenfeld, R. Krikorian and D. Cohen, The Internet of Things; October 2004; Scientific American Magazine

    Google Scholar 

  9. The Disappearing Computer initiative: http://www.disappearing-computer.net/

  10. O. Omojola, E. Rehmi Post, M. D. Hancher, Y. Maguire, R. Pappu, B. Schoner, P. R. Russo, R. Fletcher, N. Gershenfeld, An installation of interactive furniture, IBM Systems Journal, Volume 39, Issue 3–4 (July 2000), Pages: 861–879, Year of Publication: 2000, ISSN:0018-8670

    Article  Google Scholar 

  11. S. Park, S. Jayaraman, Enhancing the quality of life through wearable technology, IEEE Engineering in Medicine and Biology Magazine, May–June 2003, Volume: 22, Issue: 3, page(s): 41–48

    Article  Google Scholar 

  12. S. Jung, C. Lauterbach, M. Strasser, W. Weber, Enabling technologies for disappearing electronics in smart textiles, IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003, vol.1, page(s): 386–387

    Google Scholar 

  13. EU Project CVIS — Cooperative Vehicle-Infrastructure Systems Project: http://www.cvisproject.org; (IST-2004-027293)

  14. M. Abdulrahim, H. Garcia and R. Lind, “Flight Characteristics of Shaping the Membrane Wing of a Micro Air Vehicle”, Journal of Aircraft, Vol. 41, No.1, January–February 2005, pp. 131–137

    Article  Google Scholar 

  15. The Virginia Smart Road: http://www.vtti.vt.edu/virginiasmartroad.html

  16. http://technology.newscientist.com/channel/tech/dnl3592-intelligent-paint-turns-roads-pink-in-icy-conditions.html

  17. Y. Chen J. Au P. Kazlas A. Ritenour H. Gates & M. McCreary Electronic paper: Flexible active-matrix electronic ink display, Nature 423, 136 (2003)

    Article  Google Scholar 

  18. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Organic electronics on paper, Appl. Phys. Lett., Vol. 84, No. 14, 5 April 2004, pp. 2673–2675

    Article  Google Scholar 

  19. Want, R, Pering, T, Borriello, G, Farkas, K I, Disappearing hardware — ubiquitous computing, IEEE Pervasive Computing. Vol. 1, no. 1, pp. 36–47. Jan.–Mar. 2002

    Article  Google Scholar 

  20. S. Sumner, E. Lucas, J. Barker and N. Isaac ‘Radio-Tagging Technology Reveals Extreme Nest-Drifting Behavior in a Eusocial Insect’, Current Biology, Volume 17, Issue 2, 23 January 2007, Pages 140–145

    Article  Google Scholar 

  21. The Fab@Home project. http://www.fabathome.org

  22. http://reprap.org/bin/view/Main/WebHome

  23. N. Streitz and P. Nixon, “The disappearing computer”, Special Issue, Communications of the ACM 48(3), March 2005

    Google Scholar 

  24. The PalCom Project, http://www.ist-palcom.org

  25. P. Andersen, J. E. Bardram, H. B. Christensen, A. V. Corry, D. Greenwood, K M. Hansen, R. Schmid, Open Architecture for Palpable Computing: Some Thoughts on Object Technology, Palpable Computing, and Architectures for Ambient Computing, ECOOP 2005 Object Technology for Ambient Intelligence Workshop, Glasgow, U.K. 2005

    Google Scholar 

  26. European Network for Intelligent Information Interfaces: http://www.i3net.org/

  27. http://convivionetwork.net/

  28. M. Hawley, R. Dunbar Poor and M. Tuteja, Things That Think, Personal and Ubiquitous Computing, Volume 1, Number 1 / March, 1997, Pages 13–20, ISSN 1617-4909 (Print) 1617-4917 (Online)

    Google Scholar 

  29. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P. “Project Aura: Toward Distraction-Free Pervasive Computing”, IEEE Pervasive Computing, April–June 2002

    Google Scholar 

  30. I. MacColl, D. Millard, C. Randell, A. Steed, B. Brown, S. Benford, M. Chalmers, R. Conroy, N. Dalton, A. Galani, C. Greenhalgh, D. Michaelides, T. Rodden, I. Taylor, M. Weal, Shared visiting in EQUATOR city: Collaborative Virtual Environments, Proceedings of the 4th international conference on Collaborative virtual environments, Bonn, Germany, Pages: 88–94, Year of Publication: 2002, ISBN:l-58113-489-4

    Google Scholar 

  31. The Easy Living Project. http://research.microsoft.com/easyliving/

  32. Center for Embedded Networked Sensing (CENS), National Science Foundation #CCR-0120778

    Google Scholar 

  33. G. Pottie, W. Kaiser, Wireless Integrated Network Sensors, Communications of the ACM, 43(5), May 2000

    Google Scholar 

  34. The T-Engine Forum: http://www.t-engine.org/english/press.html

  35. Adaptive Interfaces Cluster: http://www.adaptiveinformation.ie/home.asp

  36. Cooperating Embedded Systems for Exploration and Control featuring Wireless Sensor Networks (Embedded WiSeNts): http://www.embedded-wisents.org

  37. EU IST Programme on Networked Embedded and Control Systems: http://cordis.europa.eu/fp7/ict/necs/home_en.html

  38. EPOSS — European Technology Platform on Smart Systems Integration: http://www.smart-systems-integration.org/public

  39. Artemis: Advanced Research and Development on Embedded Intelligent Systems, http://www.cordis.lu/ist/artemis/index.html

  40. M. Tubaishat and S. Madra. Sensor networks: an overview. IEEE Potentials 22(2), pp. 20–23. April 2003.

    Article  Google Scholar 

  41. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless sensor networks: a survey” Computer Networks Volume 38, Issue 4, 15 March 2002, Pages 393–422.

    Article  Google Scholar 

  42. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J. Anderson, “Wireless Sensor Networks for Habitat Monitoring”, WSNA’02, September 28, 2002, Atlanta, Georgia, USA.

    Google Scholar 

  43. Vin de Silva and Robert Ghrist. Homological sensor networks. Notices of the American Mathematical Society 54(1), pp. 10–17. January 2007.

    MathSciNet  Google Scholar 

  44. L. Lazos and R. Poovendran, “Stochastic coverage in heterogeneous sensor networks,” ACM Transactions on Sensor Networks 2(3), August 2006, pages 325–358.

    Article  Google Scholar 

  45. S. Dobson, K. Delaney, K. Razeeb and S. Tsvetkov, “A Co-Designed Hardware/Software Architecture for Augmented Materials”, 2nd International Workshop on Mobility Aware Technologies and Applications (MATA’05), October 2005.

    Google Scholar 

  46. G.E. Moore “cramming more components onto integrated circuits”, Electronics, Vol.38 1965 - pp114–117

    Google Scholar 

  47. M. Broxton, “Localization and Sensing Applications in the Pushpin Computing Network”, Master of Engineering in Computer Science and Electrical Engineering at the Massachusetts Institute Of Technology, February 2005

    Google Scholar 

  48. L. McElligott, M. Dillon, K. Leydon, B. Richardson, M. Fernström, J. A. Paradiso, ‘ForSe FIElds’ — Force Sensors for Interactive Environments, Lecture Notes In Computer Science; Vol. 2498, Proceedings of the 4th international conference on Ubiquitous Computing, Göteborg, Sweden, Pages: 168–175, Year of Publication: 2002, ISBN:3-540-44267-7

    Google Scholar 

  49. International Technology Roadmap for Semiconductors; http://www.itrs.net/home.html

  50. J. Barton, B. Majeed, K. Dwane, K. Delaney, S. Bellis, K. Rodgers, S.C. O’Mathuna, “Development and Characterisation of ultra-thin Autonomous Modules for Ambient System Applications Using 3D Packaging Techniques”, 54th Electronics Components and Technology Conference (ECTC2004), June 1–4 2004, Las Vegas, USA

    Google Scholar 

  51. J. Barton, K. Delaney, S. Bellis, S.C. O’Mathuna, J.A. Paradiso, and A. Benbasat. Development of Distributed Sensing Systems of Autonomous Micro-Modules. 53rd Electronic Components and Technology Conference. 2003.

    Google Scholar 

  52. Simon Dobson. Applications considered harmful for ambient systems. Proceedings of the International Symposium on Information and Communications Technologies, pp. 171–6. 2003.

    Google Scholar 

  53. D. Salber and A. Dey and G. Abowd. The Context Toolkit: aiding the development of contextenabled applications. Proceedings of the ACM Conference on Computer-Human Interaction, CHI’99, pp. 434–441. 1999.

