Skip to main content

Solid State Electrochemistry II: Devices and Techniques

  • Chapter
Modern Aspects Of Electrochemistry

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 41))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Guggenheim, Mixtures, Oxford University Press, Oxford, 1952.

    Google Scholar 

  2. J. Maier, Solid state electrochemistry I: Thermodynamics and kinetics of charge carriers in solids. in: Modern Aspects of Electrochemistry Vol. 38, Ed. by B. E. Conway, C. G. Vayenas, R. E. White, and M. E. Gamboa-Adelco Kluwer Academic/Plenum Pubishers, New York, 2005, pp. 1-173.

    Google Scholar 

  3. J. Maier, Z. Phys. Chem. N.F. 140 (1984) 191.

    CAS  Google Scholar 

  4. ∂ / ∂a symbolically stands for the vector with the components (∂/∂ ax , ∂ /∂ay , ∂ /∂ az ) = ▽a

    Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Course of Theoretical Physics) Vol. 8, Pergamon Press, Oxford, 1963.

    Google Scholar 

  6. S. z. B. M. Henzler and W. Göpel, Oberflächenphysik des Festkörpers, B. G. Teubner, Stuttgart, 1991;

    Google Scholar 

  7. G. Kortüm, Treatise on Electrochemistry, Elsevier, Amsterdam, 1965.

    Google Scholar 

  8. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Plenum Press, New York, 1977.

    Google Scholar 

  9. J. S. Newman, Electrochemical Systems, Prentice-Hall, Englewood Cliffs, NJ, 1991; A. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, John Wiley and Sons, New York, 1980; J. O’M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill Book Company, New York, 1969; J. O’M. Bockris and A. K. V. Reddy, Modern Electro- chemistry, Plenum Press, New York, 1970; C. Julien, G. A. Nazri, Solid State Batteries, Kluwer Academic Publishers, Norwell, 1994; M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, Adv. Mater. 10 (1998) 725; F. von Sturm, Elektrochemische Stromerzeugung, VCH, Weinheim, 1969; K. J. Vetter, Electrochemical Kinetics, Academic Press, New York, 1967.

    Google Scholar 

  10. See later sections for special references.

    Google Scholar 

  11. J. Maier, Physical Chemistry of Ionic Materials, Ions and Electrons in Solids, John Wiley and Sons, Ltd., Chichester, 2004.

    Google Scholar 

  12. I. Riess, in: Encyclopedia of Electrochemistry, Vol. 1, Ed. by A. J. Bard and M. Stratmann, Wiley-VCH, Weinheim, 2002, Vol. 1, Thermodynamics and Electrified Interfaces, (E. Gileadi and M. Urbakh (eds.)), pp. 253.

    Google Scholar 

  13. P. Bruce (ed.), Solid State Electrochemistry, Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  14. P. J. Gellings and H. J. M. Bouwmeester (eds.), CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, 1997.

    Google Scholar 

  15. J. Maier, Solid State Phenom. 39-40 (1994) 35.

    Google Scholar 

  16. H. Rickert, Electrochemistry of Solids, Springer-Verlag, Berlin, 1982; T. Kudo and K. Fueki, Solid State Ionics, VCH, Tokyo-Kodansha, 1990.

    Google Scholar 

  17. J. Maier, Solid State Ionics 62(1,2) (1993) 105.

    CAS  Google Scholar 

  18. J. Maier, in: Oxygen Ion and Mixed Conductors and their Technological Applications, Vol. 368 Ed. by H. L. Tuller, J. Schoonman, I. Riess NATO Science Series: E Applied Sciences, Kluwer Academic Publishers, (2000) 399.

    Google Scholar 

  19. B. Kamp, R. Merkle, and J. Maier, Sens. Actuators B 77 (2001) 534; J. Jamnik, B. Kamp, R. Merkle and J. Maier, Solid State Ionics 150 (2002) 157.

    Google Scholar 

  20. One can also define the terms selectivity and specificity as continuous quantities, as done in Ref.21 The sensitivity may be defined in such cases by the determinant of the response matrix.

    Google Scholar 

  21. K. Dauter, E. Than, and D. Molch, Analytik, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1977.

    Google Scholar 

  22. J. Maier and W. Münch, J. Chem. Soc., Faraday Trans. 92 (12) (1996) 2143.

    CAS  Google Scholar 

  23. R. Moos, W. Menesklou, H.-J. Schreiner, and K. H. Härtdl, Sens. Actuat. B 67 (2000) 178.

    CAS  Google Scholar 

  24. J. Maier, and W. Göpel, J. Solid State Chem. 72 (1988) 293; C. G. Fonstad and R. H. Rediker, J. Appl. Phys. 42 (1971) 2911.

    Google Scholar 

  25. T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, Anal. Chem. 34 (1962) 1502; 38 (1966) 1069; N. Taguchi, Jpn. Patent 45-38200, 1962.

    Google Scholar 

  26. K. Sasaki and J. Maier, J. Appl. Phys. 86 (10) (1999) 5422, 5434; K. Sasaki, M. Haseidl and J. Maier, in: Proc. EUROSOLID 4 Ed. by A. Negro and L. Montanaro, Politecnico di Torino, Turin, 1997, pp. 123.

    Google Scholar 

  27. J. Jamnik and J. Maier, Ber. Bunsenges. Phys. Chem. 101 (1) (1997) 23; J. Jamnik and J. Maier, J. Phys. Chem. Solids 59 (9) (1998) 1555.

    Google Scholar 

  28. J. Jamnik, B. Kamp, R. Merkle, and J. Maier, Solid State Ionics 150 (2002) 157.

    CAS  Google Scholar 

  29. J. Janata, Principles of Chemical Sensors, Plenum Press, New York, 1989.

    Google Scholar 

  30. In a usual field effect transistor an appropriate voltage between the gate over an insulating oxide such as SiO 2 , to the underlying Silicon (p-doped) causes an inversion layer at the contact oxide/Si which can be detected by measuring the source-drain current. In a CHEMFET the electrical field is provided by a rudiment of a galvanic cell. The metal gate is replaced by an electrolyte which is in contact to a reference electrode. The process on the working side of the cell is the interaction with the insulating oxide.

    Google Scholar 

  31. W. Göpel, J. Hesse, and J. N. Zemel (eds.), Sensors, A Comprehensive Study, VCH, Weinheim, 1987.

    Google Scholar 

  32. K. Kiukkola and C. Wagner, J. Electrochem. Soc. 104 (1957) 308; 379.

    CAS  Google Scholar 

  33. H. Dietz, W. Haecker, and H. Jahnke, in: Advances in Electrochemistry and Electrochemical Engineering, Ed. by H. Gerischer, and C. W. Tobias, John Wiley and Sons, Ltd., New York, 1977.

