Skip to main content

Interaction of Light with Botanical Specimens

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

In recent years, plant biotechnology has become an important sector, with the agricultural and pharmaceutical industries promoting research activities in plant sciences. This has placed increased demands on sophisticated optical microscopy to assist plant research. While most of the discussion of confocal and multiphoton fluorescence microscopy concentrates on the imaging of animal tissues and cells, very little attention has been paid to the imaging of botanical specimens. As a result, plant researchers frequently have to rely on the imaging technology developed primarily from animal work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agard, D.A., and Sedat, J.W., 1983, Three-dimensional architecture of a polytene nucleus, Nature 302:676–681.

    Article  CAS  PubMed  Google Scholar 

  • Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W., 1989, Fluorescence microscopy in three dimensions, Meth. Cell Viol. 30:353–377.

    CAS  Google Scholar 

  • Bhawalkar, J.D., Shih, A., Pan, S.J., Liou, W.S., Swiatkiewicz, J., Reinhard, B.A., and Cheng, P.C., 1996, Two-photon laser scanning fluorescent microscopy – from a fluorophore and specimen perspective, Bioimaging 4:168–178.

    Article  CAS  Google Scholar 

  • Baker, E.A., 1982, Chemistry and morphology of plant epicuticular waxes, In: The Plant Cuticle (D.P. Cutler, K.L. Alvin, and C.E. Price, eds.), Academic Press, London, pp. 139–165.

    Google Scholar 

  • Bianchi, G.P., and Salamini, F., 1975, Glossy mutants of maize, IV. Chemical composition of normal epicuticular waxes, Maydica 20:1–3.

    CAS  Google Scholar 

  • Bianchi, G.P., Avato, P., and Salamini, F., 1977, Glossy mutant of maize. VII. Chemistry of glossy 7 epicuticular waxes, Maydica 22:9–17.

    CAS  Google Scholar 

  • Bianchi, G.P., Avato, P., and Salamini, F., 1978, Glossy mutant of maize. IX. Chemistry of glossy 4, glossy 8, glossy 15 and glossy 18 surface waxes, Heredity 42:391–395.

    Article  Google Scholar 

  • Blaker, T.W., Greyson, R.I., and Walden, D.B., 1989, Variation among inbred lines of maize for leaf surface wax composition, Crop Sci. 29:28–32.

    Article  CAS  Google Scholar 

  • Bommineni, V.R., and Cheng, P.C., 1990, The use of confocal microscopy to study the developmental morphology of shoot apical meristems: A procedure to prepare the specimen. Maize Genetic Cooperation Newsletter 64:34.

    Google Scholar 

  • Bommineni, V.R., Cheng, P.C., and Walden, D.B., 1995, Re-organization of cells in the maize apical dome within six days of culture after microsurgery, Maydica 40:289–298.

    Google Scholar 

  • Bommineni, V.R., Cheng, P.C., Samarabandu, J.K., Lin, T.H., and Walden, D.B., 1993, Estimation of cell number in the maize apical meristematic dome and a three dimensional view of the reconstructed apical meristem by confocal microscopy and multidimensional image analysis, Scanning 15(Suppl. Ill):21–22.

    Google Scholar 

  • Brininstool, G., 2003, A role for constitutive pathogen resistance in promoting cell expansion in Arabidopis thaliana, PhD thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA. Brundrett, M.C., Murase, G., and Kendrick, B., 1990, Comparative anatomy of roots and mycorrhizae of common Ontario trees, Can. J. Botany 68: 551–578.

    Google Scholar 

  • Carvalho, C.R., Saraiva, L.S., and Otoni, W.C., 2002, Maize root tip cell cycle synchronization, Maize Genetic Cooperation Newsletter 76:69.

    Google Scholar 

  • Chen, I.-H., Chu, S.-W., Sun, C.-K., Lin, B.-L., and Cheng, P.C., 2002, Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources, Opt. Quantum. Electron. 34:1251–1266.

    Article  Google Scholar 

  • Cheng, P.C., and Cheng, W.Y., 2001a, Artifacts in confocal and multi-photon microscopy, Microsc. Microanal. 7(Suppl. 2):1018–1019.

    Google Scholar 

  • Cheng, P.C., and Kriete, A., 1995, Image contrast in confocal light microscopy, In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 267–281.

    Google Scholar 

  • Cheng, P.C., and Walden, B., 2005, The cuticle of maize anther, Microsc. Microanal. Suppl. 2

    Google Scholar 

  • Cheng, P.C., Cheng, Y.K., and Huang, C.S., 1981, The structure of anther cuticle in rice Oryza sativa L., var. Taichung 65, Natl. Sci. Council Monthly 9:983–994.

