Skip to main content

Abstract

In previous Chapter 3–5, a single vehicle’s dynamics is decomposed along three dimensions and studied. However, in many situations, the integrated 3-D vehicle motion control, which addresses the vehicle’s short-term driving behavior under dynamic constraints, needs to be discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. D. E. Smith, J. M. Starkey, and R. E. Benton, “Nonlinear-gain-optimized controller development and evaluation for automated emergency vehicle steering,” Proceedings of American Control Conference, vol. 5, pp: 3586–3591, 1995.

    Article  Google Scholar 

  2. J. Forbes, T. Huang, and K. Kanazawa, et. al, “The BATmobile: towards a Bayesian automated taxi,” Proceedings of International Joint Conference on Artificial Intelligence, 1995.

    Google Scholar 

  3. C. Unsal. P. Kachroo, and J. S. Bay, “Multiple stochastic learning automata for vehicle path control in an automated highway system,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 29, no. 1, pp. 120–128, 1999.

    Article  Google Scholar 

  4. L. Alvarez and J. Yi, “Adaptive emergency braking control in automated highway systems,” Proceedings of IEEE Conference on Decision and Control, vol. 4, pp. 3740–3745, 1999.

    Google Scholar 

  5. P. Tsiotras and C. C. de Wit, “On the optimal braking of wheeled vehicles,” Proceedings of American Control Conference, vol. 1, pp. 569–573, 2000.

    Google Scholar 

  6. U. Lages, “Collision avoidance system for fixed obstacles-fuzzy controller network for robot driving of an autonomous vehicle,” Proceedings of IEEE Intelligent Transportation Systems Conference, pp. 489–491, 2001.

    Google Scholar 

  7. T. Nishi and T. Takagi, “A proposal of collision avoidance algorithm for driving support system,” Proceedings of Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 80–83, 2001.

    Google Scholar 

  8. R. Labayrade, C. Royere, and D. Aubert, “A collision mitigation system using laser scanner and stereovision fusion and its assessment,” Proceedings of IEEE Intelligent Vehicles Symposium, pp. 441–446, 2005.

    Google Scholar 

  9. Z. Shiller and Y.-R. Gwo, “Dynamic motion planning of autonomous vehicles,” IEEE Transactions on Robotics and Automation, vol. 7, no. 2, pp. 241–249, 1991.

    Article  Google Scholar 

  10. T. Fraichard, “Dynamic trajectory planning with dynamic constraints: A’ state-time space’ approach,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1393–1400, 1993.

    Google Scholar 

  11. L. Singh and J. Fuller, “Trajectory generation for a UAV in urban terrain, using nonlinear MPC,” Proceedings of the American Control Conference, vol. 3, pp. 2301–2308, 2001.

    Google Scholar 

  12. E. J. Bernabeu, J. Tornero, and M. Tomizuka, “Collision prediction and avoidance amidst moving objects for trajectory planning applications,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3801–3806, 2001.

    Google Scholar 

  13. T. Acarman, Y. Pan, and U. Ozguner, “A control authority transition system for collision avoidance,” Proceedings of IEEE Intelligent Transportation Systems, pp. 466–471, 2001.

    Google Scholar 

  14. C.-Y. Chan and H.-S. Tan, “Feasibility analysis of steering control as a driver-assistance function in collision situations,” IEEE Transactions on Intelligent Transportation Systems, vol. 2. no. 1, pp. 1–9, 2001.

    Article  MathSciNet  Google Scholar 

  15. S. Fleury, P. Soueres, and J.-P. Laumond, et. al, “Primitives for smoothing mobile robot trajectories,” IEEE Transactions on Robotics and Automation, vol. 11, no. 3, pp. 441–448, 1995.

    Article  Google Scholar 

  16. M. Khatib, H. Jaouni, and R. Chatila, et. al, “Dynamic path modification for car-like nonholonomic mobile robots,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 2920–2925, 1997.

    Google Scholar 

  17. A. Scheuer and T. Fraichard, “Collision-free and continuous curvature path planning for car-like robots,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 867–873, 1997.

    Google Scholar 

  18. U. Lages, “Collision avoidance system for fixed obstacles-fuzzy controller network for robot driving of an autonomous vehicle,” Proceedings of IEEE Intelligent Transportation Systems, pp. 489–491, 2001.

    Google Scholar 

  19. J. Hermosillo, C. Pradalier, and S. Sckhavat, et. al, “Towards motion autonomy of a bi-steerable car: experimental issues from map-building to trajectory execution,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 2430–2435, 2003.

    Google Scholar 

  20. F. Lamiraux and J.-P. Lammond, “Smooth motion planning for car-like vehicles,” IEEE Transactions on Robotics and Automation, vol. 17, no. 4, pp. 498–501,2001.

    Article  Google Scholar 

  21. R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Yossawee, T. Tsubouchi, and S. Sarata, et. al, “Path generation for articulated steering type vehicle using symmetrical clothoid,” IEEE International Conference on Industrial Technology, vol. 1, pp. 187–192, 2002.

    Google Scholar 

  23. A. Piazzi and C. G. Lo Bianco, “Quintic G 2-splines for trajectory planning of autonomous vehicles,” Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 198–203, 2000.

    Google Scholar 

  24. A. Piazzi, C. G. Lo Bianco, and Bertozzi, M., et. al, “Quintic G 2-splines for the iterative steering of vision-based autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 1, pp. 27–36, 2002.

    Article  Google Scholar 

  25. J. Hilgert, K. Hirsch, and T. Bertram, et. al, “Emergency path planning for autonomous vehicles using elastic band theory, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol. 2, pp. 1390–1395, 2003.

    Article  Google Scholar 

  26. A. Simon and J. C. Becker, “Vehicle guidance for an autonomous vehicle,” Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, pp. 429–434, 1999.

    Google Scholar 

  27. A. Simon, I. Sohnitz, and J. Becker, et. al “Navigation and control of an autonomous vehicle,” Proceedings of IFAC Symposium on Control in Transportation Systems, 2000.

    Google Scholar 

  28. I. Papadimitriou and M. Tomizuka, “Fast lane changing computations using polynomials.” Proceedings of American Control Conference, vol. 1, pp. 48–53, 2003.

    Article  Google Scholar 

  29. D. Metz and D. Williams, “Near time-optimal control of racing vehicles.” Automatica, vol. 25, no. 6, pp. 841–857, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. A. Pham and J. K. Hedrick, “A robust optimal lateral vehicle control strategy,” Proceedings of IEEF, International Conference on Control Applications, pp. 361–366, 1996.

    Google Scholar 

  31. J.-S. Choi and B. K. Kim, “Near-time-optimal trajectory planning for wheeled mobile robots with translational and rotational sections,” IEEE Transactions on Robotics and Automation, vol. 17, no. 1, pp. 85–90, 2001.

    Article  Google Scholar 

  32. L. Li and F.-Y. Wang, “Vehicle trajectory generation for optimal driving guidance,” IEEE International Conference on Intelligent Transportation Systems, pp. 231–235, 2002.

    Google Scholar 

  33. L. Li and F.-Y. Wang, “A design framework for driver/passenger-oriented trajectory planning,” IEEE International Conference on Intelligent Transportation Systems, pp. 1764–1769, 2003.

    Google Scholar 

  34. L. Li and F.-Y. Wang, “Trajectory generation for driving guidance of front wheel steering vehicles,” IEEE Intelligent Vehicles Symposium, pp. 231–236, 2003.

    Google Scholar 

  35. S. A. Nobe and F.-Y. Wang, “An overview of recent developments in automated lateral and longitudinal vehicle controls,” Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 3447–3452, 2001.

    Google Scholar 

  36. M. Cherif, “Motion planning for all-terrain vehicles: a physical modeling approach for coping with dynamic and contact interaction constraints,” IEEE Transactions on Robotics and Automation, vol. 15, no. 2, pp. 202–218, 1999.

    Article  Google Scholar 

  37. D. Wang and F. Qi, “Trajectory planning for a four-wheel-steering vehicle,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3320–3325, 2001.

    Google Scholar 

  38. M. Cherif, “Kinodynamic motion planning for all-terrain wheeled vehicles,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, pp. 317–322, 1999.

    Google Scholar 

  39. C. S. Hsu, “Generalized theory of cell-to-cell mapping for nonlinear dynamical systems,” ASME Journal of Applied Mechanics, vol. 48, pp. 834–842, 1981.

    Article  Google Scholar 

  40. C. S. Hsu, “A discrete method of optimal control based upon the cell state space concept,” ASME Journal of Optimization Theory and Applications, vol. 46, pp. 547–569, 1985.

    Article  MATH  Google Scholar 

  41. C. S. Hsu and R. S. Guttalu, “An unravelling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings,” ASME Journal of Applied Mechanics, vol. 47, pp. 940–948, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  42. W. H. Zhu and M. C. Leu, “Planning optimal robot trajectories by cell mapping,” Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 1730–1735, 1990.

    Article  Google Scholar 

  43. L. Guvenc, “Park by wire,” IEEE Control Systems Magazine, vol. 25, no. 5, pp. 17–17,2005.

    Article  Google Scholar 

  44. A. Ohata and M. Mio, “Parking control based on nonlinear trajectory control for low speed vehicles,” Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, pp. 107–112, 1991.

    Google Scholar 

  45. P. Song and A. Goldenberg, “Fundamental principles of design of position architecture and controller design for automated car parking,” Proceedings of American Control Conference, pp. 806–810, 1994.

    Google Scholar 

  46. I. E. Paromtchik and C. Laugier, “Autonomous parallel parking of a nonholonomic vehicle,” Proceedings of IEEE Intelligent Vehicles Symposium, pp. 13–18, 1999.

    Google Scholar 

  47. K. Jiang, “A sensor guided parallel parking system for nonholonomic vehicles,” Proceedings of IEEE Intelligent Transportation Systems, pp. 270–275, 2000.

    Google Scholar 

  48. M. Kochem, R. Neddenriep, and R. Isermann, et. al, “Accurate local vehicle dead-reckoning for a parking assistance system,” Proceedings of the 2002 American Control Conference, vol. 5, pp. 4297–4302, 2002.

    Google Scholar 

  49. S.-J. Chang, C.-W. Cheng, and S. T.-H. Li, “Design and implementation of fuzzy garage-parking control for a PC-based model car,” Proceedings of International Conference on Industrial Electronics, Control and Instrumentation, vol. 3, pp. 1299–1304, 1997.

    Article  Google Scholar 

  50. G. Chen and D. Zhang, “Back-driving a truck with suboptimal distance trajectories: a fuzzy logic control approach,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 3, pp. 369–380, 1997.

    Article  Google Scholar 

  51. Y. Zhao and E. G. Collins, “Fuzzy parallel parking control of autonomous ground vehicles in tight spaces,” Proceedings of IEEE International Symposium on Intelligent Control, pp. 811–816, 2003.

    Google Scholar 

  52. D. Nguyen and B. Widrow, “The truck backer-upper: an example of self-learning in neural networks,” Proceedings of International Joint Conference on Neural Networks, pp. 357–363, 1989.

    Google Scholar 

  53. D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg, “Neural network architecture for trajectory generation and control of automated car parking,” IEEE Transactions on Control Systems Technology, vol. 4, no. 1, pp: 50–56, 1996.

    Article  Google Scholar 

  54. L. Li and F.-Y. Wang, “Parking guidance system for front wheel steering vehicles using trajectory generation,” Proceedings of IEEE International Conference on Intelligent Transportation Systems, pp. 1770–1775, 2003.

    Google Scholar 

  55. M. Wada, K.-S. Yoon, and H. Hashimoto, et. al, “Development of advanced parking assistance system using human guidance,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 997–1002, 1999.

    Google Scholar 

  56. M. Wada, K.-S. Yoon, and H. Hashimoto, “Development of advanced parking assistance system,” IEEE Transactions on Industrial Electronics, vol. 50, no. 1, pp. 4–17, 2003.

    Article  Google Scholar 

  57. M. Omae, H. Shimize and T. Fujioka, “GPS-based automatic driving control in local area with course of large curvature and parking space,” Vehicle System Dynamics, vol. 42, no. 1–2. pp. 59–73, 2004.

    Article  Google Scholar 

  58. E. Seignez, A. Lambert, and T. Maurin, “Autonomous parking carrier for intelligent vehicle,” Proceedings of IEEE Intelligent Vehicles Symposium, pp. 411–416, 2005.

    Google Scholar 

  59. K. Tanaka, T. Kosaki, and H. O. Wang. “Backing control problem of a mobile robot with multiple trailers: fuzzy modeling and LMI-bascd design,” IEEE Transactions on Systems, Man, and Cybernetics, Part C, vol. 28, no. 3, pp. 329–337, 1998.

    Article  Google Scholar 

  60. H. Pham, K. Hedrick, and M. Tomizuka, “Combined lateral and longitudinal control of vehicles for IVHS,” Proceedings of American Control Conference, vol. 2, pp. 1205–1206, 1994.

    Google Scholar 

  61. E. Ono, K. Takanami, and N. Iwama, et. al, “Vehicle integrated control for steering and traction systems by μ-synthesis,” Automatica, vol. 30, no. 11, pp. 1639–1647, 1994.

    Article  Google Scholar 

  62. W. Chee, M. Tomizuka, and S. Patwardhan, et. al, “Experimental study of lane change maneuver for AHS applications,” Proceedings of American Control Conference, vol. 1, pp. 139–143, 1995.

    Article  Google Scholar 

  63. T. Pilutti, G. Ulsoy, and D. Hrovat, “Vehicle steering intervention through differential braking, Proceedings of the American Control Conference, vol. 3, pp. 1667–1671, 1995.

    Article  Google Scholar 

  64. D. E. Smith, J. M. Starkey, and R. E. Benton, “Nonlinear-gain-optimized controller development and evaluation for automated emergency vehicle steering,” Proceedings of American Control Conference, vol. 5, pp. 3586–3591, 1995.

    Article  Google Scholar 

  65. R. T. O’Brien, P. A. Iglesias, and T. J. Urban, “Lane change maneuver via H ϰ steering control methods,” Proceedings of IEEE Conference on Control Applications, pp. 131–136, 1995.

    Google Scholar 

  66. R. T. O’Brien, P. A. Iglesias, and T. J. Urban, “Vehicle lateral control for automated highway systems,” IEEE Transactions on Control Systems Technology, vol. 4, no. 3, pp. 266–273, 1996.

    Article  Google Scholar 

  67. P. Waltermann, “Modelling and control of the longitudinal and lateral dynamics of a series hybrid vehicle,” Proceedings of IEEE International Conference on Control Applications, pp. 191–198, 1996.

    Google Scholar 

  68. P. Seiler, B. Song, and J. K. Hedrick, “Development of a collision avoidance system,” Proceedings of SAE Conference, pp. 97–103, 1998.

    Google Scholar 

  69. E. H. M. Lim and J. K. Hedrick, “Lateral and longitudinal vehicle control coupling for automated vehicle operation,” Proceedings of American Control Conference, vol. 5, pp. 3676–3680, 1999.

    Google Scholar 

  70. Y. Jia, “Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion,” IEEE Transactions on Control Systems Technology, vol. 8,3, pp. 554–569, 2000.

    Article  Google Scholar 

  71. R. Outbib and A. Rachid, “Control of vehicle speed: a nonlinear approach,” Proceedings of IEEE Conference on Decision and Control, vol. 1, pp. 462–463, 2000.

    Google Scholar 

  72. H. Lee and M. Tomizuka, “Coordinated longitudinal and lateral motion control of vehicles for IVHS,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 123, pp. 535–543, 2001.

    Article  Google Scholar 

  73. R. White and M. Tomizuka, “Autonomous following lateral control of heavy vehicles using laser scanning radar,” Proceedings of American Control Conference, vol. 3, pp. 2333–2338, 2001.

    Google Scholar 

  74. R. Saeks, C. J. Cox, and J. Neidhoefer, et. al, “Adaptive control of a hybrid electric vehicle,” IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 4, pp. 213–234, 2002.

    Article  Google Scholar 

  75. P. Setlur, D. Dawson, and J. Wagner, et. al, “Nonlinear tracking controller design for steer-by-wire automotive systems,” Proceedings of American Control Conference, vol. 1, pp. 280–285, 2002.

    Google Scholar 

  76. Ph. Heinzl, P. Luger and M. Plochl, “Stability control of a passenger car by combined additional steering and unilateral braking,” Vehicle System Dynamics, Supplement 37, pp. 221–233, 2002.

    Google Scholar 

  77. J. R. Zhang, S. J. Xu, and A. Rachid, “Sliding mode controller for automatic path tracking of vehicles,” Proceedings of American Control Conference, vol. 5, pp. 3974–3979, 2002.

    Google Scholar 

  78. J. Ryu. H.-S. Kim and J.-H. Kim, “An emergency obstacle avoidance control strategy for automated highway vehicles,” Vehicle System Dynamics, vol. 38, no. 5, pp. 319–339, 2002.

    Article  Google Scholar 

  79. M. Lakehal-Ayat, S. Diop, and E. Fenaux, “An improved active suspension yaw rate control,” Proceedings of American Control Conference, vol. 2, pp. 863–868, 2002.

    Google Scholar 

  80. C. Hatipoglu, U. Ozguner, and K. A. Redmill, “Automated lane change controller design,” IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 1, pp. 13–22, 2003.

    Article  Google Scholar 

  81. F. Tahami, S. Farhangi, and R. Kazemi, “A Fuzzy logic direct yaw-moment control system for all-wheel-drive electric vehicles,” Vehicle System Dynamics, vol. 41, no. 3, pp. 203–221, 2004.

    Article  Google Scholar 

  82. K. Guo, H. Ding, and J. Zhang, “Development of a longitudinal and lateral driver model for autonomous vehicle control,” International Journal of Vehicle Design, vol. 36, no. 1, pp. 50–65, 2004.

    Article  Google Scholar 

  83. O. Mokhiamar and M. Abe, “Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 126, pp. 753–763, 2004.

    Article  Google Scholar 

  84. L. Beji and Y. Bestaoui, “Motion generation and adaptive control method of automated guided vehicles in road following,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 1, pp. 113–123. 2005.

    Article  Google Scholar 

  85. A. R. W. Huang and C. Chen, “A low-cost driving simulator for full vehicle dynamics simulation,” IEEE Transactions on Vehicular Technology, vol. 52, no. 1, pp. 162–172, 2003.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Advanced Individual Vehicle Motion Control. In: Advanced Motion Control and Sensing for Intelligent Vehicles. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-44409-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-44409-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-44407-9

  • Online ISBN: 978-0-387-44409-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics