Skip to main content

Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch

  • Chapter
Handbook Of Biological Confocal Microscopy

Abstract

Modern optical microscopes are so good that many scientists forget that these instruments only provide their optimal performance if they are used under certain operating conditions. Typical users may be unaware of the very existence of such limitations either because they may unwittingly work within the limits or because they fail to recognize their effects. It is probably also correct to assume that the manufacturer does not intend to discourage purchase by emphasizing the pitfalls that unavoidably arise from the physics of imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Booth, M.J., Neil, M.A.A., Juskaitis, R., and Wilson, T., 2002, Adaptive aberration correction in a confocal microscope, Proc. Natl. Acad. Sci. USA 99:5788–5792.

    Article  CAS  PubMed  Google Scholar 

  • Born, M., and Wolf, E., 2002, Principles of Optics, Cambridge University Press, Cambridge, New York.

    Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Egner, A., and Hell, S.W., 1999, Equivalence of the Huygens-Fresnel and Debye approach for the calculation of high aperture point-spread-functions in the presence of refractive index mismatch, J. Microsc. 193:244–249.

    Article  Google Scholar 

  • Hell, S.W., and Stelzer, E.H.K., 1992, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.

    Google Scholar 

  • Hell, S.W., Lehtonen, E., and Stelzer, E.H.K., 1992, Confocal fluorescence microscopy: Wave optics considerations and applications to cell biology, In: Visualization in Biomedical Microscopies: 3-D Imaging and Computer Applications (A. Kriete, ed.), VCH, Weinheim, Germany, pp. 145–160.

    Google Scholar 

  • Hell, S.W., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.

    Google Scholar 

  • Hopkins, H.H., 1943, The Airy disc formula for systems of high relative aperture, Proc. Phys. Soc. 55:116.

    Article  Google Scholar 

  • Kaiser, W., and Garret, C.B., 1961, Two-photon excitation in CaF2:Eu2+, Phys. Rev. Lett. 7:229–231.

    Article  CAS  Google Scholar 

  • Li, Y.W., and Wolf, E., 1981, Focal shifts in diffracted converging spherical waves, Opt. Commun. 39:221–215.

    Google Scholar 

  • Martini, N., Bewersdorf, J., and Hell, S.W., 2002, A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy, J. Microsc. 206:146–151.

    Article  CAS  Google Scholar 

  • Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system, Proc. R. Soc. Lond. A 253:358–379.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1992a, Axial imaging through an aberrating layer of water in confocal microscopy, Opt. Commun. 88:180–190.

    Google Scholar 

  • Sheppard, C.J.R., and Gu, M., 1992b, Image formation in two-photon fluorescence microscopy, Optik 86:104–106.

    Google Scholar 

  • Stelzer, E.H.K., Hell, S., Lindek, S., Pick, R., Storz, C., Stricker, R., Ritter, G., and Salmon, N., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104:223–228.

    CAS  Google Scholar 

  • Stelzer, E.H.K., Wacker, I., and De Mey, J.R., 1991, Confocal fluorescence microscopy in modern cell biology, Semin. Cell. Biol. 2:145–152.

    CAS  PubMed  Google Scholar 

  • Török, P., Varga, P., Laczik, Z., and Booker, G.R., 1995, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refraction indices: An integral representation, J. Opt. Soc. Am. A 12:325–332.

    Article  Google Scholar 

  • Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Egner, A., Hell, S.W. (2006). Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_20

Download citation

Publish with us

Policies and ethics