    Google Scholar 

  • Cheng, P.C., Greyson, R.I., and Walden, D.B., 1979a, Comparison of anther development in genic male-sterile (ms10) and in male-fertile corn (Zea mays) from light microscopy and scanning electron microscopy, Can. J. Botany 57:578–596.

    Article  Google Scholar 

  • Cheng, P.C., Greyson, R.I., and Walden, D.B., 1986, Anther cuticle of Zea mays, Can. J. Botany 64:2088–2079.

    Article  Google Scholar 

  • Cheng, P.C., Hibbs, A.R., Yu, H., Lin, P.C., and Cheng, W.Y., 2002, An estimate of the contribution of spherical aberration and self-shadowing in confocal and multi-photon fluorescent microscopy, Microsc. Microanal. 8(Suppl. 2):1068–1069.

    Google Scholar 

  • Cheng, P.C., Lin, B.L., Kao, F.J., and Sun, C.K., 2000a, Multi-photon microscopy – Behavior of biological specimen under high intensity illumination, SPIE Proc. 4082:134–138.

    Article  CAS  Google Scholar 

  • Cheng, P.C., Lin, B.L., Kao, F.J., Sun, C.-K., and Johnson, I., 2000b, Multiphoton fluorescence spectroscopy of common nucleic acid probes, Microsc. Microanal. 6:820–821.

    Google Scholar 

  • Cheng, P.C., Lin, B.L., Kao, F.J., Gu, M., Xu, M.-G., Gan, X., Huang, M.-K., and Wang, Y.-S., 2001, Multi-photon fluorescence microscopy – The response of plant cells to high intensity illumination, Micron 32:661–669.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, P.C., Newberry, S.P., Kim, H.G., Wittman, M.D., and Hwang, I.-S., 1990, X-ray contact microradiography and shadow projection microscopy, In: Modern Microscopy (P. Duke and A. Michette, eds.), Plenum Press, New York, pp. 87–117.

    Google Scholar 

  • Cheng, P.C., Pareddy, D., Lin, T.H., Samarabandu, J.K., Acharya, R., Wang, and Liou, W.S., 1993, Confocal microscopy of botanical specimens, In: Multi-Dimensional microscopy (P.C. Cheng, T.H. Lin, W.L. Wu, and J.L. Wu, eds.), Springer-Verlag, New York, pp. 339–380.

    Google Scholar 

  • Cheng, P.C., Pan, S.I., Shih, A., Kim, K.S., Liou, W.S., and Park, M.S., 1998, High efficient upconverters for multi-photon fluorescence microscopy, J. Microsc. 189:199–212.

    Article  CAS  Google Scholar 

  • Cheng, P.C., Sun, C.K., Cheng, P.C., and Walden, D.B., 2003, Nonlinear biophotonic crystal effect of opaline silica deposits in maize, J. Scanning Microsc. 235:80–81.

    Google Scholar 

  • Cheng, P.C., Sun, C.K., Lin, B.L., and Chu, S.W., 2002, Bio-photonic crystal: SHG imaging, Maize Genetics Cooperation Newsletter 76:8–9.

    Google Scholar 

  • Cheng, P.C., Walden, D.B., and Greyson, R.I., 1979b, Improved plant microtechnique for TEM, SEM and LM specimen preparation, Natl. Sci. Council Monthly 7:1000–1007.

    Google Scholar 

  • Cheng, W.Y., Cheng, P.C., Gu, M., Gan, X.-S., and Walden, D.B., 2001b, The stem vasculature of na1/na1 and na2/na2 in Zea mays, Scanning 23:136–137.

    Google Scholar 

  • Cheng, W.Y., Cheng, V.C., Cheng, P.C., and Walden, D.B., 2004, The orbicule in the anther of maize (Zea mays L.), Scanning 26:150–151.

    Google Scholar 

  • Cheng, W.Y., Lee, T.C., and Cheng, P.C., 1999a, A loose-cell holder for confocal and multi-photon fluorescence microscopy, Scanning 21:61.

    Google Scholar 

  • Cheng, W.Y., Lee, T.C., Walden, D.B., and Cheng, P.C., 1999b, Threedimensional visualization of meiotic chromosomes in maize trisomy 6, Microsc. Microanal. 5(Suppl. 2):1262–1263.

    Google Scholar 

  • Chu, S.W., Chen, I.S., Liu, T.M., Lin, B.L., Cheng, P.C., and Sun, C.K., 2001, Multi-modality nonlinear spectral microscopy based on a femtosecond Cr:Forsterite laser, Opt. Lett. 26:1909–1911.

