Skip to main content

Abstract

Multi-photon processes relying on the cooperative action of two or more photons can broadly be divided into two families that are distinguished by the fact that the photons are either absorbed or scattered (Shen, 1984). Whereas the scattering events relevant to microscopy are second and third harmonic generation (SHG, THG), as well as coherent anti-Stokes Raman scattering (CARS), the useful multi-photon absorption events are two- and threephoton excitation (2PE, 3PE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andresen, V., Egner, A., and Hell, S.W., 2001, Time-multiplexed multifocal multi-photon microscope, Opt. Lett. 26:75–77.

    CAS  Google Scholar 

  • Barad, Y., Eisenberg, H., Horowitz, M., and Silberberg, Y., 1997, Nonlinear scanning laser microscopy by third harmonic generation, Appl. Phys. Lett. 70:922–924.

    Article  CAS  Google Scholar 

  • Basden, A.G., Haniff, C.A., and Mackay, C.D., 2003, Photon counting strategies with low-light-level CCDs, Monthly Notices RAS 345:985–991.

    Article  Google Scholar 

  • Bewersdorf, J., and Hell, S.W., 1998, Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz., J. Microsc. 191:28–38.

    Article  Google Scholar 

  • Bewersdorf, J., Pick, R., and Hell, S.W., 1998, Multifocal multi-photon microscopy, Opt. Lett. 23:655–657.

    CAS  Google Scholar 

  • Buist, A.H., Müller, M., Squier, J., and Brakenhoff, G.J., 1998, Real time twophoton absorption microscopy using multipoint excitation, J. Microsc. 192:217–226.

    Article  CAS  Google Scholar 

  • Campagnola, P.J., Millard, A.C., Terasaki, M., Hoppe, P.E., Malone, C.J., and Mohler, W.A., 2002, Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues, Biophys. J. 81:493–508.

    Google Scholar 

  • Centonze, V.E., and White, J.G., 1998, Multi-photon excitation provides optical sections from deeper within scattering specimens than confocal imaging, Biophys. J. 75:2015–2024.

    CAS  Google Scholar 

  • Cheng, J.X., Jia, Y.K., Zheng, G., and Xie, X.S., 2002, Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology, Biophys. J. 83:502–509.

    CAS  Google Scholar 

  • Cossart, R., Aronov, D., and Yuste, R., 2003, Attractor dynamics of network UP states in the neocortex, Nature 423:283–288.

    Article  CAS  PubMed  Google Scholar 

  • Cossart, R., Ikegaya, Y., and Yuste, R., 2005, Calcuim imaging of cortical network dynamics, Cell 37:451–457.

    CAS  Google Scholar 

  • Cox, G., Kable, E., Jones, A., Fraser, I., Manconi, F., and Gorrell, M.D., 2003, Three-dimensional imaging of collagen using second harmonic generation, J. Struct. Biol. 141:53–62.

    Article  CAS  PubMed  Google Scholar 

  • Curley, P.F., Ferguson, A.I., White, J.G., and Amos, W.B., 1992, Applications of a femtosecond self-sustained mode-locked Ti : sapphire laser to the field of laser scanning confocal microscopy, Opt. Quantum Electron. 24:851–859.

    Article  Google Scholar 

  • Denk, W., and Svoboda, K., 1997, Photon upmanship: Why multi-photon imaging is more than a gimmick, Neuron 18:351–357.

    Article  CAS  PubMed  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, M.D., Reintjes, J., and Manuccia, T.J., 1982, Scanning coherent anti-Stokes Raman microscope, Optics Lett. 7:350–352.

    Article  CAS  Google Scholar 

  • Egner, A., and Hell, S.W., 2000, Time multiplexing and parallelization in multifocal multi-photon microscopy, J. Opt. Soc. Am. A. 17:1192–1201.

    Article  Google Scholar 

  • Egner, A., Andresen, V., and Hell, S.W., 2002a, Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multi-photon microscopy: Theory and experiment, J. Microsc. 206:24–32.

    Article  CAS  Google Scholar 

  • Egner, A., Jakobs, S., and Hell, S.W., 2002b, Fast 100-nm resolution 3Dmicroscope reveals structural plasticity of mitochondria in live yeast, Proc. Natl. Acad. Sci. USA 99:3370–3375.

