Skip to main content

Abstract

During the drug discovery process an average of five to ten thousand compounds are evaluated to identify the small subset of structures with appropriate properties to become a drug. A potential drug is distinguished from a potent agonist /antagonist based on multiple factors affecting safety, exposure and marketability including target selectivity, chemical stability, physical chemical properties, and drug metabolism properties. From the drug metabolism standpoint unfavorable pharmacokinetics is one of the primary barriers to overcome in drug discovery. In the case of most CNS drugs, this is further complicated by the requirement for the compound to traverse the blood-brain barrier in order for it to be efficacious. Thus, for CNS drugs, a compound must balance chemical properties conferring good CNS penetration, favorable metabolic characteristics, and good oral absorption in addition to high potency against the target activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, and Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39:361–398.

    Article  PubMed  CAS  Google Scholar 

  • Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, and Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22:7468–7485.

    Article  PubMed  CAS  Google Scholar 

  • Chiba P, Holzer W, Landau M, Bechmann G, Lorenz K, Plagens B, Hitzler M, Richter E, and Ecker G. Substituted 4-acylpyrazoles and 4-acylpyrazolones: synthesis and multidrug resistance-modulating activity. J Med Chem 1998; 41:4001–4011.

    Article  PubMed  CAS  Google Scholar 

  • Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, and Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem. Cytochem. 1990; 38:1277–1287.

    PubMed  CAS  Google Scholar 

  • Ecker G, Huber M, Schmid D, and Chiba P. The importance of a nitrogen atom in modulators of multidrug resistance. Mol Pharmacol 1999; 56:791–796.

    PubMed  CAS  Google Scholar 

  • Gan LS, Moseley MA, Khosla B, Augustijns PF, Bradshaw TP, Hendren RW, and Thakker DR. CYP3A-like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells. Drug Metab Dispos 1996; 24:344–349.

    PubMed  CAS  Google Scholar 

  • Gatmaitan ZC and Arias IM. Structure and function of P-glycoprotein in normal liver and small intestine. Adv.Pharmacol 1993; 24:77–97.

    PubMed  CAS  Google Scholar 

  • Gombar VK, Polli JW, Humphreys JE, Wring SA, and Serabjit-Singh CS. Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model. J Pharm Sci 2004; 93:957–968.

    Article  PubMed  CAS  Google Scholar 

  • Hochman JH, Chiba M, Nishime J, Yamazaki M, and Lin JH. Influence of P-glycoprotein on the transport and metabolism of indinavir in Caco-2 cells expressing cytochrome P-450 3A4. J Pharmacol Exp Ther 2000; 292:310–318.

    PubMed  CAS  Google Scholar 

  • Hochman JH, Chiba M, Yamazaki M, Tang C, and Lin JH. P-glycoprotein-mediated efflux of indinavir metabolites in Caco-2 cells expressing cytochrome P450 3A4. J Pharmacol Exp Ther 2001; 298:323–330.

    PubMed  CAS  Google Scholar 

  • Jonker JW, Wagenaar E, van Deemter L, Gottschlich R, Bender HM, Dasenbrock J, and Schinkel AH. Role of blood-brain barrier P-glycoprotein in limiting brain accumulation and sedative side-effects of asimadoline, a peripherally acting analgaesic drug. Br J Pharmacol 1999; 127:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Juliano RL and Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455:152–162.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, GW and Jurs PC. QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topological based numerical descriptors. J Chem Inf Comput Sci 2001; 41:1553–1560.

    Article  PubMed  CAS  Google Scholar 

  • Kim RB, Fromm MF, Wandel C, Leake B, Wood AJJ, Roden DM, Wilkinson GR. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101:289–294.

    PubMed  CAS  Google Scholar 

  • Lankas GR, Cartwright ME, and Umbenhauer D. P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity. Toxicol Appl Pharmacol 1996; 143:357–365.

    Article  Google Scholar 

  • Lankas GR, Wise LD, Cartwright ME, Pippert T, and Umbenhauer DR. Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod.Toxicol 1998; 12:457–463.

    Article  PubMed  CAS  Google Scholar 

  • Lentz KA, Polli JW, Wring SA, Humphreys JE, and Polli JE. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res 2000; 17:1456–1460.

    Article  PubMed  CAS  Google Scholar 

  • Lown KS, Mayo RR, Leichtman AB, Hsiao HL, Turgeon DK, Schmiedlin-Ren P, Brown MB, Guo W, Rossi SJ, Benet LZ, and Watkins PB. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62:248–260.

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Wagenaar E, Beijnen JH, Smit JW, Meijer DK, van Asperen J, Borst P, and Schinkel AH. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr 1a P-glycoprotein. Br J Pharmacol 1996; 119:1038–1044.

    PubMed  CAS  Google Scholar 

  • Mechetner EB, Schott B, Morse BS, Stein WD, Druley T, Davis KA, Tsuruo T, and Roninson IB. P-glycoprotein function involves conformational transitions detectable by differential immunoreactivity. Proc Natl Acad Sci U S A 1997; 94:12908–12913.

    Article  PubMed  CAS  Google Scholar 

  • Osterberg T and Norinder U. Theoretical calculation and prediction of P-glycoprotein-interacting drugs using MolSurf parametrization and PLS statistics. Eur J Pharm Sci 2000; 10:295–303.