    CAS  Google Scholar 

  • Chu, S.W., Chen, I.S., Liu, T.-M., Sun, C.-K., Lin, B.L., Lee, S.P., Cheng, P.C., Liu, H.-L., Kuo, M-X., and Lin, D.-J., 2003, Nonlinear bio-photonic crystal effects revealed with multi-modal nonlinear microscopy, J. Microsc. 208:190–200.

    Article  Google Scholar 

  • Chu, S.W., Liu, T.M., Sun, C.K., Lin, C.Y., and Tsai, H.J., 2003, Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser, Opt. Express 11:933–938.

    Article  Google Scholar 

  • Clark, G., ed., 1981, Staining Procedures, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Crane, C.P., and Carman, J.G., 1987, Mechanisms of apomixis in Elymus rectisetus from eastern Australia and New Zealand, Am. J. Botany 72:477–496.

    Article  Google Scholar 

  • Cutler, D.P., Alvin, K.L., and Price, C.E., 1982, The Plant Cuticle, Academic Press, New York.

    Google Scholar 

  • Dayanandan, P., Kaufman, P.B., and Franklin, C.I., 1983, Detection of silica in plants, Am. J. Botany 70:1079–1084.

    Article  CAS  Google Scholar 

  • Dawe, R.K., Agard, D.A., Sedat, J.W., and Cande, W.Z., 1992, Pachytene DAPI map, Maize Genetics Cooperative Newsletter 66:23–25.

    Google Scholar 

  • Dickinson, H.G., and Bell, P.R., 1972, The role of the tapetum in the formation of sporopollenin-containing structures during microsporogenesis in Pinus banksiana, Planta (Berl.) 107:205–215.

    Article  Google Scholar 

  • Echlin, P., and Godwin, G., 1968, The ultras tructure and ontogeny of pollen in Heleborus foetidus L., I. The development of the tapetum and Ubisch body, J. Cell Biol. 3:161–174.

    CAS  Google Scholar 

  • Federikson, M., 1992, The development of the female gametophyte of Epipactis (Orchidaceae) and its inference for reproductive ecology, Am. J. Botany 79:63–68.

    Article  Google Scholar 

  • Fricker, M.D., and White, N.S., 1992, Wavelength considerations in confocal microscopy of botanical specimens, J. Microsc. 166:29–42.

    Google Scholar 

  • Greenspan, P., Mayer, E.P., and Fowler, S.D., 1985, Nile red: A selective fluorescent stain for intracellularlipid droplets, J. Cell Biol. 100:965–973.

    Article  CAS  Google Scholar 

  • Gu, M., Schilder, S., and Gan, X., 2000, Two-photon fluorescence image of microspheres embedded in turbid media, J. Mod. Opt. 47:959–965.

    Article  CAS  Google Scholar 

  • Herr, J.M. Jr., 1971, A new clearing squash technique for the study of ovule development in anger-sperms, Am. J. Botany 58:785–790.

    Article  Google Scholar 

  • Herr, J.M. Jr., 1974, A clearing-squash technique for the study of ovule and megagametophyte development in angiosperms, In: Vascular Plant Systematics (A.E. Radford, W.C. Dickison, J.R., Massey, and C.R. Bell, eds.), Harper & Row, New York.

    Google Scholar 

  • Herr, J.M. Jr., 1985, The removal of phlobaphenes for improved clearing of sections and whole structures, Am. J. Botany 72:817.

    Google Scholar 

  • Herr, J.M. Jr., 1992, Recent advances in clearing techniques for study of ovule and female gametophyte development, In: Angersperm Pollen and Ovules (E. Ottaviano, W.L. Mulcahy, M. SariGorIa, and G.B. Mulcahy, eds.), Springer-Verlag, New York, pp. 149–154.

    Google Scholar 

  • Heslop-Harrison, J., and Dickinson, H.G., 1969, Time relationship of sporopollenin synthesis associated with tapetum and microspores in Lilium, Planta (Berl.) 84:199–214.

    Article  Google Scholar 

  • Hodson, M.J., and Sangster, A.G., 1988, Silica deposition in the inflorescence bracts of wheat (Triticum aestivum), I. Scanning electron microscopy and light microscopy, Can. J. Botany 66:829–838.

    Google Scholar 

  • Holloway, P.J., 1982, The chemical constitution of plant cutins, In: The Plant Cuticle (D. P. Cutler, K.L. Alvin, and C.E. Price, eds.), Academic Press, London, pp. 45–85.