    Article  CAS  PubMed  Google Scholar 

  • Egner, A., Verrier, S., Goroshkov, A., Söling, H.-D., and Hell, S.W., 2004, 4Pimicroscopy of the Golgi apparatus in live mammalian cells, J. Struct. Biol. 147:70–76.

    Article  CAS  PubMed  Google Scholar 

  • Fittinghoff, D.N., and Squier, J.A., 2000, Time-decorrelated multifocal array for multi-photon microscopy and micromachining, Opt. Lett. 25:1213–1215.

    CAS  Google Scholar 

  • Fittinghoff, D.N., Wiseman, P.W., and Squier, J.A., 2000, Widefield multiphoton and temporally decorrelated multifocal multi-photon microscopy, Opt. Express 7:273–279.

    Article  CAS  Google Scholar 

  • Fricke, M., and Nielsen, T., 2005, Two-dimensional imaging without scanning by multifocal multiphoton microscopy, Appl. Opt. 45(15):2984–2988.

    Google Scholar 

  • Fujita, K., Nakamura, O., Kaneko, T., Kawata, S., Oyamada, M., and Takamatsu, T., 1999, Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier, J. Microsc. 194:528–531.

    Article  CAS  Google Scholar 

  • Fujita, K., Nakamura, O., Kaneko, T., Oyamada, M., Takamatsu, T., and Kawata, S., 2000, Confocal multipoint multi-photon excitation microscope with microlens and pinhole arrays, Opt. Commun. 174:7–12.

    CAS  Google Scholar 

  • Gannaway, J.N., 1978, Second-harmonic imaging in the scanning optical microscope, Opt. Quant. Electr. 10:435–439.

    Article  CAS  Google Scholar 

  • Gauderon, R., Lukins, P.B., and Sheppard, C.J.R., 1998, Three-dimensional second-harmonic generation imaging with femtosecond laser pulses, Opt. Lett. 23:1209–1211.

    CAS  Google Scholar 

  • Guo, Y., Ho, P.P., Savage, H., Harris, D., Sacks, P., Schantz, S., Liu, F., Zhadin, N., and Alfano, R.R., 1997, Second-harmonic tomography of tissues, Opt. Lett. 22:1323–1325.

    CAS  Google Scholar 

  • Hänninen, P.E., Schrader, M., Soini, E., and Hell, S.W., 1995, Two-photon excitation fluorescence microscopy using a semiconductor laser, Bioimaging 3:70–75.

    Article  Google Scholar 

  • Hell, S.W., and Andresen, V., 2001, Space-multiplexed multifocal nonlinear microscopy, J. Microsc. 202:457–463.

    Article  CAS  Google Scholar 

  • Hell, S.W., Bahlmann, K., Schrader, M., Soini, A., Malak, H., Gryczynski, I., and Lakowicz, J.R., 1996, Three-photon excitation in fluorescence microscopy, J. Biomed. Opt. 1:71–73.

    Article  Google Scholar 

  • Hellwarth, R., and Christensen, P., 1974, Nonlinear optical microscopic examination of structures in polycrystalline ZnSe, Opt. Commun. 12:318–322.

    CAS  Google Scholar 

  • Hopt, A., and Neher, E., 2001, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J. 2029–2036.

    Google Scholar 

  • Kobayashi, M., Fujita, K., Kaneko, T., Takamatsu, T., Nakamura, O., and Kawata, S., 2002, Second-harmonic-generation microscope with a microlens array scanner, Opt. Lett. 27:1324.

    Article  PubMed  Google Scholar 

  • König, K., Becker, T.W., Fischer, P., Riemann, I., and Halbhuber, K.-J., 1999, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multi-photon microscopes, Opt. Lett. 24:113–115.

    Google Scholar 

  • König, K., So, P.T.C., Mantulin, W.W., Tromberg, B.J., and Gratton, E., 1996, Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress, J. Microsc. 183:197–204.

    Google Scholar 

  • Maiti, S., Shear, J.B., Williams, R.M., Zipfel, W.R., and Webb, W.W., 1997, Measuring serotonin distribution in live cells with three-photon excitation, Science 275:530–532.