    Article  PubMed  CAS  Google Scholar 

  • Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, and Serabjit-Singh CS. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 2001; 299:620–628.

    PubMed  CAS  Google Scholar 

  • Prueksaritanont, T., Meng, Y., Ma, B., Leppert, P., Hochman, J., Tang, C., Perkins, J., Zrada, M., Meissner, R., Duggan, M.E. and Lin, J.H. Differences in the absorption, metabolism and biliary excretion of a diastereomeric pair of alpha(upsilon)beta(3)-antagonists in rat: Limited role of P glycoprotein. Xenobiotica, 2002; 32: 207–220.

    Article  PubMed  CAS  Google Scholar 

  • Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM, and Pastan I. Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A 1986; 83:4538–4542.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MF, Kamis AB, Callaghan R, Higgins CF, and Ford RC. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem 2003; 278:8294–8299.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MF, Velarde G, Ford RC, Martin C, Berridge G, Kerr ID, Callaghan R, Schmidlin A, Wooding C, Linton KJ, and Higgins CF. Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J 2001; 20:5615–5625.

    Article  PubMed  CAS  Google Scholar 

  • Scala S, Akhmed N, Rao US, Paull K, Lan LB, Dickstein B, Lee JS, Elgemeie GH, Stein WD, and Bates SE. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol Pharmacol 1997; 51:1024–1033.

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, Van Der Valk MA, Robanus-Maandag EC, te Riele HP, et.al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77:491–502.

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, Mol CA, and van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97:2517–2524.

    PubMed  CAS  Google Scholar 

  • Schinkel AH, Wagenaar E, van Deemter L, Mol CA, and Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96:1698–1705.

    Article  PubMed  CAS  Google Scholar 

  • Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 1998; 251:252–261.

    Article  PubMed  CAS  Google Scholar 

  • Seelig A and Landwojtowicz E. Structure-activity relationship of P-glycoprotein substrates and modifiers. Eur J Pharm Sci 2000; 12:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AB and Ling V. Extraction of Hoechst 33342 from the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. Eur J Biochem 1997; 250:122–129.

    Article  PubMed  CAS  Google Scholar 

  • Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, and Schinkel AH. Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest 1999; 104:1441–1447.

    PubMed  CAS  Google Scholar 

  • Smit JW, Schinkel AH, Weert B, and Meijer DK. Hepatobiliary and intestinal clearance of amphiphilic cationic drugs in mice in which both mdr1a and mdr1b genes have been disrupted. Br J Pharmacol 1998; 124:416–424.

    Article  PubMed  CAS  Google Scholar 

  • Sonveaux N, Vigano C, Shapiro AB, Ling V, and Ruysschaert JM. Ligandmediated tertiary structure changes of reconstituted P-glycoprotein. A tryptophan fluorescence quenching analysis. J Biol Chem 1999; 274:17649–17654.

    Article  PubMed  CAS  Google Scholar 

  • Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH, and van Tellingen O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 1997; 94:2031–2035.

    Article  PubMed  CAS  Google Scholar 

  • Speeg KV, Maldonado AL, Liaci J, and Muirhead D. Effect of cyclosporine on colchicine secretion by a liver canalicular transporter studied in vivo. Hepatology 1992; 15:899–903.

    Article  PubMed  CAS  Google Scholar 

  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, and Willingham MC. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem.Cytochem. 19889; 37:159–164.

    Google Scholar 

  • Troutman MD and Thakker DR (2003a) Efflux ratio cannot assess P-glycoprotein-mediated attenuation of absorptive transport: asymmetric effect of P-glycoprotein on absorptive and secretory transport across Caco-2 cell monolayers. Pharm Res 2003a; 20:1200–1209.

    Article  PubMed  CAS  Google Scholar 

  • Troutman MD and Thakker DR. Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res 2003b; 20:1210–1224.

    Article  PubMed  CAS  Google Scholar 

  • Wacher VJ, Silverman JA, Zhang Y, and Benet LZ. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87:1322–1330.

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Pincheira R, and Zhang JT. Dissection of drug-binding-induced conformational changes in P-glycoprotein. Eur J Biochem 1998; 255:383–390.

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Pincheira R, Zhang M, and Zhang JT. Conformational changes of P-glycoprotein by nucleotide binding. Biochem J 1997; 328 (Pt 3):897–904.

    PubMed  CAS  Google Scholar 

  • Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, and Chen YZ. Prediction of P-glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci 2004; 44:1497–1505.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Neway WE, Ohe T, Chen I, Rowe JF, Hochman JH, Chiba M, and Lin JH. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther 2001; 296:723–735.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Hochman, J. et al. (2006). Role of Mechanistic Transport Studies in Lead Optimization. In: Borchardt, R.T., Kerns, E.H., Hageman, M.J., Thakker, D.R., Stevens, J.L. (eds) Optimizing the “Drug-Like” Properties of Leads in Drug Discovery. Biotechnology: Pharmaceutical Aspects, vol IV. Springer, New York, NY. https://doi.org/10.1007/978-0-387-44961-6_2

Download citation

Publish with us

Policies and ethics