    Google Scholar 

  54. Eric Bonabeau, Marco Dorigo and Guy Theraulaz. Swarm intelligence: from natural to artificial systems. Oxford University Press. 1999.

    Google Scholar 

  55. H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Nagpai, E. Rauch, G. J. Sussman and R. Weiss. Amorphous computing. Communications of the ACM 43(5), pp. 74–82. May 2000.

    Article  Google Scholar 

  56. R. Meier. Communications paradigms for mobile computing. ACM SIGMOBILE 6, pp. 56–58. 2002.

    Google Scholar 

  57. P. Nixon, F. Wang, S. Terzis and S. Dobson. Engineering context-aware systems. Proceedings of the International Workshop on Engineering Context-aware Object-oriented Systems. 2002.

    Google Scholar 

  58. A. Dey and G. Abowd. Towards a better understanding of context and context awareness. Technical report GIT-GVU-99-22, College of Computing, Georgia Institute of Technology. 1999.

    Google Scholar 

  59. Mandayam Raghunath, Chandra Narayanaswami and Claudio Pinhanez. Fostering a symbiotic handheld environment. IEEE Computer 36(9) pp.56–65. Sept 2003.

    Google Scholar 

  60. Buildings with minds of their own. The Economist. 2 December 2006.

    Google Scholar 

  61. S.R. White, N.R Sottos, J. Moore, P. Geubelle, M. Kessler, E. Brown, S. Suresh and S. Viswanathan, “Autonomic healing of polymer composites,” Nature 409, pp. 794–797, 2001.

    Article  Google Scholar 

  62. V. Giurgiutiu, Z. Chen, F. Lalande, C.A. Rogers, R. Quattrone and J. Berman, “Passive and Active Tagging of Glass-Fiber Polymeric Composites for In-Process and In-Field Non-Destructive Evaluation”, Journal of Intelligent Material Systems and Structures, November 1996.

    Google Scholar 

  63. T. Healy, J Donnelly, B. O’Neill, K. Delaney, K. Dwane, J. Barton, J. Alderman, A. Mathewson, “Innovative Packaging Techniques for Wearable Applications using Flexible Silicon Fibres”, 54th Electronics Components and Technology Conference (ECTC 2004), June 1–4 2004, Las Vegas, USA

    Google Scholar 

  64. H. W Gellersen, A. Schmidt, M. Beigl, “Multi-sensor context-awareness in mobile devices and smart artifacts”, Mobile Networks and Applications, 7(5), October 2002.

    Google Scholar 

  65. A. Kameas, S. Bellis, I. Mavrommati, K. Delaney, A. Pounds-Cornish and M. Colley, “An Architecture that Treats Everyday Objects as Communicating Tangible Components”, Proc. First IEEE International Conference on Pervasive Computing and Communications (PerCom’03); pp 115–124, March 23–26, 2003, Dallas-Fort Worth, Texas USA.

    Google Scholar 

  66. J. Coutaz, J. Crowley, S. Dobson and D. Garlan. “Context is key”. Communications of the ACM 48(3), pp. 49–53. March 2005.

    Article  Google Scholar 

  67. R. Toda, I. Murzin, N. Takeda, “MEMS Devices Fabricated on Spherical Silicon”, Proceedings of the 14th European Conference on Solid-state Transducers (Eurosensors XIV), August 27–30, 2000, Copenhagen, Denmark.

    Google Scholar 

  68. K.Y. Chen, R. Zenner and M. Arneson, “Ultra Thin Electronic Package”, IEEE Transactions on Advance Packaging 23(1), 2000, pp. 22–26.

    Article  MATH  Google Scholar 

  69. G. Kelly, A. Morrissey and J. Alderman, “3-D Packaging Methodologies for Microsystems”; IEEE Transactions on Advanced Packaging 23(4), November 2000, pp 623–630.

    Article  Google Scholar 

  70. S.F. Al-Sarawi, D. Abbott and P. Franzon, “Review of 3D VLSI Packaging Technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, February 2002.

    Google Scholar 

  71. T Paczkowski and M. Erickson, “Stacked Packaging Techniques for Use in Hearing Aid Applications”; Proceedings of SPIE, The International Society for Optical Engineering, 3582, 1998, pp 737–742.

    Google Scholar 

  72. A.S. Laskar, and S. Blithe, “Epoxy Multiple Chip Modules: A Solution to the Problem of Packaging and Interconnections of Sensors and Signal Processing Chips”, Sensors And Actuator A 36(1), March 1993, pp 1–27.