    Google Scholar 

  34. For a given concentration in the gas phase, the current causes a depletion immediately at the boundary where the reaction takes place. Usually the width over which the gradient is established, remains finite for hydrodynamic reasons. If the concentration at the interface has essentially decreased to zero at the boundary, the diffusion controlled current cannot be increased any longer \(\left( {i_{{\text{diff}}} \propto \frac{{c_\infty- c_0 }}{\delta },i_{{\text{diff}}} (U \to \infty ) \propto c_\infty } \right)\). Hence\(i_{{\text{diff}}} \) is proportional to the concentration in the gas atmosphere.

    Google Scholar 

  35. H. Iwahara, H. Uchida, and J. Kondo, J. Appl. Electrochem. 13 (1983) 365.

    CAS  Google Scholar 

  36. K.-D. Kreuer, E. Schönherr, and J. Maier, Solid State Ionics 70/71 (1994) 278.

    Google Scholar 

  37. J.-H. Yu, J.-S. Lee, and J. Maier, in preparation.

    Google Scholar 

  38. J. Maier, in: Recent Trends in Superionic Solids and Solid Electrolytes. Ed. by S. Chandra, and A. Laskar, Academic Press, New York (1989), pp. 137.

    Google Scholar 

  39. M. Holzinger, J. Fleig, J. Maier, and W. Sitte, Ber. Bunsenges. Phys. Chem. 99 (11) (1995) 1427.

    CAS  Google Scholar 

  40. M. Bendahan, P. Lauque, J. L. Seguin, K. Aguir, and P. Knauth, Sen. Actuat. B 95 (2003) 170.

    CAS  Google Scholar 

  41. M. Gauthier, and A. Chamberland, J. Electrochem. Soc. 124 (1977) 1579.

    CAS  Google Scholar 

  42. J. Maier and U. Warhus, J. Chem. Thermodyn. 18 (1986) 309.

    CAS  Google Scholar 

  43. T. Maruyama, S. Sasaki, and Y. Saito, Solid State Ionics 23 (1987) 107.

    CAS  Google Scholar 

  44. M. Holzinger, J. Maier, and W. Sitte, Solid State Ionics 86-88 (1996) 1055.

    CAS  Google Scholar 

  45. R. Merkle and J. Maier in: Encyclopedia of Sensors, C.A. Grimes, E.C. Dickey, M.V. Pishko, eds. American Scientific Publishers, Vol. 3 (2006) 139-155.

    Google Scholar 

  46. H.-H. Möbius, P. Shuk, and W. Zastrow, Fresenius’ J. Anal. Chem. 349 (1996) 684.

    Google Scholar 

  47. M. Holzinger, J. Maier, and W. Sitte, Solid State Ionics 94 (1997) 217.

    CAS  Google Scholar 

  48. M. A. Careem, K. P. Vidanapathirana, S. Skaarup and K. West, Solid State Ionics 175 (2004) 725.

    CAS  Google Scholar 

  49. H. Iwahara, Chem. Solid State Mater. 2 (1992) 122, Cambridge University Press, Cambridge (UK).

    Google Scholar 

  50. H. Iwahara, Solid State Ionics 77 (1995) 289, Elsevier, Amsterdam.

    Google Scholar 

  51. G. C. Vayenas, S. Bebelis, and S. Neophytides, J. Phys. Chem. 92 (1988) 5085.

    Google Scholar 

  52. S. P. Balameneon and C. G. Vayenas, J. Electrochem. Soc. 151 (2004) A 1874; see also A. Hashibon, S. Raz, and I. Riess, Solid State Ionics 149 (2002) 117.

    Google Scholar 

  53. J. Fleig, and J. Jamnik, J. Electrochem. Soc. 152 (4) (2005) E138.

    CAS  Google Scholar 

  54. A. Tschöpe, Solid State Ionics 139 (2001) 267.

    Google Scholar 

  55. S. Kim and J. Maier, J. Electrochem. Soc. 149 (10) (2002) J73.

    CAS  Google Scholar 

  56. C. Wagner, Z. Phys. Chem. B21 (1933) 25; Corr. Sci. 9 (1969) 91.

    Google Scholar 

  57. C. Wagner, in Progress in Solid State Chemistry, Vol. 6, Ed. by H. Reiss and J.O. McCaldin, Pergamon Press, Oxford, 1972, pp. 1.

    Google Scholar 

  58. J. Maier and G. Schwitzgebel, Phys. Stat. Sol. (b) 113 (1982) 535.

    CAS  Google Scholar 

  59. J. Maier, J. Am. Ceram. Soc. 76(5) (1993) 1212, 1218, 1223, 1228.

    CAS  Google Scholar 

  60. T. Norby, and P. Kofstad, Solid State Ionics 20 (1986) 164.

    Google Scholar 

  61. J. Jamnik and J. Maier, Phys. Chem. Chem. Phys. 3(9) (2001) 1668.

    CAS  Google Scholar 

  62. See e.g., P. M. S. Mouk, J. A. Duffy, and M. D. Ingram, Electrochim. Acta 38 (1993) 2759.

    Google Scholar 

  63. Ch. Julien and G.-A. Nazri, Solid State Batteries: Materials, Design and Optimization, Kluwer Academic Publishers, New York, 1994.

    Google Scholar 

  64. M. Wakihara, O. Yamamoto (eds.), Lithium Ion Batteries, Wiley-VCH, Weinheim, 1998.

    Google Scholar 

  65. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novák, Adv. Mater. 10 (1998) 725, VCH, Weinheim.

    Google Scholar 

  66. B. C. H. Steele, Philos. Trans. R. Soc. London A 354 (1996) 1695; T. Kanada and H. Yokokawa, Key Eng. Mater. 125-126 (1997) 187; S. C. Singhal, in: Solid Oxide Fuel Cells V Vol. PV 97-40, Ed. by U. Stimming, S. C. Singhal, and H. Tagawa, and W. Lehnert, p. 37, The Electrochemical Society, Pennington (NJ), 1997.

    Google Scholar 

  67. W. Ostwald, Z. Elektrochem. 1 (1894/95) 122.

    Google Scholar 

  68. Please note that, unlike in the other parts of the text, here we follow our initial nomenclature: ΔrG , etc. are not referred to 1 mol, rather ΔrG = nΔrGm etc.

    Google Scholar 

  69. F. von Sturm, Elektrochemische Stromerzeugung, VCH, Weinheim, 1969.

    Google Scholar 

  70. This does not contravene the First Law, since the surroundings are cooled in such circumstances. This does not contravene the Second Law, since it is not possible by this process to construct a periodic machine, that carries out work merely by cooling.

    Google Scholar 

  71. K.-D. Kreuer and J. Maier, Spekt. Wissen. 7 (1995) 92.

    Google Scholar 

  72. K. J. Vetter, Electrochemical Kinetics, Academic Press, New York, 1967

    Google Scholar 

  73. W. Gajewski, Spekt. Wissen. 7 (1995) 88.

    Google Scholar 

  74. A. Eisenberg, and H. L. Yeager (eds.), Perfluorinated Ionomer Membranes, The American Chemical Society, Washington, DC, 1982.

