Skip to main content

Fluorophores for Confocal Microscopy: Photophysics and Photochemistry

  • Chapter

Abstract

Fluorescence is probably the most important optical readout mode in biological confocal microscopy because it can be much more sensitive and specific than absorbance or reflectance, and because it works well with epi-illumination, which greatly simplifies scanner design. These advantages of fluorescence are critically dependent on suitable fluorophores that can be tagged onto biological macromolecules to show their location, or whose optical properties are sensitive to the local environment. Despite the pivotal importance of good fluorophores, little is known about how rationally to design good ones. Whereas the concept of confocal microscopy is only a few decades old and nearly all the optical, electronic, and computer components to support it have been developed or redesigned in the last few years, the most popular fluorophores were developed more than a century ago (in the case of fluoresceins or rhodamines) or several billion years ago [in the case of phycobiliproteins and green fluorescent proteins (GFPs)].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S.R., Campbell, R.E., Gross, L.A., Martin, B.R., Walkup, G.K., Yao, Y., Llopis, J., and Tsien R.Y., 2002, New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications, J. Am. Chem. Soc. 124:6063–6076.

    CAS  PubMed  Google Scholar 

  • Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., and Tsien, R.Y., 1991, Fluorescence ratio imaging of cyclic AMP in single cells, Nature 349:694–697.

    CAS  PubMed  Google Scholar 

  • Adams, S.R., and Tsien, R.Y., 1993, Controlling cell chemistry with caged compounds, Annu. Rev. Physiol. 55:755–784.

    CAS  PubMed  Google Scholar 

  • Anel, A., Richieri, G.V., and Kleinfeld, A.M., 1993, Membrane partition of fatty acids and inhibition of T cell function, Biochemistry 32:530–536.

    CAS  PubMed  Google Scholar 

  • Axelrod, D., 1977, Cell surface heating during fluorescence photobleaching recovery experiments, Biophys. J. 18:129–131.

    CAS  Google Scholar 

  • Axelrod, D., 1989, Fluorescence polarization microscopy, Methods Cell Biol. 30:333–352.

    CAS  PubMed  Google Scholar 

  • Bacskai, B.J., Hochner, B., Mahaut-Smith, M., Adams, S.R., Kaang, B.-K., Kandel, E.R., and Tsien, R.Y., 1993, Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons, Science 260:222–226.

    CAS  PubMed  Google Scholar 

  • Bailey, E.A. Jr., and Rollefson, G.K., 1953, The determination of the fluorescence lifetimes of dissolved substances by a phase shift method, J. Chem. Phys. 21:1315–1322.

    CAS  Google Scholar 

  • Ballard, S.G., and Ward, D.C., 1993, Fluorescence in situ hybridization usingdigital imaging microscopy, J. Histochem. Cytochem. 12:1755–1759.

    Google Scholar 

  • Beavis, A.J., and Pennline, K.J., 1996, Allo-7: a new fluorescent tandem dye for use in flow cytometry, Cytometry 24:390–395.

    CAS  PubMed  Google Scholar 

  • Bernas, T., Zarebski, M., Cook, R.R., and Dobrucki, J.W., 2004, Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: Role of anoxia and photon flux, J. Microsc. 5:281–296.

    Google Scholar 

  • Beverloo, H.B., van Schadewijk, A., Bonnet, J., van der Geest, R., Runia, R., Verwoerd, N.P., Vrolijk, J., Ploem, J.S., and Tanke, H.J., 1992, Preparation and microscopic visualization of multicolor luminescent immunophsphors, Cytometry 13:561070.

    Google Scholar 

  • Blab, G.A., Lommerse, P.H.M., Cognet, L., Harms, G.S., and Schmidt, T., 2001, Two-photon excitation action cross-sections of the autofluorescent proteins, Chem. Phys. Lett. 350:71–77.

    CAS  Google Scholar 

  • Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: methods of assay and suppression, J. Histochem. Cytochem. 32:608–616.

    CAS  PubMed  Google Scholar 

  • Bonhoeffer, T., and Staiger, V., 1988, Optical recording with single cell resolution from monolayered slice cultures of rat hippocampus, Neurosci. Lett. 92:259–264.

    CAS  Google Scholar 

  • Brelje, T.C., Wessendorf, M.W., and Sorenson, R.L., 1993, Multicolor laser scanning confocal immunofluorescence microscopy: practical applications and limitations. In: Methods in Cell Biology 38: Cell Biological Applications of Confocal Microscopy (B. Matsumoto, ed.), Academic Press, San Diego, California.

    Google Scholar 

  • Bright, G.R., Fisher, G.W., Rogowska, J., and Taylor, D.L., 1987, Fluorescence ratio imaging microscopy: Temporal and spatial measurements of cytoplasmic pH, J. Cell Biol. 104:1019–1033.

    CAS  Google Scholar 

  • Castellano, F.N., and Lakowicz, J.R., 1998, A water-soluble luminescence oxygen sensor, Photochem. Photobiol. 67:179–183.