    Article  CAS  PubMed  Google Scholar 

  • Majoul, I., Straub, M., Duden, R., Hell, S.W., and Söling, H.D., 2002, Fluorescence resonance energy transfer analysis of protein–protein interactions in single living cells by multifocal multi-photon microscopy, Rev. Mol. Biotechnol. 82:267–277.

    Article  CAS  Google Scholar 

  • Majoul, I., Straub, M., Hell, S.W., Duden, R., and Söling, H.-D., 2001, KDELcargo regulates interactions between proteins involved in COPI vesicle traffic: Measurements in living cells using FRET, Dev. Cell 1:139–153.

    CAS  Google Scholar 

  • Müller, M., and Schins, J.M., 2002, Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy, J. Phys. Chem. B 106: 3715–3723.

    Article  Google Scholar 

  • Müller, M., Squier, J., Wilson, K.R., and Brakenhoff, G.J., 1998, 3D microscopy of transparent objects using third-harmonic generation, J. Microsc. 191:266–274.

    Article  Google Scholar 

  • Nielsen, T., Fricke, M., Hellwig, D., and Andersen, P., 2001, High efficiency beam splitter for multifocal multi-photon microscopy, J. Microsc. 201:368–376.

    Article  CAS  Google Scholar 

  • Patterson, G.H., and Piston, D.W., 2000, Photobleaching in two-photon excitation microscopy, Biophys. J. 78:2159–2162.

    CAS  Google Scholar 

  • Petran, M., Hadravsky, M., and Boyde, A., 1985, The tandem scanning reflected light microscope, Scanning 7:97–108.

    Google Scholar 

  • Petran, M., Hadravsky, M., Egger, M.D., and Galambos, R., 1968, Tandemscanning reflected-light microscope, J. Opt. Soc. Am. 58:661–664.

    Article  Google Scholar 

  • Schönle, A., and Hell, S.W., 1998, Heating by absorption in the focus of an objective lens, Opt. Lett. 23:325–327.

    Google Scholar 

  • Shafer, D., 1982, Gaussian to flat-top intensity distribution lens, Opt. Laser Technol. 14:159–160.

    Article  Google Scholar 

  • Shen, Y.R., 1984, The Principles of Nonlinear Optics, John Wiley and Sons, New York.

    Google Scholar 

  • Straub, M., and Hell, S.W., 1998a, Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multi-photon microscope, Appl. Phys. Lett. 73:1769–1771.

    Article  CAS  Google Scholar 

  • Straub, M., and Hell, S.W., 1998b, Multifocal multi-photon microscopy: A fast and efficient tool for 3-D fluorescence imaging, Bioimaging 6:177–185.

    Article  Google Scholar 

  • Straub, M., Lodemann, P., Holroyd, P., Jahn, R., and Hell, S.W., 2000, Live cell imaging by multifocal multi-photon microscopy, Eur. J. Cell Biol. 79:726–734.

    Article  CAS  PubMed  Google Scholar 

  • Theer, P., Mazahir, H.T., and Denk, W., 2003, Two-photon imaging to a depth of 1000mm in living brains by use of a Ti:Al2O3 regenerative amplifier, Opt. Lett. 28:1022–1024.

    CAS  Google Scholar 

  • Yelin, D., Oron, D., Korkotian, E., Segal, M., and Silberberg, Y., 2002, Thirdharmonic microscopy with a titanium–sapphire laser, Appl. Phys. B 74(Suppl):S97–S101.

    Article  CAS  Google Scholar 

  • Zipfel, W.R., Williams, R.E., and Webb, W.W., 2003, Nonlinear magic: Multi-photon microscopy in the biosciences, Nat. Biotechnol. 21:1369–1377.

    Article  CAS  Google Scholar 

  • Zoumi, A., Yeh, A., and Tromberg, B.J., 2002, Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence, Proc. Natl. Acad. Sci. USA 99:11014–11019.

    Article  CAS  PubMed  Google Scholar 

  • Zumbusch, A., Holtom, G.R., and Xie, X.S., 1999, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering, Phys. Rev. Lett. 82:4142–4145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bewersdorf, J., Egner, A., Hell, S.W. (2006). Multifocal Multi-Photon Microscopy. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_29

Download citation

Publish with us

Policies and ethics