    Google Scholar 

  75. G. G. Scherer, H. P. Brack, F. N. Buchi, B. Gupta, O. Haas, and M. Rota, in: Proceedings of 11 th World Hydrogen Energy Conference, Vol. 2, Ed. by T. N. Veziroglu, p. 1727, International Association for Hydrogen Energy, Coral Gables (FL), 1996; K.-D. Kreuer, Th. Dippel, and J. Maier, in: Proton Conducting Membrane Fuel Cells I, Vol. PV 95-23, p. 241, The Electrochemical Society, Pennington (NJ), 1995.

    Google Scholar 

  76. M. Ise, K. D. Kreuer and J. Maier, Solid State Ionics 125 (1999) 213.

    CAS  Google Scholar 

  77. M. Rehahn, A. D. Schlüter, and G. Wegner, Makromol. Chem. 191 (1990) 1991.

    CAS  Google Scholar 

  78. K. D. Kreuer, Solid State Ionics 97 (1997) 1.

    CAS  Google Scholar 

  79. K. D. Kreuer, A. Fuchs, M. Ise, M. Spaeth, and J. Maier, Electrochim. Acta 43 (1998) 1281; K. D. Kreuer, J. Membr. Sci. 185 (2001) 29; M. Schuster, W. H. Meyer, G. Wegner, H. G. Herz, M. Ise, K. D. Kreuer, and J. Maier, Solid State Ionics 145 (2001) 85; H. G. Herz, K. D. Kreuer, J. Maier, G. Scharfenberger, M. F. H. Schuster and W. H. Meyer, Electrochim. Acta 48 (2003) 2165.

    Google Scholar 

  80. J. H. Park, R. N. Blumenthal, J. Electrochem. Soc. 136 (1994) 2867.

    Google Scholar 

  81. R. E. W. Casselton, Phys. Stat. Sol. (a) 2 (1970) 571.

    CAS  Google Scholar 

  82. S. P. S. Badwal, Solid State Ionics 52 (1992) 23.

    CAS  Google Scholar 

  83. W. Weppner, J. Solid State Chem. 20 (1977) 305.

    CAS  Google Scholar 

  84. K. Sasaki and J. Maier, Solid State Ionics 134 (2000) 303.

    CAS  Google Scholar 

  85. T. Takahashi, in: Physics of Electrolytes, Vol. 2, Ed. by J. Hladic, Academic Press, London, 1972, p. 980.

    Google Scholar 

  86. J. F. Baumard and P. Abelard, in: Advances in Ceramics, Vol. 12, Ed. by N. Claussen, M. Rühle and A. H. Heuer, The American Ceramic Society, Columbus, OH, USA, 1984, p. 555.

    Google Scholar 

  87. M. O. Zacate, L. Minervini, D. J. Bradfield, R. W. Grimes, and K. E. Sickafus, Solid State Ionics 128 (2000) 243.

    CAS  Google Scholar 

  88. Y. Yamamuru, S. Kawasaki, and H. Sakai, Solid State Ionics 126 (1999) 181.

    Google Scholar 

  89. M. Meyer, N. Nicoloso, and V. Jaenisch, Phys. Rev. B 56 (1997) 5961.

    CAS  Google Scholar 

  90. F. M. Spiridonov, L. N. Popova, and R. Ya, J. Solid State Chem. 2 (1970) 430.

    CAS  Google Scholar 

  91. S. B. S. Badwal, F. T. Ciacchi, S. Rajendran, and J. Drennan, Solid State Ionics 109 (1998) 167.

    CAS  Google Scholar 

  92. K. Nomura, Y. Mizutani, M. Kawai, Y. Nakamura, and O. Yamamoto, Solid State Ionics 132 (2000) 235.

    CAS  Google Scholar 

  93. S. B. S. Badwal, F. T. Ciacchi, and D. Milosevic, Solid State Ionics 136-137 (2000) 91.

    CAS  Google Scholar 

  94. M. Kilo, G. Borchardt, B. Lesage, S. Weber, S. Scherrer, M. Schroeder, and M. Martin, Key Eng. Mater. 206-213 (2002) 601; M. Martin, J. Chem. Thermodyn. 35 (2002) 1291.

    Google Scholar 

  95. J. E. Bauerle, J. Phys. Chem. Solids 30 (1969) 2657.

    CAS  Google Scholar 

  96. S. P. S. Badwal, Solid State Ionics 76 (1995) 67.

    CAS  Google Scholar 

  97. T. van Dijk and A. J. Burggraaf, Phys. Stat. Sol. (a) 63 (1981) 229.

    Google Scholar 

  98. M. J. Verkerk, B. J. Middelhuis, and A. J. Burggraaf, Solid State Ionics 6 (1982) 159.

    CAS  Google Scholar 

  99. S. P. S. Badwal and J. Drennan, J. Mater. Sci. 22 (1987) 3231.

    CAS  Google Scholar 

  100. M. Kleitz, H. Bernard, E. Fernandez, and E. Schouler, in: Advances in Ceramics. Science and Technology of Zirconia Vol. 3, Ed. by A. H. Heuer and L. W. Hobbs, American Ceramic Society, (1981) p. 310, Washington, DC.

    Google Scholar 

  101. M. C. Steil, F. Thevenot, and M. Kleitz, J. Electrochem. Soc. 144 (1997) 390.

    CAS  Google Scholar 

  102. S. P. S. Badwal and S. Rajendran, Solid State Ionics 70-71 (1994) 83.

    CAS  Google Scholar 

  103. M. Aoki, Y.-M. Chiang, I. Kosacki, L. Jong-Ren Lee, H. Tuller, and Y. Liu, J. Am. Ceram. Soc. 79 (1996) 1169.

    CAS  Google Scholar 

  104. X. Guo and J. Maier, J. Electrochem. Soc. 148 (3) (2001) E121; X. Guo, W. Sigle, J. Fleig and J. Maier, Solid State Ionics 154-155 (2002) 555; X. Guo, W. Sigle, and J. Maier. J. Am. Ceram. Soc. 86 (1) (2003) 77.

    Google Scholar 

  105. M. Gödickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Heinrich, P. Schwander, K. Kostorz, H. Hofmann, and O. Frei, J. Mater. Res. 9 (1994) 1228.

    Google Scholar 

  106. B. C. H. Steele, Solid State Ionics 129 (2000) 95.

    CAS  Google Scholar 

  107. R. Gerhardt and A. S. Nowick, J. Am. Ceram. Soc. 69 (1986) 641.

    CAS  Google Scholar 

  108. G. M. Christie and F. P. F. van Berkel, Solid State Ionics 83 (1996) 17.

    CAS  Google Scholar 

  109. K. E. Adham and H. Hammou, Solid State Ionics 9-10 (1983) 905.

    Google Scholar 

  110. J. Fleig, K. D. Kreuer, and J. Maier, in: Handbook of Advanced Ceramics. Volume II: Processing and Their Applications, Ed. by S. Sōmiya, F. Aldinger, N. Claussen, R. M. Spriggs, K. Uchino, K. Koumoto and M. Kaneno, Elsevier Academic Press, Amsterdam, 2003, p. 59.

    Google Scholar 

  111. X. Guo, W. Sigle, J. Fleig, and J. Maier, Solid State Ionics 154-155 (2002) 555.

    CAS  Google Scholar 

  112. J. Maier, Ber. Bunsenges. Phys. Chem. 90 (1986) 26.

    CAS  Google Scholar 

  113. J. Fleig, S. Rodewald, and J. Maier, Solid State Ionics 136-137 (2000) 905.

    CAS  Google Scholar 

  114. E. G. Moya, in: Science of Ceramics Interfaces II, Ed. by J. Novotny, p. 277, Elsevier Science, Amsterdam (1994).

    Google Scholar 

  115. J. Fleig and J. Maier, J. Electroceram. 1 (1997) 73.

    CAS  Google Scholar 

  116. J. Fleig and J. Maier, in: Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells, Vol. 97-40, Ed. by U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert, The Electrochem. Soc., Pennington (1997), p. 1374.

    Google Scholar 

  117. F. H. van Heuveln, H. J. M. Bouwmeester, and van F. P. F. Berkel, J. Electrochem. Soc. 144 (1997) 126.

    Google Scholar 

  118. K. Huang, M. Feng, and J. B. Goodenough, J. Am. Ceram. Soc. 81 (1998) 357.

    CAS  Google Scholar 

  119. L. Minervini, M. O. Zacate, and R. W. Grimes, Solid State Ionics 116 (1999) 339.

    CAS  Google Scholar 

  120. M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ionics 129 (2000) 63.

    CAS  Google Scholar 

  121. H. L. Tuller and A. S. Nowick, J. Electrochem. Soc. 122 (1975) 255.

    CAS  Google Scholar 

  122. I. Riess, Solid State Ionics 52 (1992) 127.

    CAS  Google Scholar 

  123. N. S. Choudhury and J. W. Patterson, J. Electrochem. Soc. 118 (1971) 1389. 124 M. Gödickemeier and L. J. Gauckler, J. Electrochem. Soc. 145 (1998) 414.

    Google Scholar 

  124. I. Riess, M. Gödickemeier, and L. J. Gauckler, Solid State Ionics 90 (1996) 91.

    CAS  Google Scholar 

  125. T. S. Stefanik and H. L. Tuller, J. Electroceramics 13 (2004) 799.

    CAS  Google Scholar 

  126. J. Maier, Prog. Solid State Chem. 23 (3) (1995) 171.

    CAS  Google Scholar 

  127. T. Ishihara, H. Matsuda, and Y. Takita, J. Am. Ceram. Soc. 116 (1994) 3801.

    CAS  Google Scholar 

  128. M. Feng and J. B. Goodenough, Eur. J. Solid State Inorg. Chem. 31 (1994) 663.

    CAS  Google Scholar 

  129. J. W. Stevenson, T. R. Armstrong, D. E. McCready, L. R. Pederson, and W. J. Weber, J. Electrochem. Soc. 144 (1997) 3613.

    CAS  Google Scholar 

  130. K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc. 81 (1998) 2565.

    CAS  Google Scholar 

  131. P. Huang and A. Petric, J. Electrochem. Soc. 143 (1996) 1644.

    CAS  Google Scholar 

  132. N. Trofimenko and H. Ullmann, Solid State Ionics 118 (1999) 215.

    CAS  Google Scholar 

  133. K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, and H. Yokokawa, Solid State Ionics 121 (1999) 217.

    CAS  Google Scholar 

  134. K. Yamaji, H. Negishi, T. Horita, N. Sakai, and H. Yokokawa, Solid State Ionics 135 (2000) 389.

    CAS  Google Scholar 

  135. S. W. Tao, F. W. Poulsen, G. Y. Meng, and O. T. Sorensen, J. Mater. Chem. 10 (2000) 1829.

    CAS  Google Scholar 

  136. T. L. Nguyen and M. Dokiya, Solid State Ionics 132 (2000) 217.

    Google Scholar 

  137. T. Ishihara, H. Furutani, M. Honda, T. Akbay, T. Sakai, N. Yokokawa, and Y. Takita, Chem. Mater. 11 (1999) 2081; T. Ishihara, T. Shibayama, S. Ishikawa, K. Hosoi, H. Nishiguchi, and Y. Takita, J. Eur. Ceram. Soc. 24 (2004) 1329.

    Google Scholar 

  138. Z. Shao and S. M. Haile, Nature 431 (2004) 170.

    CAS  Google Scholar 

  139. R. A. De Souza, and J. A. Kilner, Solid State Ionics 126 (1999) 153.

    Google Scholar 

  140. R. H. E. van Doorn, I. C. Fullarton, R. A. De Souza, J. A. Kilner, H. J. M. Bouwmeester, and A. J. Burggraaf, Solid State Ionics 96 (1997) 1.

    Google Scholar 

  141. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki, J. Solid State Chem. 73 (1988) 179.

    CAS  Google Scholar 

  142. P. S. Manning, J. D. Sirman, R. A. De Souza, and J. A. Kilner, Solid State Ionics 100 (1997) 1.

    CAS  Google Scholar 

  143. E. Ruiz-Trejo, J. D. Sirman, Y. M. Baikov, and J. A. Kilner, Solid State Ionics 113 (1998) 565.

    Google Scholar 

  144. T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, T. Kawada, and T. Kato, Solid State Ionics 127 (2000) 55.

    CAS  Google Scholar 

  145. V. Brichzin, J. Fleig, H.-U. Habermeier, and J. Maier, Electrochem. Solid-State Lett. 3 (9) (2000) 403; V. Brichzin, J. Fleig, H.-U. Habermeier, and J. Maier, in: Solid Oxide Fuel Cells VII, Vol. 2001-16, Ed. by H. Yokokawa and S. C. Singhal, The Electrochemical Society, Pennington/NJ (2001), p. 555; J. Fleig, Annu. Rev. Mater. Res. 33 (2003) 361.

    Google Scholar 

  146. F. Baumann, J. Fleig, and J. Maier, in preparation.

    Google Scholar 

  147. A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, and J. Vohs, Nature Mater. 3 (2004) 17.

    CAS  Google Scholar 

  148. I. Yasuda and T. Hikita, J. Electrochem. Soc. 140 (1993) 1699.

    CAS  Google Scholar 

  149. S. Tao and J. T. S. Irvine, Nature Mater. 2 (5) (2003) 320.

    CAS  Google Scholar 

  150. S. C. Singhal and K. Kendall, Solid Oxide Fuel Cells, Elsevier, Oxford, 2003.

    Google Scholar 

  151. H. L. Tuller, in: Proceedings of 17 th Risø International Symposium Materials Science: High Temperature Electrochemistry: Ceramics and Metals, Ed. by F. W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen, B. Zachau-Christiansen, p. 139, Risø National Laboratory, Roskilde, Denmark, 1996.

    Google Scholar 

  152. T. Ishihara, H. Matsuda, and Y. Takita, J. Am. Chem. Soc. 116 (1994) 3801; T. Ishihara, H. Furutani, H. Nishiguchi,Y. Takita, in: Ionic and Mixed Conducting Ceramics III, Vol. PV 97-24, Ed. by T. A. Ramanarayanan, W. L. Worrell, H. L. Tuller, M. Mogensen, A. C. Khandkar, p. 834, The Electrochemical Society, Pennington (NJ), 1997.

    Google Scholar 

  153. J. B. Goodenough, J. E. Ruiz-Diaz, and Y. S. Zhen, Solid State Ionics 44 (1990) 21.

    CAS  Google Scholar 

  154. S. B. Adler, J. A. Reimer, J. Baltisberger, and U. Werner, J. Am. Ceram. Soc. 116 (1994) 675; G. B. Zhang, D. M. Smyth, Solid State Ionics 82 (1996) 161.

    Google Scholar 

  155. W. van Gool, Philips Res. Rept. 20 (1965) 82.

    Google Scholar 

  156. C. D. Dyer, Nature 343 (1990) 542.

    Google Scholar 

  157. T. Hibino, K. Ushiki, and Y. Kuwahara, Solid State Ionics 91 (1996) 69; T. Hibino, Sh. Wang, Sh. Kakimoto, and M. Sano, Electrochem. Solid-State Lett. 2 (1999) 317; T. Hibino et al., Science 288 (2000) 183.

    Google Scholar 

  158. T. Tsai and S. A. Barnet, J. Electrochem. Soc. 144 (1997) L131.

    Google Scholar 

  159. T. Tsai and S. A. Barnet, Solid State Ionics 98 (1997) 191.

    CAS  Google Scholar 

  160. A. Virkar, J. Electrochem. Soc. 138 (1991) 1481.

    CAS  Google Scholar 

  161. E. D. Wachsman, Solid State Ionics 151/152 (2002) 657.

    Google Scholar 

  162. W. G. Coors, J. Power Sources 118 (1-2) (2003) 150.

    CAS  Google Scholar 

  163. K. D. Kreuer, Annu. Rev. Mater. Res. 33 (2003) 333.

    CAS  Google Scholar 

  164. K. D. Kreuer, St. Adams, W. Münch, A. Fuchs, U. Klock, and J. Maier, Solid State Ionics 145 (2001) 295.

    CAS  Google Scholar 

  165. K. D. Kreuer, W. Münch, M. Ise, T. He, A. Fuchs, U. Traub, and J. Maier, Ber. Bunsenges. Phys. Chem. 101 (9) (1997) 1344.

    CAS  Google Scholar 

  166. S. M. Haile, D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Nature 410 (2001) 910.

    CAS  Google Scholar 

  167. B. B. Owens, J. E. Oxley, and A. F. Sammells, in Solid Electrolytes, Ed. by S. Geller, p. 67, Springer, Berlin, Heidelberg, New York 1977.

    Google Scholar 

  168. C. C. Liang, A. V. Joshi, and W. E. Hamilton, J. Electrochem. Soc. 135 (1988) 2901.

    Google Scholar 

  169. A. J. Hills and N. A. Hampson, J. Power Sources 24 (1988) 253.

    CAS  Google Scholar 

  170. J. Maier, Einführung in die Physikalische Festkörperchemie, Lecture Notes, Tübingen-Stuttgart, 1990.

    Google Scholar 

  171. J.-S. Lee, S. Adams, and J. Maier, J. Electrochem. Soc. 147 (2000) 2407; K. Shahi and J. B. Wagner, J. Electrochem. Soc. 128 (1981) 6.

    Google Scholar 

  172. M. S. Whittingham, Prog. Solid State Chem. 12 (1978) 41.

    CAS  Google Scholar 

  173. P. G. Dickens and M. S. Whittingham, Quart. Rev. 22 (1968) 30; M. S. Whittingham, R. A. Huggins, J. Chem. Phys. 54 (1971) 414; M. S. Whittingham, J. Electrochem. Soc. 125 (1976) 315; M. S. Whittingham, Prog. Solid State Chem. 12 (1978) 41.

    Google Scholar 

  174. P. Hagenmüller, Prog. Solid State Chem. 5 (1971) 71.

    Google Scholar 

  175. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, J. Electrochem. Soc. 132 (1995) 1521; M. G. Thomas, W. I. David, J. B. Goodenough, and P. Groves, Mater. Res. Bull. 20 (1985) 1137; L. A. de Piciotto, and M. M. Thackereay, Mater Res. Bull. 19 (1984) 1497.

    Google Scholar 

  176. M. M. Thackeray, P. J. Johnson, L. A. de Piciotto, P. G. Bruce, and J. B. Goodenough, Mater. Res. Bull. 19 (1984) 179; J. M. Tarascon, E. Wang, F. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc. 198 (1991) 2859.

    Google Scholar 

  177. K. Mitzushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull. 17 (1980) 785.

    Google Scholar 

  178. E. Ceder, Y.-M. Chiang, D. R. Sadoway, M. K. Aydinol, Y.-J. Jang, and B. Huang, Nature 392 (1998) 694.

    CAS  Google Scholar 

  179. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, J. Electrochem. Soc. 143 (1996) 1114; T. Ohzuku, A. Ueda, M. Nagayama, J. Electrochem. Soc. 140 (1993) 1862.

    Google Scholar 

  180. T. Ohzuku, M. Kitagawa, and T. Hirai, J. Electrochem. Soc. 137 (1990) 769.

    CAS  Google Scholar 

  181. H. Kawai, N. Nagata, H. Tukamoto, and A. R. West, J. Mater. Chem. 8 (1998) 837.

    CAS  Google Scholar 

  182. N. Ravet, J. B. Goodenough, S. Besner, M. Simoneau, P. Hovington, and M. Armand, in: Proceedings of the 196 th ECS Meeting, Honolulu, October 1999.