    CAS  Google Scholar 

  • Chalfie, M., and Kain, S., 1998, Green Fluorescent Protein: Properties, Applications, and Protocols, Wiley-Liss, New York.

    Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., and Prasher, D.C., 1994, Green fluorescent protein as a marker for green expression, Science

    Google Scholar 

  • 263:802–805.

    Google Scholar 

  • Chamberlain, C., and Hahn, K.M., 2000, Watching proteins in the wild: fluorescence methods to study protein dynamics in living cells, Traffic 1:755–762.

    CAS  PubMed  Google Scholar 

  • Chen, R.F., and Scott, C.H., 1985, Atlas of fluorescence spectra and lifetimes of dyes attached to protein, Analyt. Lett. 18:393–421.

    CAS  Google Scholar 

  • Chiesa, A., Rapizzi, E., Tosello, V., Pinton, P., de Virgilio, M., Fogarty, K.E., and Rizzuto, R., 2001, Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signaling, Biochem. J. 355:1–12.

    CAS  Google Scholar 

  • Choy, G., Choyke, P., and Libutti, S.K., 2003, Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent opticalimaging in cancer research, Mol. Imaging 2:303–312.

    CAS  Google Scholar 

  • Cohen, L.B., and Lesher, S., 1986, Optical monitoring of membrane potential: Methods of multisite optical measurement, In: Optical Methods in Cell Physiology (P. De Weer, B.M. Salzberg, eds.), John Wiley and Sons, New York, pp. 71–99.

    Google Scholar 

  • Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A., and Tsien, R.Y., 1995, Understanding, using and improving green fluorescent protein, Trends Biochem. Sci. 20:448–455.

    CAS  Google Scholar 

  • Cubitt, A.B., Woollenweber, L.A., and Heim, R., 1999, Understanding structure-function relationships in the Aequorea victoria green fluorescent protein, Methods Cell Biol. 58:19–30.

    CAS  PubMed  Google Scholar 

  • Czerney, P., Lehmann, F., Wenzel, M., Buschmann, V., Dietrich, A., and Mohr, G.J., 2001, Tailor-made dyes for fluorescence correlation spectroscopy (FCS), Biol. Chem. 382:495–498.

    CAS  Google Scholar 

  • Dix, J.A., and Verkman, A.S., 1989, Spatially resolved anisotropy images of fluorescent probes incorporated into living cells, Biophys. J. 55:189a.

    Google Scholar 

  • Ehrenberg, B., Montana, V., Wei, M.D., Wuskell, J.P., and Loew, L.M., 1988, Membrane potentials can be determined in individual cells from the Nernstian distribution of cationic dyes, Biophys. J. 53:785–794.

    CAS  Google Scholar 

  • Ehrhardt, D., 2003, GFP technology for live cell imaging, Curr. Opin. Plant Biol. 6:622–628.

    CAS  PubMed  Google Scholar 

  • Ellenberg, J., Lippincott-Schwartz, J., and Presley, J.F., 1999, Dual-colour imaging with GFP variants, Trends Cell Biol. 9:52–56.

    CAS  PubMed  Google Scholar 

  • Errington, R.J., Ameer-Beg, S.M., Vojnovic, B., Patterson, L.H., Zloh, M., Smith, P.J., 2005, Advanced microscopy solutions for monitoring the kinetics and dynamics of drug-DNA targeting in living cells, Adv. Drug Deliv. Rev. 57(1):153–167.

    CAS  PubMed  Google Scholar 

  • Farinas, J., and Verkman, A.S., 1999, Receptor-mediated targeting of fluorescent probes in living cells, J Biol. Chem. 274:7603–7606.

    CAS  Google Scholar 

  • Fine, A., Amos, W.B., Durbin, R.M., and McNaughton, P.A., 1988, Confocal microscopy: Applications in neurobiology, Trends Neurosci. 11:346–351.

    CAS  PubMed  Google Scholar 

  • Galbraith, W., Ernst, L.A., Taylor, D.L., and Waggoner, A.S., 1989, Multiparameter fluorescence and the selection of optimal filter sets: Mathematicsand computer program, Proc. Soc. Photo. Opt. Instrum. Eng. 1063:74–122.

    CAS  Google Scholar 

  • Gandin, E., Lion, Y., and Van de Vorst, A., 1983, Quantum yields of singlet oxygen production by xanthene derivatives, Photochem. Photobiol. 37:271–278.

    CAS  Google Scholar 

  • Gerstner, A.O., Lenz, D., Laffers, W., Hoffman, R.A., Steinbrecher, M., Bootz, F., and Tarnok, A., 2002, Near-infrared dyes for six-color immunophenotyping by laser scanning cytometry, Cytometry 48:115–123.

    PubMed  Google Scholar 

  • Giloh, H., and Sedat, J.W., 1982, Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate, Science 217:1252–1255.

    CAS  PubMed  Google Scholar 

  • Glazer, A.N., 1988, Fluorescence-based assay for reactive oxygen species: A protective role for creatinine, FASEB J. 2:2487–2491.

    CAS  PubMed  Google Scholar 

  • Glazer, A.N., 1989, Light guides. Directional energy transfer in a photosynthetic antenna, J. Biol. Chem. 264:1–4.

    CAS  PubMed  Google Scholar 

  • González, J.E., and Maher, M.P., 2002, Cellular fluorescent indicators and voltage/ion probe reader (VIPR(tm)): Tools for ion channel and receptor drug discovery, Receptors Channels 8:283–295.

    PubMed  Google Scholar 

  • Gonzalez, J.E., and Tsien, R.Y., 1995, Voltage sensing by fluorescence resonance energy transfer in single cells, Biophys. J. 69:1272–1280.

    CAS  Google Scholar 

  • Gonzalez, J.E., and Tsien, R.Y., 1997, Improved indicators of cell membrane potential that use fluorescence resonance energy transfer, Chem. Biol. 4:269–277.

    CAS  Google Scholar 

  • Griffin, B.A., Adams, S.R., and Tsien, R.Y., 1998, Specific covalent labeling of recombinant protein molecules inside live cells, Science 281:269–272.

    CAS  PubMed  Google Scholar 

  • Gross, D., and Loew, L.M., 1989, Fluorescent indicators of membrane potential: Microspectrofluorometry and imaging, Methods Cell Biol. 30:193–218.

    CAS  PubMed  Google Scholar 

  • Hadjantonakis, A.K., Dickinson, M.E., Fraser, S.E., and Papaioannou, V.E., 2003, Technicolour transgenics: Imaging tools for functional genomics in the mouse, Nat. Rev. Genet. 4:613–625.

    CAS  PubMed  Google Scholar 

  • Harms, G.S., Cognet, L., Lommerse, P.H., Blab, G.A., and Schmidt, T., 2001, Autofluorescent proteins in single-molecule research: Applications to live cell imaging microscopy, Biophys. J. 80:2396–2408.

    CAS  Google Scholar 

  • Harootunian, A.T., Adams, S.R., Wen, W., Meinkoth, J.L., Taylor, S.S., and Tsien, R.Y., 1993, Movement of the free catalytic subunit of cAMP dependent protein kinase into and out of the nucleus can be explained by diffusion, Mol. Biol. Cell 4:993–1002.

    CAS  PubMed  Google Scholar 

  • Hasan, M.T., Friedrich, R.W., Euler, T., Larkum, M.E., Giese, G., Both, M., Duebel, J., Waters, J., Bujard, H., Griesbeck, O., Tsien, R.Y., Nagai, T.,Miyawaki, A., and Denk, W., 2004, Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control, PLoS Biol.2:763–775.

    CAS  Google Scholar 

  • Hassler, S., 1995, Green fluorescent protein — the next generation, Bio/Technology 13:103.

    CAS  PubMed  Google Scholar 

  • Haugland, R.P., 1989, Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes Inc., Eugene, Oregon, pp. 86–94.

    Google Scholar 

  • Heim, R., 1999, Green fluorescent protein forms for energy transfer, Methods Enzymol. 302:408–423.

    CAS  PubMed  Google Scholar 

  • Hernandez-Cruz, A., Sala, F., and Adams, P.R., 1989, Subcellular dynamics of [Ca2+]i monitored with laser scanned confocal microscopy in a single voltage-clamped vertebrate neuron, Biophys. J. 55:216a.

    Google Scholar 

  • Herman, B., 1989, Resonance energy transfer microscopy, Methods Cell Biol. 30:219–243.

    CAS  PubMed  Google Scholar 

  • Hicks, B.W., 2002, Green Fluorescent Protein: Applications and Protocols, Humana Press, Totowa, New Jersey.

    Google Scholar 

  • Hirschfeld, T., 1976, Quantum efficiency independence of the time integrated emission from a fluorescent molecule, Appl. Opt. 15:3135–3139.

    CAS  Google Scholar 

  • Hoshino, A., Hanaki, K., Suzuki, K., and Yamamoto, K., 2004, Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body, Biochem. Biophys. Res. Commun. 314:46–53.

    CAS  PubMed  Google Scholar 

  • Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M., 2003, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21:47–51.

    CAS  Google Scholar 

  • Jericevic, Z., Wiese, B., Bryan, J., and Smith, L.C., 1989, Validation of an imaging system: Steps to evaluate and validate a microscope imaging system for quantitative studies, Methods Cell Biol. 30:47–83.

    CAS  PubMed  Google Scholar 

  • Ji, J., Rosenzweig, N., Jones, I., and Rosenzweig, Z., 2002, Novel fluorescent oxygen indicator for intracellular oxygen measurements, J. Biomed. Opt. 7:404–409.

    CAS  PubMed  Google Scholar 

  • Kahana, J., and Silver, P., 1996, Use of the A. victoria green fluorescent protein to study protein dynamics in vivo, In: Current Protocols in Molecular Biology (F.M. Ausabel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl, eds.), John Wiley and Sons, New York, pp. 9.7.22–9.7.28.

    Google Scholar 

  • Kang, H.C., Fisher, P.J., Prendergast, F.G., and Haugland, R.P., 1988, Bodipy: A novel fluorescein and NBD substitute, J. Cell Biol. 107:34a.