    Google Scholar 

  • Holloway, P.J., and Baker, E.A., 1968, Isolation of plant cuticles with zinc chloride-hydrochloric acid solution, Plant Physiol. 43:1878–1879.

    Article  CAS  PubMed  Google Scholar 

  • Homer, H.T., and Wagner, B.L., 1992, Association of four different calcium crystals in the anther connective tissue and hypodermal stomium of Capsicum annuum (Sola-naceae) during microsporogenesis, Am. J. Botany 79:531–541.

    Article  Google Scholar 

  • Hose, E., Clarkson, D.T., Steudle, E., Schreiber, L., and Hartung, W., 2001, The exodermis: A variable apoplastic barrier, J. Exp. Botany 52:2245–2264.

    Article  CAS  Google Scholar 

  • Hughes, J., and McCully, M.E., 1975, The use of an optical brightener in the study of plant structure. Stain Technol. 50:319–329.

    CAS  PubMed  Google Scholar 

  • Huang, H.-C., and Chen, C.C., 1988, Genome multiplication in cultured protoplasts of two Nicotiana species, J. Heredity 79:28–32.

    Google Scholar 

  • Johansen, D.A., 1940, Plant Microtechnique, McGraw-Hill, New York.

    Google Scholar 

  • Jauregui-Zuniga, D., Eyes-Grajeda, J.P., Sepulveda-Sanchez, J.D., Whitaker, J.R., and Moreno, A., 2003, Crystallochemical characterization of calcium oxalate crystals, J. Plant Physiol. 160:239–245.

    Article  CAS  Google Scholar 

  • Jones, L.H.P., and Handreck, K.A., 1967, Silica in soils, plants and animals, Adv. Agron. 19:107–149.

    Article  CAS  Google Scholar 

  • Juniper, B.E., and Jeffree, C.E., 1983, Plant Surfaces, Edward Arnold, London. Kao, F.J., Lin, B.L., and Cheng, P.C., 2000a, Multi-photon fluorescence microspectroscopy SPIE Proc. 3919:2–8.

    Google Scholar 

  • Kao, F.J., Wang, Y.S., Huang, W.W., Huang, S.L., and Cheng, P.C., 2000b, Second-harmonic generation microscopy of tooth, SPIE Proc. 4082:119–124.

    Article  Google Scholar 

  • Kao, F.J., Cheng, P.C., Sun, C.-K., Lin, B.L., Wang, Y.-M., Chen, J.-C., Wang, Y.-S., Liu, T.-M., and Huang, M.-K., 2000c, Multi-photon spectroscopy of plant tissues, Scanning 22:193–195.

    Google Scholar 

  • Kennedy, S.M., and Lytle, F.E., 1986, P-Bis(o-methylstytyl)benzene as a power squared tensor for two-photon absorption measurement between 537 and 694 nm, Anal. Chem. 58:2643–2647.

    CAS  Google Scholar 

  • Kim, H.G., Cheng, P.C., Wittman, M.D., and Kong, H.J., 1990, Pulsed X-ray contact microscopy and its applications to structural and developmental botany, In: X-Ray Microscopy in Biology and Medicine (K. Shinohara, ed.), Springer-Verlag, New York, pp. 233–242.

    Google Scholar 

  • Kirk, P.Kl. Jr., 1970, Neutral red as a lipid fluorochrome, Stain Technol. 45: 1–4.

    Google Scholar 

  • Konig, K.H., Liang, H., Berns, M.W., and Tromberg, B.J., 1995, Cell damage by near-IR microbeams, Nature 377:20–21.

    Article  CAS  PubMed  Google Scholar 

  • Konig, K., Liang, H., Berns, M.W., and Tromberg, B.J., 1996a, Cell damage in near-infrared multimode optical traps as a result of multi-photon absorption, Opt. Lett. 21:1090–1092.

    CAS  Google Scholar 

  • Konig, K., So, P.T.C., Mantulin, W.W., and Gratton, E., 1997, Cellular response to near-infrared femtosecond laser in two-photon microscopes, Opt. Lett. 22:135–136.

    CAS  Google Scholar 

  • Konig, K., So, P.T.C., Mantulin, W.W., Tromberg, B.J., and Gratton, E., 1996b, Two-photon excitation lifetime imaging of autofluorescence in cell during UVA and NIR photostress, J. Microsc. 183:197–204.

    CAS  Google Scholar 

  • Lide, D.R., ed., 1991, Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, pp. 7–29.

    Google Scholar 

  • Lin, B.L., Cheng, P.C., and Sun, C.-K., 2001, Optical density of leaf, Maize Genetics Cooperation Newsletter 75:61–62.

    Google Scholar 

  • Lin, B.L., Kao, F.J., Cheng, P.C., and Cheng, W., 2000a, The response of maize protoplasts to high intensity illumination in multi-photon fluorescence microscopy, Microsc. Microanal. 6(Suppl. 2):806–807.

    Google Scholar 

  • Lin, B.L., Kao, F.J., Cheng, P.C., Chen, R.W., Huang, M.K., Wang, Y.S., Chen, J.C., Wang, Y.S., and Cheng, W.Y., 2000b, The response of maize protoplast in multi-photon fluorescent microscopy, Scanning 22:196–197.

    Google Scholar 

  • Lin, B.L., Kao, F.J., Sun, K.-C., and Cheng, P.C., 2000c, Absorption and multiphoton excited fluorescence properties of maize tissue, Maize Genetics Cooperation Newsletter 74:63–64.

    Google Scholar 

  • Müller, U., and Sengbusch, P.v., 1983, Interactions of species in an Anabaena flosaque association from the Plußsee (East-Holstein, Federal Republic of Germany). Studies by use of fluorescent markers, Oecologia 58: 215.

    Google Scholar 

  • Oehring, H., Riemann, I., Fischer, P., Halbhuber, K.-J., and König, K., 2000, Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses, Scanning 22:263.

    Article  CAS  PubMed  Google Scholar 

  • Pace, G.M., Reed, J.N., Ho, L.C., and Fahey, J.W., 1987, Anther culture of maize and the visualization of embryogenic microspores by fluorescent microscopy, Theor. Appl. Genet. 73:863–869.

    Article  Google Scholar 

  • Palser, B.F., Rouse, J.L., and Williams, E.G., 1989, Coordinated timetables for mega-gametophyte development and pollen tube growth in Rhododendron nuttalli from anthesis to early post-fertilization, Am. J. Botany 76:1167–1202.

    Article  Google Scholar 

  • Pareddy, D.R., Greyson, R.I., and Walden, D.B., 1989, Production of normal, germinable and viable pollen from in vitro cultured maize tassels, Theor. Appl. Genet. 77:521–526.

    Article  Google Scholar 

  • Pawley, J.B., 2002, Limitations on optical sectioning in live-cell confocal microscopy, Scanning 24:241.

    Article  PubMed  Google Scholar 

  • Schilders, S.P., and Gu, M., 2000, Limiting factors on image quality in imaging through turbid media under single-photon and two-photon excitation, Microsc. Microanal. 6:156–160.

    CAS  Google Scholar 

  • Stelly, D.M., Peloquin, S.J., Palmer, R.G., and Crane, C.F., 1984, Mayor’s hemalum-methyl salicylate: a stain-clearing technique for observations within whole ovules. Stain Technol. 59:155–161.

    CAS  PubMed  Google Scholar 

  • Sun, C.K, Chu, S.W., Liu, T.M., and Cheng, P.C., 2001, High intensity scanning microscopy with a femtosecond Cr:Forsterite laser, Scanning 22:95–96.

    Google Scholar 

  • Taylor, J.H., and Peterson, C.A., 2001, Maturation of the tracheary elements in the roots of Pinus banksiana and Eucalyptus grandis, Can. J. Botany 79:844–849.

    Article  Google Scholar 

  • Tulloch, A.P., 1981, Composition of epicuticular waxes from 28 genera of Gramineas: Differences between subfamilies, Can. J. Botany 59:1213–1221.

    Article  CAS  Google Scholar 

  • Vergne, P., Delvallee, I., and Dumas, C., 1987, Rapid assessment of microspore and pollen development stages in wheat and maize using DAPI and membrane permeabilization, Stain Technol. 62:299–304.

    CAS  PubMed  Google Scholar 

  • Young, B.A., Sherwood, R.T., and Bashaw, E.C., 1979, Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses, Can. J. Botany 57:1668–1672.

    Article  Google Scholar 

  • Wells, O.C., and Cheng, P.C., 1992, High-resolution backscattered electron images in the scanning electron microscope, Proc. EMSA 50:1608–1609.

    Google Scholar 

  • White, N.S., Errington, R.J., Wood, J.L. and Fricker, M.D., 1996, Quantitative measurements in multidimensional, botanical fluorescence images, J. Microsc. 181(2):99–116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, PC. (2006). Interaction of Light with Botanical Specimens. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_21

Download citation

Publish with us

Policies and ethics