    Google Scholar 

  183. N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, and M. Armand, J. Power Sources 97-98 (2001) 503.

    CAS  Google Scholar 

  184. S. Y. Chung, J. T. Bloking, and Y.-M. Chiang, Nature Mater., 2 (2002) 123.

    Google Scholar 

  185. P. S. Herle, B. Ellis, N. Coombs, and L. F. Nazar, Nature Mater., 3 (2004) 147.

    CAS  Google Scholar 

  186. R. Dominko, M. M. Gaberšček, J. Drofenik, M. Bele, and J. Jamnik, Electrochim. Acta 48 (2003) 3709.

    CAS  Google Scholar 

  187. J. A. Bruce and M. D. Ingram, Solid State Ionics 9/10 (1983) 717.

    Google Scholar 

  188. N. A. W. Holzwarth, S. G. Lonic, and S. Rabii, Phys. Rev. B 28 (1983) 1013; J. Dahn, R. Frong, M. J. Spoon, Phys. Rev. B 42 (1990) 6424.

    Google Scholar 

  189. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J-M. Tarascon, Nature 407 (2000) 496.

    CAS  Google Scholar 

  190. P. Balaya, H. Li, L. Kienle, and J. Maier, Adv. Funct. Mater. 13 (8) (2003) 621.

    CAS  Google Scholar 

  191. H. Li, G. Richter, and J. Maier, Adv. Mater. 15 (9) (2003) 736.

    CAS  Google Scholar 

  192. M. Bervas, F. Badway, L. C. Klein, and G. G. Amatucci, Electrochem., Solid- State Lett., 8 (2005) A179.

    CAS  Google Scholar 

  193. J. Jamnik and J. Maier, Phys. Chem. Chem. Phys. 5 (23) (2003) 5215.

    CAS  Google Scholar 

  194. See e.g., M. Morita, M. Ishikawa, Y. Matsuda in: Lithium-Ion Batteries, Ed. by M. Wakihara, O. Yamamoto Wiley-VCH, Weinheim, 1998.

    Google Scholar 

  195. D. Aurbach and Y. Ein-Eli, J. Electrochem. Soc. 142 (1995) 1746.

    CAS  Google Scholar 

  196. M. Armand, Solid State Ionics 69 (1994) 309; G. Feullade, P. Perche, J. Appl. Electrochem. 5 (1975) 63.

    Google Scholar 

  197. B. Scrosati, in: Lithium-Ion Batteries, Ed. by M. Wakihara, O. Yamamoto, VCH, Weinheim, 1998.

    Google Scholar 

  198. F. Croce, G. B. Appetechi, L. Persi, and B. Scrosati, Nature 394 (1998) 456; W. Wieczorek, Z. Florjanczyk, and R. Stevens, Electrochim. Acta 40 (13-14) (1995) 2251.

    Google Scholar 

  199. A. J. Bhattacharyya and J. Maier, Adv. Mater. 16 (9-10) (2004) 811.

    CAS  Google Scholar 

  200. A. J. Bhattacharyya, M. Dollé and J. Maier, Electrochem. Solid-State Lett. 7 (7) (2004) A432.

    CAS  Google Scholar 

  201. A. J. Bhattacharyya et al., in preparation. The courtesy of Prof. J.-M. Tarascon, Université de Picardie Jules Verne, of providing the LiFePO4 samples is acknowledged.

    Google Scholar 

  202. J. H. Kennedy, in: Solid Electrolytes, Ed. by S. Geller, p. 105, Springer, Berlin, Heidelberg New York 1977.

    Google Scholar 

  203. R. Selim and P. Bro, J. Electrochem. Soc. 121 (1974) 1457.

    CAS  Google Scholar 

  204. A. van Zyl, Solid State Ionics 86/88 (1996) 883.

    Google Scholar 

  205. B. E. Conway, Electrochemical supercapacitors. Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York, 1999.

    Google Scholar 

  206. B. O’Reagan and M. Grätzel, Nature 353 (1991) 737.

    Google Scholar 

  207. M. Grätzel, Nature 414 (2001) 338.

    Google Scholar 

  208. C. Wagner in: Proceedings 7 th Meeting International Communications on Electrochem. Thermodynamics and Kinetics, Lindau (1955), Butterworth, London.

    Google Scholar 

  209. I. Yokota, J. Phys. Soc. Jpn. 16 (1961) 2213.

    Google Scholar 

  210. I. Riess, Solid State Ionics 44 (1991) 199.

    CAS  Google Scholar 

  211. Note that the number of phases necessary to fix the oxygen potential unambiguously is given by the phase rule demanding, for given temperature and pressure, as many phases as components.

    Google Scholar 

  212. N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine, John Wiley and Sons, Ltd., New York, 1948; G. J. Murphy, Basic Automatic Control Theory, van Nostrand, Princeton (NJ), 1957; K. Göldner, Mathematische Grundlagen der Systemanalyse, Verlag Harri Deutsch, Thun, 1981; W. Hahn, F. L. Bauer, Physikalische und elektrotechnische Grundlagen für Information, Springer, Berlin, Heidelberg New York 1975.

    Google Scholar 

  213. F. A. Kröger, Chemistry of Imperfect Crystals, North Holland Publ. Comp., Amsterdam, 1964.

    Google Scholar 

  214. J. Maier, Angew. Chem. Int. Ed. Engl. 32(3) (1993) 313.

    Google Scholar 

  215. J. Maier, Angew. Chem. Int. Ed. Engl. 32 (4) (1993) 528.

    Google Scholar 

  216. J. Maier and G. Schwitzgebel, Mater. Res. Bull. 18 (1983) 601.

    CAS  Google Scholar 

  217. A more general approach to evaluate the space charge resistance in the linear regime is given in Ref.221 According to this the current-voltage-relation may be more generally written as Aδ E = ρ(x)δ I where δE and δI denote the first-order perturbation in the electric field and the current density; ρ is the local resistivity and A is a Sturm-Lioville operator defined by∂A ≡ 1 − 2∂∂ x∂ x p (x) + n ( x)+ i Ω ρ ( x) (p, n: equilibrium densities of thepositive and negative carriers, Ω : frequency).

    Google Scholar 

  218. S. H. Liu and T. Kaplan, Solid State Ionics 18 and 19 (1986) 65; J. R. Macdonald, D. R. Franceschetti, and A.P. Lehnen, J. Chem. Phys. 73 (1980) 5272.

    Google Scholar 

  219. J. R. Macdonald, Impedance Spectroscopy, Wiley and Sons, New York, 1987.

    Google Scholar 

  220. J. Jamnik, S. Pejovnik, and J. Maier, Electrochim. Acta 14 (1993) 1975; J. Jamnik, Ph D-Thesis, Ljubljana 1994.

    Google Scholar 

  221. I. Denk, J. Claus, and J. Maier, J. Electrochem. Soc. 144 (10) (1997) 3526.

    CAS  Google Scholar 

  222. In the original reference (Ref.3 ) the last row was incorrectly presented (α as well as α´ were missing).

    Google Scholar 

  223. P. Balaya, J. Jamnik, and J. Maier, Appl. Phys. 44. 88 (2006) 062109.

    Google Scholar 

  224. C. Wagner, in: Progress in Solid State Chemistry, Vol. 6 Ed. by H. Reiss, Pergamon Press, Oxford, 1971.

    Google Scholar 

  225. J. Maier and G. Schwitzgebel, Phys. Stat. Sol. (b) 113 (1982) 535; J. Maier, in: Ionic and Mixed Conducting Ceramics Vol. 210 Ed. by T. A. Ramanarayanan, W. L. Worrell, H. L. Tuller, The Electrochemical Society, Inc., Pennington, 1994, p. 542; J. Maier, in: Proc. MRS Meeting, Boston (USA), (1990) 499.

    Google Scholar 

  226. R. Andreaus and W. Sitte, J. Electrochem. Soc. 144 (1997) 1040.

    CAS  Google Scholar 

  227. J. Jamnik, J. Maier, and S. Pejovnik, Electrochim. Acta, 44 (1999) 4139.

    CAS  Google Scholar 

  228. J. R. Macdonald and D. R. Franceschetti, J. Chem. Phys. 68 (1978) 1614.

    CAS  Google Scholar 

  229. J. Jamnik, X. Guo, and J. Maier, Appl. Phys. Lett. 82 (17) (2003) 2820.

    CAS  Google Scholar 

  230. L. Heyne in: Solid Electrolytes, Ed. by S. Geller, Springer, Berlin Heidelberg, New York, 1977, p. 137.

    Google Scholar 

  231. L.D. Burke, H. Rickert, and R. Steiner, Z. Phys. Chem N. F. Z4 (1971) 146.

    Google Scholar 

  232. X. Guo, J. Fleig, and J. Maier, J. Electrochem. Soc. 148 (2001) J50.

    CAS  Google Scholar 

  233. J. Mizusaki and K. Fueki, Rev. Chim. Min. 17 (1980) 356.

    CAS  Google Scholar 

  234. I. Riess, Solid State Ionics 66 (1993) 331.

    CAS  Google Scholar 

  235. X. Guo, J. Fleig, and J. Maier, Solid State Ionics 154-155 (2002) 563.

    CAS  Google Scholar 

  236. S. Crouch-Baker, Solid State Ionics, 45 (1991) 101; ibid. Solid State Ionics, 46 (1991) 309.

    Google Scholar 

  237. J. Maier, P. Murugaraj, G. Pfundtner, and W. Sitte, Ber. Bunsenges. Phys. Chem. 93 (1989) 1350.

    CAS  Google Scholar 

  238. I. Denk, W. Münch, and J. Maier, J. Am. Ceram. Soc. 78(12) (1995) 3265.

    CAS  Google Scholar 

  239. J. Maier, Ber. Bunsenges. Phys. Chem. 93 (1989) 1468.

    Google Scholar 

  240. I. Riess, Solid State Ionics 91 (1996) 221.

    CAS  Google Scholar 

  241. I. Riess and D. Cahen, J. Appl. Phys., 82 (1992) 3147.

    Google Scholar 

  242. I. Riess, Z. Phys. Chem. 219 (2005) 1.

    CAS  Google Scholar 

  243. J. Maier, J. Phys. Chem. Solids 46 (1985) 197.

    CAS  Google Scholar 

  244. J. Maier and G. Schwitzgebel, H.-J. Hagemann, J. Solid State Chem. 58 (1985) 1.

    CAS  Google Scholar 

  245. M. Quilitz and J. Maier, J. Superconductivity 9(1) (1996) 121.

    CAS  Google Scholar 

  246. Usually the surface reaction is complex. If, e.g., the dissociation of O– is rate determining, it has to be assumed for the described boundary conditions that the rate of the subsequent surface steps are (specifically) “faster” than the diffusion.

    Google Scholar 

  247. T. Bieger, J. Maier, and R. Waser, in: Defects in Insulating Materials Vol. 2 Ed. by O. Kanert, J.-M. Spaeth, World Scientific, Singapore, (1993) 964; T. Bieger, J. Maier, and R. Waser, Ber. Bunsenges. Phys. Chem. 97(9) (1993) 1098.

    Google Scholar 

  248. J. Maier, P. Murugaraj, G. Pfundtner, and A. Rabenau, Solid State Ionics 40/41 (1990) 802.

    Google Scholar 

  249. J. Crank, The Mathematics of Diffusion, Oxford University Press, Glasgow, 1956; H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.

    Google Scholar 

  250. H. Schmalzried, Z. Phys. Chem. N. F. 38 (1963) 87.

    CAS  Google Scholar 

  251. J. Maier and G. Schwitzgebel, Mater. Res. Bull. 17 (1982) 1061.

    CAS  Google Scholar 

  252. I. Riess, Solid State Ionics 44 (1990) 207.

    Google Scholar 

  253. R. Metselaar and P. K. Larsen, J. Phys. Chem. Solids 37 (1976) 599.

    CAS  Google Scholar 

  254. G. Pfundtner, Ph.D. Thesis, University of Tübingen, 1993.

    Google Scholar 

  255. J. Maier, Solid State Ionics 135(1-4) (2000) 575.

    CAS  Google Scholar 

  256. M. Leonhardt, Ph D thesis, Stuttgart, 1999.

    Google Scholar 

  257. J. Maier, J. Jamnik, and M. Leonhardt, Solid State Ionics 129(1-4) (2000) 25.

    CAS  Google Scholar 

  258. M. Leonhardt, J. Jamnik, and J. Maier, Electrochem. Solid-State Lett. 2(7) (1999) 333.

    CAS  Google Scholar 

  259. W. Weppner and R. A. Huggins, Annu. Rev. Mat. Sci. 8 (1978) 269.

    CAS  Google Scholar 

  260. J. Mizusaki, J. Solid State Chem. 131 (1997) 150.

    Google Scholar 

  261. U. von Oehsen and H. Schmalzried, Ber. Bunsenges. Phys. Chem. 85 (1981) 7.

    Google Scholar 

  262. J. Novotny, M. Rekas, and W. Weppner, J. Am. Ceram. Soc. 73 (1990) 1040.

    Google Scholar 

  263. S. Yamaguchi, K. Terabe, A. Saito, and Y. Iguchi, Jpn. J. Appl. Phys. 27 (1988) L179.

    CAS  Google Scholar 

  264. J. Maier and G. Pfundtner, Adv. Mater. 3 (1991) 292.

    CAS  Google Scholar 

  265. J. Maier and M. Quilitz, in: Proceedings of the Electroceramics IV, Vol. II, Ed. by R. Waser, S. Hoffmann, D. Bonnenberg, Ch. Hoffmann Vol. II, Augustinus Buchhandlung (1994) 901.

    Google Scholar 

  266. W. Preis and W. Sitte, Solid State Ionics 86-88 (1996) 779.

    CAS  Google Scholar 

  267. N. Valverde, Z. Phys. Chem. NF 74 (1971) 146; W. Piekarcyak, W. Weppner, A. Rabenau, Z. Naturforsch 34 a (1979) 430; W. Weppner, and R. A. Huggins, J. Electrochem. Soc. 124 (1977) 10.

    Google Scholar 

  268. M. Holzinger, A. Benisek, W. Schnelle, E. Gmelin, J. Maier, and W. Sitte. J. Chem. Thermodyn. 35 (2003) 1469.

    CAS  Google Scholar 

  269. H. Schmalzried and A. Navrotsky, Festkörperthermodynamik, VCH, Weinheim, 1975.

    Google Scholar 

  270. J. J. Egan, J. Phys. Chem. 68 (1964) 978; R. J. Heus, J. J. Egan, Z. Phys. Chem. 49 (1966) 38.

    Google Scholar 

  271. U. Warhus, J. Maier, and A. Rabenau, J. Solid St. Chem. 72 (1988) 113.

    CAS  Google Scholar 

  272. A. Schroeder, J. Fleig, H. Drings, R. Wuerschum, J. Maier and W. Sitte, Solid State Ionics 173 (1-4) (2004) 95.

    CAS  Google Scholar 

  273. P. Knauth and G. Schwitzgebel, A. Tschöpe, and S. Villain, J. Solid State Chem. 140 (1998) 295.

    CAS  Google Scholar 

  274. W. H. Mulder and J. H. Sluyters, J. Electroanal. Chem. 468 (1999) 127.

    CAS  Google Scholar 

  275. T. Bieger, H. Yugami, N. Nicoloso, J. Maier, and R. Waser, Solid State Ionics 72 (1994) 41.

    CAS  Google Scholar 

  276. J. Maier and W. Münch, J. Chem. Soc., Faraday Trans. 92 (12) (1996) 2143; J. Maier in: Ionic and Mixed Conducting Ceramics, Vol. 94-12 Ed. by T. A. Ramanarayanan, W. L. Worrell, and H. L. Tuller, The Electrochemical Society., Pennington, 1994, p. 542.

    Google Scholar 

  277. K. Funke, Progr. Solid State Chem. 22 (1993) 111. K. Funke et al., Phys. Chem. Chem. Phys. 4 (2002) 2155. Please note that in Part I2 in text on page 116 above · ·

    Google Scholar 

  278. K. Funke, B. Roling, and M. Lange, Solid State Ionics 105 (1998) 195.

    CAS  Google Scholar 

  279. K. Funke and I. Riess, Z. Phys. Chem. NF 140 (1984) 217.

    CAS  Google Scholar 

  280. A. K. Jonscher, Nature 267 (1977) 673; K. L. Ngai, Comments Solid State Phys. 9 (1979) 127; W. K. Lee, J. F. Liu, A. S. Nowick, Phys. Rev. Lett. 67 (1991) 1559.

    Google Scholar 

  281. P. Maass, J. Petersen, A. Bunde, W. Dieterich, and H. E. Roman, Phys. Rev. Lett. 66 (1991) 52; J. Petersen, W. Dieterich, Philos. Mag. B 65 (1992) 231; B. Rinn, W. Dieterich, P. Maass, Philos. Mag. B 77 (1998) 1283; P. Maass, M. Meyer, and A. Bunde, Phys. Rev. B 51 (1995) 8164.

    Google Scholar 

  282. W. Dieterich and P. Maass, Chem. Phys. 284 (2002) 439.

    CAS  Google Scholar 

  283. A. Bunde and W. Dieterich, J. Electroceram. 5 (2000) 81.

    CAS  Google Scholar 

  284. J. Maier, Ber. Bunsenges. Phys. Chem. 90 (1986) 26.

    CAS  Google Scholar 

  285. J. Fleig and J. Maier, Electrochim. Acta 41 (7/8) (1996) 1003.

    CAS  Google Scholar 

  286. M. Kleitz, H. Bernard, E. Fernandez, and E. Schouler, Adv. Ceram. Sci. Tech. Zirconia 3 (1981) 310; M. Meyer, H. Rickert, and U. Schwaitzer, Solid State Ionics 9, 10 (1983) 689; J. E. Bauerle, J. Phys. Chem. Solids 30 (1969) 2657; H. Rickert, H.-D. Wiemhöfer, Ber. Bunsenges. Phys. Chem. 87 (1983) 236.

    Google Scholar 

  287. R. Holm, Electrical Contacts Handbook, Springer, Berlin, Heidelberg, New York, 1958; J. Newman, J. Electrochem. Soc. 113 (1966) 501.

    Google Scholar 

  288. W. G. Amey and F. Hamburger, Proc. Am. Soc. Test. Mater. 49 (1949) 1079.

    Google Scholar 

  289. J. Fleig, and J. Maier, Solid State Ionics 86-88 (1996) 1351.

    CAS  Google Scholar 

  290. J. Jamnik, J. Fleig, and J. Maier in: Mater. Res. Soc. Symp. Proc. 411 (1996) 25.

    CAS  Google Scholar 

  291. J. Fleig and J. Maier, Solid State Ionics 85 (1996) 9.

    CAS  Google Scholar 

  292. J. Fleig, S. Rodewald, and J. Maier, J. Appl. Phys. 87 (5) (2000) 2372.

    CAS  Google Scholar 

  293. W. Zipprich, and H.-D. Wiemhöfer, Solid State Ionics 135 (2000) 699; H.-D. Wiemhöfer, H.-G. Bremes, U. Nigge, W. Zipprich, Solid State Ionics 150 (2002) 63.

    Google Scholar 

  294. A. Uhlir, Bell. Syst. Tech. J. 34 (1955) 105.

    Google Scholar 

  295. L. J. van der Pauw, Philips Res. Repts. 13 (1958) 1; I. Riess, D. S. Tannhauser, Solid State Ionics 7 (1982) 307.

    Google Scholar 

  296. L. B. Valdes, in: Proc. I.R.E. 42 (1954) 420.

    Google Scholar 

  297. J. Jamnik, H.-U. Habermeier, and J. Maier, Physica B 204 (1995) 57.

    CAS  Google Scholar 

  298. S. V. Kalinin and D. A. Bonnell, J. Appl. Phys. 91 (2) (2002) 832.

    CAS  Google Scholar 

  299. J. Fleig and J. Maier (eds.), J. Electroceram. 5 (2) (2000) 79.

    Google Scholar 

  300. J. Janek and C. Korte, Solid State Ionics 92 (1996) 193; 15.

    CAS  Google Scholar 

  301. C. H. J. Stuhrmann, H. Kreiterling, and K. Funke, Solid State Ionics 154 (2002) 104.

    Google Scholar 

  302. H. S. Carslaw and J. C. Jäger, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maier, J. (2007). Solid State Electrochemistry II: Devices and Techniques. In: Vayenas, C., White, R.E., Gamboa-Aldeco, M.E. (eds) Modern Aspects Of Electrochemistry. Modern Aspects of Electrochemistry, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-0-387-46108-3_1

Download citation

Publish with us

Policies and ethics