    Google Scholar 

  • Kao, J.P.Y., Harootunian, A.T., and Tsien, R.Y., 1989, Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J. Biol. Chem. 264:8179–8184.

    CAS  PubMed  Google Scholar 

  • Kaplan, N.O., 1960, The pyridine coenzymes, In: The Enzymes, 2nd ed. (P.D. Boyer, H. Lardy, K. Myrbäck, eds.), Academic Press, New York, pp. 105–169.

    Google Scholar 

  • Kneen, M., Farinas, J., Li, Y., and Verkman, A.S., 1998, Green fluorescent protein as a noninvasive intracellular pH indicator, Biophys. J. 74:1591–1599.

    CAS  Google Scholar 

  • Koziol, J., 1971, Fluorometric analyses of riboflavin and its coenzymes, Methods Enzymol. 18B:253–285.

    Google Scholar 

  • Kurtz, I., and Balaban, R.S., 1985, Fluorescence emission spectroscopy of 1,4- dihydroxyphthalonitrile: A method for determining intracellular pH in cultured cells, Biophys. J. 48:499–508.

    CAS  Google Scholar 

  • Kurtz, I., and Emmons, C., 1993, Measurement of intracellular pH with a laser scanning confocal microscope, In: Methods in Cell Biology 38: Cell Biological Applications of Confocal Microscopy (B. Matsumoto, ed.), Academic Press, San Diego, California.

    Google Scholar 

  • Kuwahara, M., and Verkman, A.S., 1988, Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule, Biophys. J. 54:587–593.

    CAS  Google Scholar 

  • Kuwahara, M., Berry, C.A., and Verkman, A.S., 1988, Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique, Biophys. J. 54:595–602.

    CAS  Google Scholar 

  • Labas, Y.A., Gurskaya, N.G., Yanushevich, Y.G., Fradkov, A.F., Lukyanov, K.A., Lukyanov, S.A., and Matz, M.V., 2002, Diversity and evolution of the green fluorescent protein family, Proc. Natl. Acad. Sci. USA 99:4256–4261.

    CAS  PubMed  Google Scholar 

  • Lakowicz, J.R., 1983, Fluorescence lifetime imaging, Anal. Biochem. 202:316–330.

    Google Scholar 

  • Lakowicz, J.R., 1989, Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic, Plenum Press, New York.

    Google Scholar 

  • Lewis, G.N., Lipkin, D., and Magel, T.T., 1941, Reversible photochemical processes in rigid media. Astudy of the phosphorescent state, J. Am. Chem. Soc. 63:3005–3018.

    CAS  Google Scholar 

  • Li, L., Szmacinski, H., and Lakowicz, J.R., 1997, Synthesis and luminescence spectral characterization of long-lifetime lipid metal-ligand probes, Anal. Biochem. 244:80–85.

    CAS  Google Scholar 

  • Lindqvist, L., 1960, A flash photolysis study of fluorescein, Arkiv. Kemi. 16:79–138.

    CAS  Google Scholar 

  • Liphardt, B., Liphardt, B., and Lüttke, W., 1982, Laserfarbstoffe mit intramolekularer Triplettlöschung, Chemische Berichte 115:2997–3010.

    CAS  Google Scholar 

  • Liphardt, B., Liphardt, B., and Lüttke, W., 1983, Laser dyes III: Concepts to increase the photostability of laser dyes, Opt. Commun. 48:129–133.

    CAS  Google Scholar 

  • Lippincott-Schwartz, J., and Patterson, G.H., 2003, Development and use of fluorescent protein markers in living cells, Science 300:87–91.

    CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G.H., 2003, Photobleaching and photoactivation: following protein dynamics in living cells Nat. Cell Biol. Suppl. S7–S14.

    Google Scholar 

  • Lippincott-Schwartz, J., Presley, J.F., Zaal, K.J., Hirschberg, K., Miller, C.D., and Ellenberg, J., 1999, Monitoring the dynamics and mobility of membrane proteins tagged with green fluorescent protein, Methods Cell Biol. 58:261–281.

    CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz, J., Snapp, E., and Kenworthy, A., 2001, Studying protein dynamics in living cells, Nat. Rev. Mol. Cell Biol. 2:444–456.

    CAS  PubMed  Google Scholar 

  • Llopis, J., McCaffery, J.M., Miyawaki, A., Farquhar, M.G., and Tsien, R.Y., 1998, Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins, Proc. Natl. Acad. Sci. USA 95:6803–6808.

    CAS  PubMed  Google Scholar 

  • Loew, L.M., 1993, Confocal microscopy of potentiometric fluorescent dyes, In: Methods in Cell Biology 38:Cell Biological Applications (B. Matsumoto, ed.), Academic Press, San Diego, California, pp. 195–209.

    Google Scholar 

  • Manitto, P., Speranza, G., Monti, D., and Gramatica, P., 1987, Singlet oxygen reactions in aqueous solution. Physical and chemical quenching rate constants of crocin and related carotenoids, Tetrahedron Lett. 28: 4221–4224.

    CAS  Google Scholar 

  • March, J.C., Rao, G., and Bentley, W.E., 2003, Biotechnological applications of green fluorescent protein, Appl. Microbiol. Biotechnol. 62:303–315.

    CAS  PubMed  Google Scholar 

  • Marriott, G., Clegg, R.M., Arndt-Jovin, D.J., and Jovin, T.M., 1991, Timeresolved imaging studies. Phosphorescence and delayed fluorescence imaging, Biophys. J. 60:1374–1387.

    CAS  PubMed  Google Scholar 

  • Matheson, I.B.C., and Rodgers, M.A.J., 1982, Crocetin, a water soluble carotenoid monitor for singlet molecular oxygen, Photochem. Photobiol. 36:1–4.

    CAS  Google Scholar 

  • Mathies, R.A., and Stryer, L., 1986, Single-molecule fluorescence detection: A feasibility study using phycoerythrin, In: Applications of Fluorescence in the Biomedical Sciences (D.L. Taylor, A.S. Waggoner, R.F. Murphy, F. Lanni, R.R. Birge, eds.), Alan R. Liss, New York, pp. 129–140.

    Google Scholar 

  • Matthews, M.M., and Sistrom, W.R., 1959, Function of carotenoid pigments in nonphotosynthetic bacteria, Nature (Lond.) 184:1892–1893.

    Google Scholar 

  • Matz, M.V., Lukyanov, K.A., and Lukyanov, S.A., 2002, Family of the green fluorescent protein: Journey to the end of the rainbow, BioEssays 24:953–959.

    CAS  PubMed  Google Scholar 

  • Meyer, T., and Teruel, M.N., 2003, Fluorescence imaging of signaling networks, Trends Cell Biol. 13:101–106.

    CAS  PubMed  Google Scholar 

  • Minta, A., Kao, J.P.Y., and Tsien, R.Y., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem. 264:8171–8178.

    CAS  PubMed  Google Scholar 

  • Misteli, T., and Spector, D.L., 1997, Applications of the green fluorescent protein in cell biology and biotechnology, Nat. Biotechnol. 15:961–964.

    CAS  Google Scholar 

  • Miyawaki, A., 2002, Green fluorescent protein-like proteins in reef Anthozoa animals, Cell Struct. Funct. 27:343–347.

    CAS  Google Scholar 

  • Miyawaki, A., 2003, Fluorescence imaging of physiological activity in complex systems using GFP-based probes, Curr. Opin. Neurobiol.

    Google Scholar 

  • 13:591–596.

    Google Scholar 

  • Miyawaki, A., and Tsien, R.Y., 2000, Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein, Methods Enzymol. 327:472–500.

    CAS  PubMed  Google Scholar 

  • Miyawaki, A., Griesbeck, O., Heim, R., and Tsien, R.Y., 1999, Dynamic and quantitative Ca2+ measurements using improved chameleons, Proc. Natl. Acad. Sci. USA 96:2135–2140.

    CAS  PubMed  Google Scholar 

  • Miyawaki, A., Llopis, J., Heim, R., et al., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388:882–887.

    CAS  PubMed  Google Scholar 

  • Miyawaki, A., Sawano, A., and Kogure, T., 2003, Lighting up cells: Labelling proteins with fluorophores. Nat. Cell Biol. 5(Suppl):S1–S7.

    Google Scholar 

  • Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J., and Waggoner, A.S., 1993, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjug. Chem. 4:105–111.

    CAS  Google Scholar 

  • Mukkala, V.M., 1993, Development of stable, photoluminescent Europium (III) and Terbium (III) chelates suitable as markers in bioaffinity assays: Their synthesis and luminescence properties, PhD thesis, University of Turku, Turku, Finland.

    Google Scholar 

  • Nagai, T., Sawano, A., Park, E.S., and Miyawaki, A., 2001, Circularly permuted green fluorescent proteins engineered to sense Ca2+, Proc. Natl. Acad. Sci. USA 98:3197–3202.

    CAS  PubMed  Google Scholar 

  • Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., and Miyawaki, A., 2004, Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins, Proc. Natl. Acad. Sci. USA 101:10554–10559.

    CAS  PubMed  Google Scholar 

  • Nakanishi, J., Maeda, M., and Umezawa, Y., 2004, A new protein conformation indicator based on biarsenical fluorescein with an extended benzoic acid moiety, Anal. Sci. 20:273–278.

    CAS  Google Scholar 

  • Nguyen, D.C., Keller, R.A., Jett, J.H., and Martin, J.C., 1987, Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence, Anal. Chem. 59:2158–2161.

    CAS  Google Scholar 

  • Niswender, K.D., Blackman, S.M., Rohde, L., Magnuson, M.A., and Piston, D.W., 1995, Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits, J. Microsc. 180:109–116.

    CAS  Google Scholar 

  • Oi, V., Glazer, A.N., and Stryer, L., 1982, Fluorescent phycobiliprotein conjugates for analyses of cells and molecules, J. Cell Biol. 93:981–986.

    CAS  Google Scholar 

  • Oswald, B., Duschl, J., Patsenker, L., Wolfbeis, O.S., and Terpetschnig, E., 1999, Synthesis, spectral properties, and detection limits of reactive squaraine dyes, a new class of diode laser compatible fluorescent protein labels, Bioconjug. Chem. 10:925–931.

    CAS  Google Scholar 

  • Panchuk-Voloshina, N., Haugland, R.P., Bishop-Stewart, J., Bhalgat, M.K., Millard, P.J., Mao, F., Leung, W.-Y., and Haugland, R.P., 1999, Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates, J. Histochem. Cytochem. 47:1179–1188.

    CAS  PubMed  Google Scholar 

  • Patterson, G., Day, R.N., and Piston, D., 2001, Fluorescent protein spectra, J. Cell Sci. 114:837–838.

    CAS  Google Scholar 

  • Patterson, G.H., Knobel, S.M., Sharif, W.D., Kain, S.R., and Piston, D.W., 1997, Use of the green-fluorescent protein (GFP) and its mutants in quantitative fluorescence microscopy, Biophys. J. 73:2782–2790.

    CAS  Google Scholar 

  • Peck, K., Stryer, L., Glazer, A.N., and Mathies, R.A., 1989, Single molecule fluorescence detection: Autocorrelation criterion and experimental realization with phycoerythrin, Proc. Natl. Acad. Sci. USA, 86:4087–4091.

    CAS  PubMed  Google Scholar 

  • Phillips, G.N., 1999, Structure and dynamics of green fluorescent protein, Curr. Opin. Struc. Biol. 7:821–827.

    Google Scholar 

  • Piston, D.W., Patterson, G.H., and Knobel, S.M., 1999, Quantitative imaging of the green fluorescent protein (GFP), Methods Cell Biol. 58:31–47.

    CAS  PubMed  Google Scholar 

  • Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., 1992, Primary structure of the Aequorea victoria green-fluorescent protein, Gene 111:229–233.

    CAS  PubMed  Google Scholar 

  • Rechtenwald, D.J., 1989, US Patent 4,876,190.

    Google Scholar 

  • Reits, E.A., and Neefjes, J.J., 2001, From fixed to FRAP: Measuring protein mobility and activity in living cells, Nat. Cell Biol. 3:E145–E147.

    CAS  Google Scholar 

  • Reyftmann, J.P., Kohen, E., Morliere, P., Santus, R., Kohen, C., Mangel, W.F., Dubertret, L., and Hirschberg, J.G., 1986, A microspectrofluorometric study of porphyrin-photosensitized single living cells — I. Membrane alterations, Photochem. Photobiol. 44:461–469.

    CAS  PubMed  Google Scholar 

  • Richieri, G.V., Ogata, R.T., and Kleinfeld, A.M., 1992, A fluorescently labeled intestinal fatty acid binding protein, J. Biol. Chem. 267:23495–23501.

    CAS  PubMed  Google Scholar 

  • Richieri, G.V., Anel, A., and Kleinfeld, A.M., 1993, Interactions of long-chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB, Biochemistry 32:7574–7580.

    CAS  PubMed  Google Scholar 

  • Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T., 1995, Chimeric green fluorescent protein (GFP): A new tool for visualizing subcellular organelles in living cells, Curr. Biol. 5:635–642.

    CAS  Google Scholar 

  • Roederer, M., Kantor, A.B., Parks, D.R., and Herzenberg, L.A., 1996, Cy7PE and Cy7APC: Bright new probes for immunofluorescence, Cytometry 24:191–197.

    CAS  PubMed  Google Scholar 

  • Rye, H.S., Yue, S., Wemmer, D.E., Quesada, M.A., Haugland, R.P., Mathies, R.A., and Glazer, R.N., 1992, Stable fluorescent complexes of doublestranded DNAs with bis-intercalating asymmetrical cyanine dyes: Properties and applications, Nucleic Acids Res. 20:2803–2812.

    CAS  PubMed  Google Scholar 

  • Sacchetti, A., Ciccocioppo, R., and Alberti, S., 2000, The molecular determinants of the efficiency of green fluorescent protein mutants, Histol.

    Google Scholar 

  • Histopathol. 15:101–107.

    Google Scholar 

  • Schäfer, F.P., 1983, New developments in laser dyes, Laser Chem. 3:265–278.

    Google Scholar 

  • Schneider, M.B., and Webb, W.W., 1981, Measurement of submicron laser beam radii, Appl. Opt. 20:1382–1388.

    CAS  Google Scholar 

  • Seveus, L., Vaisala, M., Hemmlia, I., Kojola, H., Roomans, G.M., and Soini, E., 1994, Use of fluorescent Europium chelates as labels in microscopy allows glutaraldehyde fixation and permanent mounting and leads to reduced autofluorescence and good long-term stability, Microsc. Res. Techn. 28:149–154.

    CAS  Google Scholar 

  • Sheetz, M.P., and Koppel, D.E., 1979, Membrane damage caused by irradiation of fluorescent concanavalin A, Proc. Natl. Acad. Sci. USA 76:3314–3317.

    CAS  PubMed  Google Scholar 

  • Smith, S.J., and Augustine, G.J., 1988, Calcium ions, active zones and synaptic transmitter release, Trends Neurosci. 11:458–464.

    CAS  Google Scholar 

  • Smith, P.J., Blunt, N., Wiltshire, M., Hoy, T., Teesdale-Spittle, P., Craven, M.R., Watson, J.V., Amos, W.B., Errington, R.J., and Patterson, L.H., 2000, Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy, Cytometry 40(4):280–291.

    CAS  PubMed  Google Scholar 

  • Snyder, D.S., Garon, C.F., 2003, Decreased uptake of bodipy-labelled compounds in the presence of the nuclear stain, DRAQ5, J. Microsc. 211(Pt 3):208–211.

    CAS  Google Scholar 

  • Soini, E.J., Pelliniemi, L.J., Hemmila, I.A., Mukkala, V.-M., Kankare, J.J., and Froidman, K., 1988, Lanthanide chelates as new fluorochrome labels for cytometry, J. Histochem. Cytochem. 36:1449–1451.

    CAS  PubMed  Google Scholar 

  • Southwick, P.L., Ernst, L.A., Tauriello, E.W., Parker, S.R., Mujumdar, R.B., Mujumdar, S.R., Clever, H.A., and Waggoner, A.S., 1990, Cyanine dye labeling reagents — Carboxymethylindocyanine succinimidyl esters, Cytometry 11:418–430.

    CAS  PubMed  Google Scholar 

  • Stearns, T., 1995, Green fluorescent protein — The green revolution, Curr. Biol. 5:262–264.

    CAS  Google Scholar 

  • Strickler, S.J., and Berg, R.A., 1962, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37:814– 822.

    CAS  Google Scholar 

  • Sullivan, K.F., and Kay, S.A., 1999, Green Fluorescent Proteins, Academic Press, San Diego, California.

    Google Scholar 

  • Sun, C., Yang, J., Li, L., Wu, X., Liu, Y., and Liu, S., 2004, Advances in the study of luminescence probes for proteins, J. Chromat. B: Anal. Technol. Biomed. Life Sci. 803:173–190.

    CAS  Google Scholar 

  • Sun, L., Wang, S., Chen, L., and Gong, X., 2003, Promising fluorescent probes from phycobiliproteins, IEEE J Select. Topics Quant. Electron. 9:177–188.

    CAS  Google Scholar 

  • Tinoco, I., Mickols, W., Maestre, M.F., and Bustamante, C., 1987, Absorption, scattering, and imaging of biomolecular structures with polarized light, Annu. Rev. Biophys. Biophys. Chem. 16:319–349.

    CAS  PubMed  Google Scholar 

  • Trask, B.J., 1991, DNA sequence localization in metaphase and interphase cells by fluorescence in situ hybridization, Methods Cell Biol. 35:1–35.

    Google Scholar 

  • Tsien, R.Y., 1988, Fluorescence measurement and photochemical manipulation of cytosolic free calcium, Trends Neurosci. 11:419–424.

    CAS  PubMed  Google Scholar 

  • Tsien, R.Y., 1989a, Fluorescent probes of cell signaling, Annu. Rev. Neurosci. 12:227–253.

    CAS  PubMed  Google Scholar 

  • Tsien, R.Y., 1989b, Fluorescent indicators of ion concentrations, Methods Cell Biol. 30:127–156.

    CAS  PubMed  Google Scholar 

  • Tsien, R.Y., 1998, The green fluorescent protein, Annu. Rev. Biochem. 67:509–544.

    CAS  PubMed  Google Scholar 

  • Tsien, R.Y., 2003, Imagining imaging’s future, Nat. Rev. Mol. Cell Biol. 4(Suppl):SS16–SS21.

    Google Scholar 

  • Tsien, R.Y., and Miyawaki, A., 1998, Seeing the machinery of live cells, Science 280:1954–1955.

    CAS  PubMed  Google Scholar 

  • Tsien, R.Y., and Poenie, M., 1986, Fluorescence ratio imaging: A new window into intracellular ionic signaling, Trends Biochem. Sci. 11:450–455.

    CAS  Google Scholar 

  • Uster, P.S., and Pagano, R.E., 1986, Resonance energy transfer microscopy: Observations of membrane-bound fluorescent probes in model membranes and in living cells, J. Cell Biol. 103:122–124.

    Google Scholar 

  • van Roessel, P., and Brand, A.H., 2002, Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins, Nat. Cell Biol. 4:E15–E20.

    Google Scholar 

  • Vereb, G., Jares-Erijman, E., Selvin, P.R., and Jovin, T.M., 1998, Temporally and spectrally resolved imaging microscopy of lanthanide chelates, Biophys. J. 74:2210–2222.

    CAS  Google Scholar 

  • Verkhusha, V.V., and Lukyanov, K.A., 2004, The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins, Nat. Biotechnol. 22:289–296.

    CAS  Google Scholar 

  • Viallet, P.M., and Vo-Dinh, T., 2003, Monitoring intracellular proteins using fluorescence techniques: From protein synthesis and localization to activity, Curr. Protein Peptide Sci. 4:375–388.

    CAS  Google Scholar 

  • Vigers, G.P.A., Coue, M., and McIntosh, J.R., 1988, Fluorescent microtubules break up under illumination, J. Cell Biol. 107:1011–1024.

    CAS  Google Scholar 

  • Voura, E.B., Jaiswal, J.K., Mattoussi, H., and Simon, S.M., 2004, Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy, Nat. Med. 10:993–998.

    CAS  Google Scholar 

  • Wages, J., Packard, B., Edidin, M., and Brand, L., 1987, Time-resolved fluorescence of intracellular quin-2, Biophys. J. 51:284a.

    Google Scholar 

  • Waggoner, A., DeBiasio, R., Conrad, P., Bright, G.R., Ernst, L., Ryan, K., Nederlof, M., and Taylor, D., 1989, Multiple spectral parameter imaging, Methods Cell Biol. 30:449–478.

    CAS  PubMed  Google Scholar 

  • Waggoner, A.S., Ernst, L.A., Chen, C.-H., and Rechtenwald, D.J., 1993, A new fluorescent antibody label for three-color flow cytometry with a single laser, Ann. N.Y. Acad. Sci. 677:185–193.

    CAS  Google Scholar 

  • Wahlfors, J., Loimas, S., Pasanen, T., and Hakkarainen, T., 2001, Green fluorescent protein (GFP) fusion constructs in gene therapy research, Histochem. Cell Biol. 115:59–65.

    CAS  Google Scholar 

  • Ward, W.W., Cody, C.W., and Hart, R.C., 1980, Spectrophotometric identity of the energy transfer chromophores in Renilla and Aequorea greenfluorescent proteins, Photochem. Photobiol. 31:611–615.

    CAS  Google Scholar 

  • Watt, R.M., and Voss, E.W. Jr., 1977, Mechanism of quenching of fluorescein by anti-fluorescein IgG antibodies, Immunochemistry 14:533–541.

    CAS  PubMed  Google Scholar 

  • Weijer, C.J., 2003, Visualizing signals moving in cells, Science 300:96–100.

    CAS  PubMed  Google Scholar 

  • Wessendorf, M.W., and Brelje, T.C., 1992, Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas Red, and cyanine 3.18, Histochemistry 98:81–85.

    CAS  PubMed  Google Scholar 

  • White, J.C., and Stryer, L., 1987, Photostability studies of phycobiliprotein fluorescent labels, Anal. Biochem. 161:442–452.

    CAS  Google Scholar 

  • White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.

    CAS  Google Scholar 

  • Wilson, E.O., 1975, Sociobiology, Harvard University Press, Cambridge, Massachusetts, pp. 38–43.

    Google Scholar 

  • Wories, H.J., Koek, J.H., Lodder, G., Lugtenburg, J., Fokkens, R., Driessen, O., and Mohn, G.R., 1985, A novel water-soluble fluorescent probe: synthesis, luminescence and biological properties of the sodium salt of the 4- sulfonato-3,3¢,5,5¢-tetramethyl-2,2¢-pyrromethen-1,1¢-BF2 complex, Recl. Trav. Chim. Pays-Bas 104:288–291.

    CAS  Google Scholar 

  • Yip, K.-P., and Kurtz, I., 2002, Confocal fluorescence microscopy measurements of pH and calcium in living cells, Methods Cell Biol. 70:417– 427.

    CAS  PubMed  Google Scholar 

  • Yu, H., Ernst, L.A., Wagner, M., and Waggoner, A.S., 1992, Sensitive detection of RNAs in single cells by flow cytometry, Nucleic Acids Res. 20:83–88.

    CAS  PubMed  Google Scholar 

  • Zaccolo, M., and Pozzan, T., 2000, Imaging signal transduction in living cells with GFP-based probes. IUBMB, Life 49:375–379.

    CAS  Google Scholar 

  • Zacharias, D.A., 2002, Sticky caveats in an otherwise glowing report: Oligomerizing fluorescent proteins and their use in cell biology, Sci. STKE 2002:E23.

    Google Scholar 

  • Zacharias, D.A., Baird, G.S., and Tsien, R.Y., 2000, Recent advances in technology for measuring and manipulating cell signals, Curr. Opin. Neurobiol. 10:416–421.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Campbell, R.E., Ting, A.Y., and Tsien, R.Y., 2002, Creating new fluorescent probes for cell biology, Nat. Rev. Mol. Cell Biol. 3:906–918.

    CAS  PubMed  Google Scholar 

  • Zimmer, M., 2002, Green fluorescent protein (GFP): Applications, structure, and related photophysical behavior, Chem. Rev. 102:759–781.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tsien, R.Y., Ernst, L., Waggoner, A. (2006). Fluorophores for Confocal Microscopy: Photophysics and Photochemistry. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_16

Download citation

Publish with us

Policies and ethics