    Article  Google Scholar 

  73. M. De Samber, and C. van Veen, “A New Wafer Level Chip Size MCM-D Technology For Cellular Applications”; Proceedings of SPIE, The International Society For Optical Engineering 4428, 2001, pp 345–351.

    Google Scholar 

  74. R. Rector Jr, J. Dougherty, V. Brown, J. Galvagni, and J. Prymak, “Integrated and integral passive components: a technology roadmap”, Proc. 47th Electronic IEEE Components and Technology Conference, pp 713–723, May 1997, San Jose, CA, USA.

    Google Scholar 

  75. S. Ramesh, C. Huang, Shurong Liang and E.P. Giannelis, “Integrated thin film capacitors: interfacial control and implications on fabrication and performance”, Proc. 49th IEEE Electronic Components and Technology Conference, pp 99–104, June 1999, San Diego, CA, USA

    Google Scholar 

  76. J.U. Meyer, T. Stieglitz and O. Scholz, “High Density Interconnects for Flexible Hybrid Assemblies for Active Biomedical Implants”, IEEE Transactions on Advanced Packaging 24(3), pp 366–374, 2001.

    Article  Google Scholar 

  77. S. Linder and H. Baltes, “Fabrication Technology for Wafer Through Hole Interconnections and Three Dimensional Stacks of Chip and Wafer”; Physical Electronics Laboratory, ETH-Hoenggerberg, HPT-H6, 8039 Zurich, IEE 1994.

    Google Scholar 

  78. X. Liu, S. Haque and G.Q. Lu, “Three Dimensional Flip Chip on Flex Packaging for Power Electronics Applications”; IEEE Transactions on Advance Packaging 24(1), February 2001, pp. 1–9.

    Article  Google Scholar 

  79. B. Majeed, K. Delaney, J. Barton, N. McCarthy, S.C. O’Mathuna, J. Alderman “Fabrication and Characterisation of Flexible Substrates for use in the Development of Miniaturised Wireless Sensor Network Modules”, Journal of Electronic Packaging, Sept. 2006, Volume 128, Issue 3, pp. 236–245.

    Article  Google Scholar 

  80. B. Trease, S. Kota, Adaptive and controllable compliant systems with embedded actuators and sensors, Active and Passive Smart Structures and Integrated Systems 2007, edited by Y. Matsuzaki, M. Ahmadian, D. Leo, Proc. of SPIE Vol. 6525, 65251R, (2007)

    Google Scholar 

  81. Barrett, J. Cahill, C. Compagno, T. Flaherty, M.O. Hayes, T. Lawton, W. Donavan, J.O. Mathuna, C. McCarthy, G. Slattery, O. Waldron, F. Vera, A.C. Masgrangeas, M. Pipard, P. Val, C. Serthelon, I. “Performance and reliability of a three-dimensional plastic moulded vertical multichip module (MCM-V)”; 45th IEEE Electronic Components and Technology Conference, 1995.

    Google Scholar 

  82. Egan, E., Kelly, G., Herard, L. (1999), “PBGA warpage and stress prediction for efficient creation of the thermomechanical design space for package-level reliability”, Proceedings of the 49th IEEE Electronic Components and Technology Conference, ECTC’99, San Diego, CA, pp. 1217–23.

    Google Scholar 

  83. The European Union Water Framework Directive: http://www.wfdireland.ie/

  84. R. Want, “An introduction to RFID technology”, IEEE Pervasive Computing, Volume 5, Number 1, January – March, 2006, pp. 25–33.

    Article  Google Scholar 

  85. G. Roussos, “Enabling RFID in Retail”, IEEE Computer, Volume 39, Number 3, March 2006, pp 25–30.

    Google Scholar 

  86. J. Polastre, R. Szewczyk, D. Culler, “Telos: Enabling Ultra-low Power Wireless Research”, Proceeding of IPSN/SPOTS, Los Angeles, CA, USE, April 25–27, 2005

    Google Scholar 

  87. J. Hill, D. Culler, “Mica: a Wireless Platform for Deeply Embedded Networks” IEEE Micro, vol. 22, no. 6, pp. 12–14, November/December, 2002

    Article  Google Scholar 

  88. S.J. Bellis, K. Delaney, B. O’Flynn, J. Barton, K.M. Razeeb, and C. O’Mathuna, “Development of field programmable modular wireless sensor network nodes for ambient systems”, Computer Communications, Special Issue on Wireless Sensor Networks and Applications 28(13), August 2005, Pages 1531–1544.

    Google Scholar 

  89. J. Barton, A. Lynch, S. Bellis, B. O’Flynn, F. Murphy, K. Delaney, S.C. O’Mathuna, P. Repetto, R. Finizio, C. Carvignese; L. Liotti, “Miniaturised Inertial Measurement Units (IMU) for Wireless Sensor Networks and Novel Display Interfaces”, Proc. ECTC 2005, 55th Electronic Components & Technology Conf., Wyndham Palace Resort And Spa, Lake Buena Vista, Florida, May 31–June 3, 2005, pp 1402–1406

    Google Scholar 

  90. S. Brady, L.E. Dunne, A. Lynch, B. Smyth and D. Diamond, “Wearable Sensors? What is there to sense?”, Stud Health Technol Inform. 117, pp. 80–88, 2001.

    Google Scholar 

  91. Sensor Array Projects and Networks: http://www.lternet.edu/technology/sensors/arrays.htm

  92. S. Askins, W Book, “Digital Clay: User Interaction Model for Control of a Fluidically Actuated Haptics Device”, Proceeding of the 1st International Conference on Computational Methods in Fluid Power Technology (Sim2003), November 26–28, 2003, Melbourne, Australia.

    Google Scholar 

  93. Y. Zhang, M. Yim, C. Eldershaw, D. Duff and K. Roufas, “Scalable and reconfigurable configurations and locomotion gaits for chain-type modular reconfigurable robots”, IEEE Symposium on computational intelligence in robotics and automation (CIRA), Japan, 2003.

    Google Scholar 

  94. B. Hanson, M. Levesley, “Self-sensing applications for electromagnetic actuators”, Sensors and Actuators A (2004), Elsevier BV

    Google Scholar 

  95. L. Shang, L-S. Peh, A. Kumar, N.K. Jha, “Temperature-Aware On-chip Networks”, IEEE Micro, Volume 26, Number 1, January – February 2006, pp 130–139

    Article  Google Scholar 

  96. L.E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl and H.W. Gellersen. Smart-Its Friends: A Technique for Users to Easily Establish Connections between Smart Artefacts, Proc. of UBICOMP 2001, Atlanta, GA, USA, Sept. 2001.

    Google Scholar 

  97. C. Krantz-Ruckler, M. Stenberg, F. Winquist and I. Lundstrom, “Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review”, Analytica Chimica Acta, 426 (2001), p.217

    Article  Google Scholar 

  98. A. Greenfield, Everyware: The Dawning Age of Ubiquitous Computing, 2006, ISBN:0321384016, Berkeley, CA: New Riders

    Google Scholar 

  99. D. O’Sullivan and T. Igoe, Physical Computing: Sensing and Controlling the Physical World with Computers, 2004, Thomson Course Technology PTR; ISBN: 159200346X

    Google Scholar 

  100. http://www.worldhaptics.org/index.htm

  101. M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward and A. Hopper, Implementing a sentient computing system, IEEE Computer, August 2001

    Google Scholar 

  102. H. Ishii, B. Ullmer, Tangible bits: towards seamless interfaces between people, bits and atoms, Conference on Human Factors in Computing Systems, Proceedings of the SIGCHI conference on Human factors in computing systems, Atlanta, Georgia, United States, Pages: 234–241, Year of Publication: 1997, ISBN:0-89791-802-9

    Google Scholar 

  103. J. Paradiso, C. Abler, K. Hsiao, M. Reynolds, The magic carpet: physical sensing for immersive environments, Conference on Human Factors in Computing Systems, CHI ’97 extended abstracts on Human factors in computing systems: looking to the future, Atlanta, Georgia, SESSION: Late-breaking/short demonstrations, Pages: 277–278, Year of Publication: 1997, ISBN:0-89791-926-2

    Google Scholar 

  104. M. Fernström and N. Griffith, LiteFoot — Auditory Display of Footwork, International Conference on Auditory Display (ICAD), University of Glasgow, UK. 1st–4th November 1998

    Google Scholar 

  105. R. J. Orr, G. D. Abowd, The smart floor: a mechanism for natural user identification and tracking, Conference on Human Factors in Computing Systems 2000, CHI ‘00 extended abstracts on Human factors in computing systems, The Hague, The Netherlands, Pages: 275–276.

    Google Scholar 

  106. P. Srinivasan, D. Birchfield, G. Qian, A. Kidane, Design of a Pressure Sensitive Floor for Multimodal Sensing, Ninth International Conference on Information Visualisation (IV’05) pp. 41-46

    Google Scholar 

  107. B. Richardson, K. Leydon, M. Fernström, J. A. Paradiso, Z-Tiles: Building blocks for modular, pressure-sensing floorspaces, CHI 2004 ¦ Late Breaking Results Paper 24–29 April ¦ Vienna, Austria

    Google Scholar 

  108. T. Hogg and B. A. Huberman, Controlling Smart Matter, Smart Materials and Structures, vol. 7, pp. R1–14, 1998.

    Article  Google Scholar 

  109. http://www2.parc.com/spl/projects/modrobots/lattice/digitalclay/

  110. T. Toffoli, N. Margolus, Programmable matter: concepts and realization, Physica D, Volume 47, Issue 1–2 (January 1991), Pages: 263–272, ISSN:0167-2789

    Article  MathSciNet  Google Scholar 

  111. S. Harding, Evolution In Materio, PhD Thesis, University of York, 2006

    Google Scholar 

  112. W McCarthy, Hacking Matter: Levitating Chairs, Quantum Mirages, and the Infinite Weirdness of Programmable Atoms, (2003) ISBN 0-465-04428-X

    Google Scholar 

  113. Seth Copen Goldstein, Jason D. Campbell, Todd C. Mowry, “Programmable Matter”, IEEE Computer, June 2005 (Vol. 38, No. 6) pp. 99–101

    Google Scholar 

  114. J. Hall, Utility fog: A universal physical substance, NASA. Lewis Research Center, Vision 21: Interdisciplinary Science and Engineering in the Era of Cyberspace p 115–126 (SEE N94-27358 07-12); United States; 1993

    Google Scholar 

  115. P. Pillai, J. Campbell, G. Kedia, S. Moudgal, K. Sheth, A 3D Fax Machine based on Claytronics, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2006, page(s): 4728–4735

    Google Scholar 

  116. W. J. Butera, Programming a Paintable Computer, PhD Dissertation, Massachusetts Institute of Technology, Feb. 2002

    Google Scholar 

  117. J. Lifton, M. Broxton, J. A. Paradiso, “Experiences and directions in pushpin computing”, Proceedings of the 4th international symposium on Information processing in sensor networks, 2005

    Google Scholar 

  118. J.A. Paradiso, J. Lifton and M. Broxton, “Sensate Media — Multimodal Electronic Skins as Dense Sensor Networks”, BT Technology Journal, Vol. 22, No. 4, October 2004, pp. 32–44.

    Article  Google Scholar 

  119. K. van Laerhoven, A. Schmidt, and H. Gellersen. Pin&Play: Networking objects through pins. In G. Boriello and L. Holmquist, editors, Proceedings of Ubicomp 2002, volume 2498, pages 219{229, Sept. 2002.

    Google Scholar 

  120. J. Scott, F. Hoffmann, M. Addlesee, G. Mapp, A. Hopper, Networked Surfaces: A New Concept in Mobile Networking;, Third IEEE Workshop on Mobile Computing Systems and Applications, 2000. Volume, Issue, 2000 Page(s):11–18

    Google Scholar 

  121. Bruce Sterling Shaping Things (2005). MIT Press, ISBN 0-262-69326-7

    Google Scholar 

  122. K. Delaney, J. Barton, S. Bellis, B. Majeed, T. Healy, C. O’Mathuna and G. Crean, “Creating Systems for Ambient Intelligence”, pp. 489–514 in Siffert and Krimmel (eds), Silicon: Evolution and Future of a Technology. Springer-Verlag 2004.

    Google Scholar 

  123. B. Majeed, Investigation of Ultra-Thin Folded Flex Assembly for Highly Miniaturised System-in-a-Package Technology Platforms, PhD Thesis in Microelectronics at University College, Cork, January 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Delaney, K., Dobson, S. (2008). Augmenting Materials to Build Cooperating Objects. In: Ambient Intelligence with Microsystems. Microsystems, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46264-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-46264-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-46263-9

  • Online ISBN: 978-0-387-46264-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics